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With the growing demands from disciplinary and interdisciplinary fields of science and engineering for 
the numerical solution of the nonsymmetric eigenvalue problem, competitive new techniques have been 
developed for solving the problem. In this paper we examine the state of the art of the algorithmic techniques 
and the software scene for the problem. Some current developments are also outlined. 
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1. Introduction 

Having worked several years on the LAPACK project [2] and having communicated with 
a variety of users who work in diverse fields involving scientific computing, the author has 
seen a growing demand for the numerical solution of the eigenvalue problems. Since the 
publication of Parlett’s exploratory review paper, ‘The software scene in the extraction of 
eigenvalues from sparse matrices’ [35], nearly a decade ago, many new numerical methods 
and analyses have been developed for the eigenproblem. The aim of this essay is to review 
the origins of the eigenvalue problem and the progress of the numerical techniques for 
the problem over the past decade and to share our view and expertise within the scientific 
computing community. 

The survey is by no means complete. One reason for this is that relevant articles may 
be found scattered throughout the scientific and engineering literature, and the task of 
tracking them all down is impossibly large. The author apologizes for his ignorance of any 
important contributions to the problem that are not mentioned here. A new book by Saad 
[44] is an elegant source for studying the state of the art in large eigenproblem techniques. 
This review will only focus on the nonsymmetric eigenvalue problem in the aspects of its 
origins, algorithmic techniques, software scene and work in progress. 
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As defined by Parlett [35] a decade ago, there are two different user groups for the 
eigenproblem. One is called the intensive user group and the other called the sporadic 
user group. Spectral analysis is imperative to the work of the former group; they have 
been expending tremendous efforts in term of time and funding in order to extract the 
desired spectral information. But, for the latter group, the need to compute eigenvalues 
arises occasionally and the user wants to obtain them with minimal fuss. 

With the rapid advances of computer facilities, in particular, the massively parallel com- 
puters, and the new engagement of interdisciplinary scientific computing activities, as pro- 
posed by J. w. Demmel, there are two different camps in each user group according to their 
different desired priorities in terms of computation details, reliability and execution time of 
a program. The first camp is made up of traditional library users and the second camp is 
made up of high performance computing researchers. For the first camp the desiderata can 
be characterized as follows: 

(1) easy user interface with hidden computation details, 
(2) reliability: the code should fail as rarely as possible, 
(3) execution time. 

However, for the second camp, the desiderata are 

(1) execution time, 
(2) being able to access to internal details to fine-tune data structures to their applications, 
(3) reliability: a program should expend only a negligible amount of time, space or code in 

checking or taking precautions against rare eventualities that the user knows may never 
arise for his or her particular applications. 

These different desiderata give an extra dimension to numerical algorithm development 
and analysis. To what extent can we satisfy both camps? In this essay we will try to address 
this interesting question with respect to the nonsymmetric eigenvalue problem. 

There are no clear boundaries for a problem being small and large and a matrix being 
dense and sparse. All of them are relative and are changing rapidly with the advances of 
algorithms and computer technology. A matrix of the order of a couple of hundred used 
to be considered large, but on today’s high performance workstations and supercomputers 
it is small. The list of today’s performance and benchmarks for an algorithm on high- 
performance computers often starts with matrices of the order of above a couple of hundred 
and up to thousands. A matrix is considered to be sparse if only a small percentage of its 
entries are nonzero. However, concerning the tradeoff between the sparsity and algorithm 
complexity and performance, we do not necessarily exploit the zeros. Following Parlett’s 
suggestion in his 1984 paper [35], ‘it is vital to science that one not be more precise than 
is necessary for the purpose in hand’, we will leave the user to decide whether his or her 
problem is small or large, dense or sparse. 

Finally, to numerical analysts it is well known that the techniques for treating dense and 
sparse matrices, small and large problems are closely related. An inner loop of a method 
for large and sparse eigenproblem often constitutes a small and dense problem. The small 
problem solver could be a bottleneck for the large problem. 

The rest of the paper is organized as follows. Section 2 reviews the main features of 
the nonsymmetric eigenvalue problem solvers in the LAPACK package. Sections 3 and 4 
discuss the cases where the users want to have more than what the LAPACK package can 
offer. Section 5 describes algorithms and software for the sparse nonsymmetric eigenvalue 
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problem. Section 6 discusses some contributions in the last decade which have become more 
widely appreciated. Sections 7 and 8 describe some work in progress and conclusions. 

2. The nonsymmetric eigenproblem in LAPACK 

LAPACK [2] is a transportable public domain library of Fortran 77 subroutines for solv- 
ing the most common matrix computation problems, such as solving linear systems, least 
squares problems, eigenproblems and so on. The library was mainly supported by NSF 
beginning in 1987. It is a further development of the successful LINPACK and EISPACK 
libraries [ 15,48,22] that were developed in the 1970s. A great deal of effort has been ex- 
pended to improve accuracy and robustness, to add new functionality, and to incorporate 
design methodologies and algorithms that make LAPACK appropriate for today’s high 
performance shared memory vector and parallel computer architectures. The design, im- 
plementation and performance evaluation of LAPACK has attracted significant interest from 
user communities and from computer manufacturers. 

LAPACK is said to be ‘transportable’ rather than ‘portable’, because the fastest perfor- 
mance requires that highly optimized block matrix operation already be implemented on 
each machine by the manufacturer or someone else. Nevertheless, the algorithms used in 
LAPACK are so well specified and understood that they have been turned into ‘black box’ 
programs demanding no foreknowledge of where the eigenvalues are likely to lie and no 
tricky choices of tolerances or accuracy. 

There are three levels of subroutines in LAPACK’ for addressing the standard nonsym- 
metric eigenvalue problem: 

Driver routines for the nonexpert and for the expert: These drivers solve a complete 
problem. The user can choose to compute the eigenvalues and left and/or right eigen- 
vectors, or the Schur decomposition. In addition, with the expert drivers a balancing 
transformation can be used to improve the conditioning of the eigenvalues and eigen- 
vectors; the user can choose to compute condition numbers for the eigenvalues and the 
right eigenvectors, to order the eigenvalues on the diagonal of the Schur form, and to 
compute a condition number for the average of the selected eigenvalues and for the right 
invariant subspace corresponding to the selected eigenvalues. 
Computational routines: These subroutines perform distinct computational tasks, such 
as Hessenberg reduction, the Schur decomposition of a Hessenberg matrix, inverse iter- 
ation for selected eigenvectors, and condition number estimation. 
Auxiliary routines: Auxiliary routines in this level perform relatively low-level opera- 
tions, such as unblocked Hessenberg reduction, swapping the adjacent diagonal (block) 
entries in Schur form, solving 2 by 2 eigenproblems and so on. 

These LAPACK subroutines are not just more efficient updates of their popular predecessor 
EISPACK. In order to obtain the better performance of LAPACK subroutines on a wide range 
of shared-memory vector and parallel processors, some new algorithms have been designed 
to fit the memory access patterns with respect to the multilayered memory hierarchies of 
the machines. For example, a block Hessenberg reduction algorithm has been adapted in 
LAPACK for reducing the original matrix a condensed form by orthogonal transformation. 

Individual routines from LAPACK can be obtained by electronic mail through netlib netlib@oml.gov or 
netlib@research.att.com. The complete package can be obtained on magnetic media from NAG at Jordan 
Hill Road, Oxford OX2 8DR, England. 
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Following the reduction to condensed form, a multishift QR algorithm has been developed in 
order to using block matrix operations. The traditional EISPACK routine HQR uses a double 
shift; the multishift strategy uses block shifts of higher order and can perform matrix-vector 
operations instead of vector-vector operations and also obtains modest speedup. 

Along with the new goals of LAPACK in terms of stability, efficiency, accuracy and 
robustness, LAPACK also provides much wider functionality for the nonsymmetric eigen- 
value problem, including computing the Schur form and Schur vectors, ordering selected 
eigenvalues in Schur form, and computing right and/or left eigenvectors. Last but not least, 
with the new condition number estimation techniques we can produce condition numbers 
along with the basic solutions. This is a valuable byproduct of the successful perturbation 
theory conducted by many numerical analysts over three decades. 

All LAPACK subroutines have been through massive testing and performance evaluation 
on a large class of modem computers with help of over 40 test sites from USA and Europe. 
The critiques and comments from the potential user communities and computer vendors 
have improved the programs in many aspects. 

With the large and fast-growing storage capacity of today's high-performance computers, 
the domain of the LAPACK grows. The author has used a LAPACK driver routine to find 
all the eigenvalues of a 2000 by 2000 matrix-a computation that would have been difficult 
or impossible 10 years ago. It took about 575 seconds of CPU time on a CRAY-2 machine. 

Does LAPACK satisfy all users' needs? Who will remain unsatisfied with LAPACK 
for their applications? What has been missed in LAPACK? We will try to address these 
questions in the following sections. 

3. Why we remain unsatisfied with M A C K  

Without a doubt LAPACK subroutines will be used extensively in the coming years. 
For those sporadic and traditional library users of eigenvalue solvers whose matrices 
can be stored in-core and who think reliability is more important than execution time, 
LAPACK subroutines are their desired choice. However, for those intensive users and 
high-performance competitors, LAPACK does not provide all they are looking for. The fol- 
lowing are the main complaints on the nonsymmetric eigenproblem routines. 

Thepenalty of exception handling: The speed of some subroutines is penalized by spend- 
ing a considerable amount of time, space, or code checking for rare events. If the eigenvalue 
computation is the inner loop of some large computation, such a penalty could significantly 
slow the computation, even though the users (who are more interested in speed) know 
that their problems are very well-conditioned. For example,, in order to resist the possible 
overflow, we cannot use the standard Level 2 BLAS triangular solver in computing the 
eigenvectors of a triangular matrix and in inverse iteration for the selected eigenvectors, 
because there is no protection against overflow in the B U S  routine. Instead, we had to 
develop another much more complicated triangular solver including sophisticated scaling 
in the inner loop: it has 300 lines of Fortran versus the standard Level 2 BLAS code with 
159 lines of Fortran (not including comments). This gives us a double performance penalty, 
since we cannot use optimized BLAS, and since we must do many more floating-point 
operations and logical tests. 

Without partial eigenvalue handling: There are eigenvalue problem applications where 
the users are only interested in the eigenvalues and their corresponding invariant subspace 
in a specified region of the complex plane, such as in a vertical strip including the imaginary 
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axis. However, the M A C K  routines always compute all eigenvalues of the matrix. The 
users have to sort them out by themselves. 

Single data structure and no sparsity handling: The main drawback to LAPACK is that 
it does not try to exploit sparsity in the original matrix. A square matrix is stored in essen- 
tially one standard, conventional, two-dimensional data structure. Many matrices arising in 
practice are too large to be stored in-core. In this case it is necessary to take advantage of 
the sparsity of the original matrix to reduce memory requirements and computation time. In 
the next section we will examine the origins of large-scale eigenvalue problems in science 
and engineering to illustrate the need for exploiting the sparsity of the matrix. 

4. Where are the origins of large eigenvalue problems 

For a small matrix eigenproblem the algorithm and software are in such good standing 
that we can solve the problem efficiently without the need to know where it comes from. 
However, for a large problem, algorithm development still is a research subject. Therefore, 
before we consider an algorithm for such a problem, it does help to know where it came 
from and what users really want. 

In [35] Parlett discusses eigenproblems from structural engineering, quantum chemistry, 
and plasma physics. Most of them are symmetric. In addition, Markov chain modeling 
and numerical simulation of certain chemical reactions (see Stewart [52] and Saad [41]) 
have become the standard test problems for numerical methods. In this section we will 
examine some newly arising nonsymmetric eigenvalue problems coming from the scientific 
computing community. 

4.1. Power system stability study [34] 

Low-damped electromechanical oscillations are a common phenomenon in modem electric 
power systems. The damping of these oscillations is dependent on system structure, oper- 
ating conditions, and the effects of automatic-controller action. An efficient way to combat 
these oscillations is through the installation of additional signals to the generator excitation 
systems. In recent years this area of work has led to the development of numerical methods 
to determine the source of these oscillations and obtain solutions via excitation control. 

The power system stability problem is represented by a set of differential algebraic 
equations. If we write the Jacobian matrix of the entire set of equations evaluated at an 
operating point as 

J = (  J3 ’’ 54 ”> 
then the power system state matrix is defined as 

The dominant eigenvalues of the matrix A determine the stability of the nonlinear system. 
In practice, the matrix J is very large and sparse, but the state matrix A is not sparse. The 
problem is to calculate the desired eigenvalues of A without forming it explicitly. A group 
of researchers under the leadership of Martins [34] is developing an efficient algorithm on 
an Intel distributed memory machine. 
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4.2. Numerical analysis of optical waveguides [47] 

In recent years an accurate numerical analysis for optical waveguides has become of prac- 
tical interest for optimum design of optical devices and optical integrated circuits. Under 
certain conditions the propagation constant /3 and electric field # ( x ,  y )  in the waveguide 
are described by the scalar Helmholtz equation of the form 

(v2 + k2n2(x, y )  - p 2 ) 4 ( x ,  y >  = o 
where k is the wave number and n(x, y )  is the refractive index. The finite difference dis- 
cretization on a nonuniform mesh converts the equation into an eigenvalue problem 

A 4  = P24 

where A is a banded matrix, and 4 is a column vector whose components represent the 
electric field in each cell. The eigenvalues corresponding to the bound modes range between 
the refractive index of the channel layer and the refractive index of the cladding layer. In 
other words, only those eigenvalues with their real parts in a certain interval are of interest. 

A recent report by Galick et al. [21] presents a numerical approach to the simulation of 
a dielectric channel waveguide and is based on the solution of an eigenproblem for the two 
transverse components of the magnetic field. 

4.3. NavierStokes solver 

The eigenvalue problem is often associated with the stability analysis of a complex flow 
governed by the Navier-Stokes equations. 

The stability analysis of viscous free surface flow [ll]: Slide coating is an industrial 
precision operation. A liquid film is formed on an inclined plane, flows down and off the 
plane and onto a moving sheet, displacing air as it wets the smooth solid surface of the 
sheet. The desired liquid flow is steady stable and uniform across the width of the sheet 
and is governed by the Navier-Stokes equations for two-dimensional, incompressible flow. 
Under the momentum conservation, mass conservation and kinematic boundary conditions 
and by means of Galerkin’s method and finite element basis functions, one has a set of 
nonlinear differential algebraic equations of the form 

where y is the vector of all nodal unknowns, i.e., the coefficients of the finite basis element 
basis functions, and p is the vector of physical and discretization parameters. The prototype 
problem examined in [ l l ]  is the asymptotic stability of the steady state to infinitesimal 
disturbances. Small disturbances y1 imposed on a steady state yo are governed by the 
linearized equation (up to the first order, see [ll]) 

Then y1 is given by 
N 
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where xi is a generalized right eigenvector associated with eigenvalue hi of the eigenvalue 
problem 

where J = f Y ( y o ,  0 ,  p )  and M = -fj,(yo, 0,  p), and cj is the component of y1 along X j  

at t = 0. Typically, J and M are of order 2000 to 4000, nonsymmetric, banded, sparse and 
singular. A steady state is stable if all eigenvalues have negative real parts. The computational 
task is to find the ‘dangerous eigenmode’, i.e., the eigenvalue with the largest real part. 

Instability of ferrofluids: Recently, Boudouvis et al. [8,9] have reported the stability 
analysis of three-dimensional patterned states in the normal field instability of ferrofluids. 
The size of the related eigenvalue problem, when all possible patterns are ‘allowed’ (by the 
boundary conditions) to compete, is of the order of 100 OOO! 

Perturbation analysis of unsteady, transonic, viscous flow over airfoils: The eigensystem 
analysis is associated with small perturbation of a finite different representation of the 
Navier-Stokes equations for analyzing complex flows such as unsteady, transonic, viscous 
flow over airfoils. Such eigensystem information is used to reduce the number of time steps 
required to reach a steady solution and accelerate the convergence [19] and to determine 
the modal behavior of fluid in a fluid-structure interaction problem [33]. The matrices 
involved in such problems are very large (up to 24 000 x 24 000), real, banded sparse and 
unsymmetric. The interesting eigenvalues are the ones with small negative real parts, or the 
dominant ones. 

J X  = h M x  (4.1) 

4.4. Others 

In [23] an eigenproblem solver is required for the numerical detection of a Hopf bifurcation 
of a parameter-dependent nonlinear system modeling a tubular reactor. Chatelin et al. [lo] 
show an eigenproblem from aeronautical industries. The interesting eigenvalues are those 
whose imaginary part lies in a frequence range chosen by engineers. The matrix is sparse 
with a block structure and has order lo3 to lo4. In [36] an interesting eigenproblem of a 
transfer matrix from the Ising model used in chemistry and biology is discussed. The matrix 
is nonsymmetric, very sparse (only having two entries at each column and row) and huge 
(of the order of 2”). The desired eigenvalues are the two largest ones. 

5. Software for the sparse nonsymmetric eigenproblem 

There has been significant progress for the large symmetric eigenvalue problem over the last 
two decades. The Lanczos algorithm has become the most favored algorithm. Today you 
can get the software through public domain or commercial packages. However, the large 
nonsymmetric eigenvalue problem is still a research topic. We are still trying to understand 
better the problem, the existing algorithms and their numerical behaviors. 

In this section we review progress in the numerical solution of the problem in the past 
decade. We focus on three popular algorithms which are mostly studied in the numerical 
analysis community. We also list information on software which has been developed mostly 
by numerical analysts, but it should be noted that a massive testing phase has not been applied 
to the software. Some of the software still consists of research codes. 

In sparse matrix computations it is widely accepted that it is important to reference 
the matrix in question only through a user-provided subroutine for forming matrix-vector 
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products. All algorithms and software discussed in this section have such a feature. In some 
applications this essential operation could be the major cost of the overall computation. 
The exploitation of the structure and sparsity of the matrix is passed to the users. The per- 
formance of these operations on supercomputers can differ significantly from one problem 
data structure to the others. 

The author should note that besides the three popular methods discussed in this section, 
there are some other methods which have not been reviewed, such as the Goldhirsch- 
Orszag-Maulik method [25] proposed for solving the hydrodynamic and mechanical sta- 
bility analysis and the generalization of the popular Davidson's method for a general matrix 
used in computational chemistry [13]. Sad to say, not much attention has been paid to these 
algorithms in the numerical analysis community. 

5. I .  Algorithms 

This section gives a brief description of the main ideas of the three popular methods. There 
is an extensive literature on these methods, too much to be listed in this essay. The reader 
is referred to [26,44]. 

The simultaneous iteration method, whose prototype is Bauer's Treppeniteration, is an 
extension of the power method. It is still one of the most popular methods used for computing 
the dominant eigenvalues of large matrices, in particular, in structural engineering. The 
iteration starts with an n x m matrix Qo and generates a sequence of n x m matrices Qk 
according to the formula 

AQk-1 = QkRk 

where Rk is a nonsingular matrix chosen variously by different implementations. Since the 
column space of Qk and Qk Rk are the same, Rk can be regarded as a scaling factor. Then 
one forms a projected matrix: &+I = Q,'A Qk, and reduces it to Bk+l = YkTkYi*, which 
is an eigendecomposition or Schur decomposition of & + I ;  finally Qk is overwritten by 
Qk Yk. It has been proved that the rate of convergence of the i th column of Qk depends on 
the ratio lkm+l/ki 1, where we assume that the eigenvalues { k j }  of A are ordered so that 

The following Arnoldi and Lanczos methods are both in the class of Krylov subspace 
techniques. Members of this class generate (bi-)orthogonal bases for Krylov subspaces 
Km(q, A )  = {q ,  A q ,  A2q ,  . . . , Am-lq ]  (and Kn(p, A T ) )  with the given initial vector(s) q 
(and p ) ,  and then compute eigenvalues of a reduced matrix obtained from A by restricting A 
to the Krylov subspace. A subset of the computed eigenvalues is selected as approximations 
to the eigenvalues of the original matrix. Specifically, the Arnoldi algorithm first produces 
an orthonormal basis of the Krylov subspace Km(q, A ) ,  which can also be regarded as a 
truncated reduction of an n x n matrix A to upper Hessenberg form. Starting with a given 
vector q1 of 1)q1112 = 1, after m steps we have 

Ikll L lk2l ? L I L I .  

T AQm = QmHm + hm+l,mqm+lem 

where Q ; Q ,  = I ,  QLqm+l = 0, H,,, E Rmxm is an upper Hessenberg matrix. Then the 
eigenpairs { (&, z i ) ]  of the reduced matrix Hm are computed. The approximate eigenpairs 
of A are selected from the so called Ritz pairs I(&, Qmzj ) ) .  

The Lanczos process is a procedure to generate the biorthogonal bases of the Krylov 
subspaces K , ( q ,  A )  and K m ( p ,  A T )  that can be regarded as a truncated procedure for the 
tridiagonalization of a general matrix. In matrix notation, starting with given vectors p1 and 
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Table 1. Spectrum transformation 

Transformation functions Operation References 

Shifting-and-inverting (x - p)-' (A - wf)-'u [371 
Cayley transformation c(x) = (x - (11)/(x +a) 
Rational function r ( x )  = p ( x ) / q ( x )  r ( A ) u  [38,391 
Exponential function ex eAu x p ( A ) u  x r ( A ) u  [19,11] 

Polynomial p ( x )  P(A)U [411 

( A  + a I ) - ' ( A  - a Z ) u  [7,11,23] 

q1 and q r p 1  # 0, after m steps we have 

where P,' Qm = Dm, Dm is a diagonal matrix. There are certain free choices in the procedure 
to force D m  to be identity matrix, or IIpi 112 = Ilqi 112 = 1. Then eigentriplets I(@, zi, w i ) )  
of the reduced matrix pencil (Tm, D,) are computed, The approximate eigentriplets of A 
are selected from the Ritz triplets { ( Q i ,  Qmzi, Pmwi)}. 

We should note that for the simultaneous iteration or the Amoldi method, a subroutine 
to generate the vector y = Ax for a given vector x has to be provided. However, for the 
Lanczos method subroutines to generate both the vectors y = Ax and z = ATx have to be 
provided. 

Both Amoldi and Lanczos algorithms can be 'blocked', i.e., work with several vectors 
instead of a single vector during the projection process, just as for the simultaneous iteration. 
Blocking is a particularly appealing feature in a large out-of-core problem for exploiting the 
presence of a block of the matrix A in fast memory as much as possible. Some preliminary 
work of block Krylov subspace methods has been presented in [44,46,45]. 

5.2. Spectrum transformation 

Unfortunately, each algorithm favors a particular part of the spectrum which may not be what 
the user wants. Simultaneous iteration favors the dominant eigenvalues, whereas the Arnoldi 
and Lanczos algorithms prefer the outer part of the spectrum. This is where the spectrum 
transformation comes into the picture. The spectrum transformation strategy (sometimes 
called preconditioning techniques) is to transform the desired eigenvalues in the complex 
plane toward the favored part of the chosen algorithm in the hope of accelerating the con- 
vergence rate and separating the desired eigenvalues from the undesired ones, leading to 
better conditioning. 

Many different spectrum transformation techniques have been tried over the years. Table 
1 lists some of the known spectrum transformation functions, the matrix-vector operations 
involved and references. It is clearly a problem-dependent strategy; the user's knowledge 
of where eigenvalues are likely to lie can be used to choose the transformation function. 

5.3. Software 

Table 2 summarizes available software for the large nonsymmetric eigenvalue problem, and 
the author apologizes for his ignorance of any other existing good implementation of the 
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Table 2. Software for sparse nonsymmetric eigenvalue problems 

Authors 
Stewart-Jennings 
Stewart-Bai 
DuffScott 
Saad 
Saad 
Sorensen 
Cullum-Willoughby 
Freund-Nachtigal 

Year 
81 
78,91 
91 
85 
86 
91 
86 
90 

Name 
LOPS1 
SRRIT 
EB12 
ARNLS 
ARNINV 
ARNUPD 
NSLEVAL 
EIGLAL 

Method 
Simul. iter. 
Simul. iter. 
Simul. iter. 
Amoldi 
Amoldi 
Amoldi 
Lanczos 
Lanczos ~- 

Lines 
1054 
2417 
3091 
1783 
2619 
2743 
3021 
2375 

algorithms. As we have mentioned, most programs are still research codes and are subject 
to change. The authors of these programs reserve all rights. The reader should not judge 
programs by the number of Fortran lines. Some of the software are not in public release 
format. The line count just gives a rough feeling about how much effort was needed to write 
the codes. 

Let us sketch the main features of each program. The first three programs in Table 2 are 
three different implementations based on the simultaneous iteration: 

LOPSI by Stewart and Jennings [53] is based on bi-iteration for computing the set of 
eigenvalues of largest absolute magnitude of a matrix together with the corresponding 
left and right eigenvectors. 
SRRIT by Bai and Stewart [6] computes a partial Schur decomposition corresponding to 
the eigenvalues of largest modulus instead of computing the partial eigendecomposition 
of LOPSI. If explicit eigenvectors are desired, they may be obtained from the Schur form, 
say using the LAPACK subroutine STREVC. The user guide report of SRRIT is available 
by anonymous ftp from thales . cs . umd. edu in the directory pub/reports. The 
program is available in pub/srrit. 
EB12 by Duff and Scott [18] is the latest entry for the simultaneous iteration, which 
can be found in the Harwell Subroutine Library. The Chebyshev acceleration technique 
proposed by Saad is used in the EB12 subroutine. It also has some features such as 
optional computation of eigenvalues of rightmost or leftmost real part, or largest modulus. 

The programs ARNLS, ARNINV and ARNUPD in Table 2 are variant implementations of 
the Arnoldi method. To restrict the required storage, all programs use a fixed number of 
steps in the Arnoldi process, and restart the process if necessary. Specifically, 

ARNLS by Saad [42] is an implementation of the polynomial preconditioned Arnoldi 
method with deflation. The subroutine computes only one eigenvalue or a complex 
conjugate pair at a time. Deflation is then used to compute the next desired eigenpair 
until satisfied. For the next wanted eigenvalue a polynomial transformation is made to 
transform the desired eigenvalue to be very large compared to the remaining eigenvalues. 
ARNINV by Saad [42] is an Arnoldi method with shifting-and-inverting strategy for 
computing the desired number of eigenvalues and associated Schur vectors closest to 
the shift (T of a banded matrix A. The matrix A is passed in banded format and then 
A - a I is factorized by UNPACK which is then used as the operator for the Arnoldi 
method. Although this operator may be complex, the main computations are done in real 
arithmetic [37]. The user can decide to use a new shift after a certain number of restarted 
Arnoldi when computing some eigenvalue. 
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3. ARNUPD by Sorensen [49] treats the residual vector, after a run of Arnoldi process, 
as a function of the initial vector. This initial vector is then updated through a chosen 
(polynomial) filter that is designed to force convergence of the residual to zero. The 
iterative scheme is shown to be a truncation of the standard implicitly shifted QR-iteration 
for the dense problem and avoids the need to explicitly restart the Arnoldi sequence. 

There are two entries based on the nonsymmetric Lanczos method: 

1. NSLEVAL by Cullum and Willoughby [12] is a Lanczos procedure with no reorthogo- 
nalization and no handling of possible breakdown. The procedure produces a complex 
symmetric tridiagonal matrix whose eigenvalue problem is solved by a modified QL 
algorithm. 

2. EIGLAL by Freund and Nachtigal[20] is a modified Lanczos procedure with look-ahead 
strategy to skip over the possible breakdown. The procedure produces a Hessenberg 
matrix, and then its eigenproblem is solved by the QR algorithm from EISPACK. 

Both implementations give rise to ‘spurious’ eigenvalues. In order to distinguish between 
‘good’ and ‘spurious’ eigenvalues, the most common empirical way of doing this is to 
calculate eigenvalues of T m  and those of Tm with the first row and column removed. The 
‘good’ eigenvalues repeat in these calculation, whereas the ‘spurious’ eigenvalues do not 
repeat [ 121. 

5.4. 

So far, we have not seen a published comprehensive comparative study of the three meth- 
ods. We have seen that many factors from implementation and application problems could 
affect such a comparison. In theory, the fundamental advantage of the Lanczos and Arnoldi 
methods is that they discard no information of the generated base vectors, whereas simul- 
taneous iteration, at each step, overwrites a set of approximation eigenvectors (or Schur 
vectors) with a better set. Such an advantage of the Lanczos and Arnoldi methods has been 
illustrated in many numerical experiments. However, a firm convergence theory has been 
established for simultaneous iteration [Sl], but there are still many questions for the Arnoldi 
and Lanczos algorithms [44]. In contrast with the symmetric eigenproblem, the loss of (bi)- 
orthogonality among the computed basis (bases) of the Krylov subspaces in Arnoldi and 
Lanczos and its effects are not well understood. The Arnoldi method could also suffer from 
unbounded growth in core-storage. Although the Lanczos method only requires six or eight 
vectors in core-storage (for the look-ahead Lanczos scheme, it is a little high), the user must 
provide the vector z = ATx,  which may not be available in some applications. Without a 
doubt, the three methods will still continue to compete with each other in the coming years. 
With the growing number of applications and improvement of software the picture will be 
clearer. 

Simultaneous iteration versus Arnoldi versus Lanczos 

6. What have we learned since 1982 

Since the publication of Parlett’s essay [35] (which was from a talk given at the Sparse 
Matrix Symposium held in Fairfield Glade, Tennessee, in 1982), we have still been seeking 
a better way for an old task. Nevertheless, with the contributions of many people we have 
made a significant advance in our expertise for the problem. 
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1. BLAS: The wide popularity of the (dense or sparse) BLAS for the basic vector and 
matrix operations, such as the inner product, is beneficial to the software development. 
The programs turn out to be of simpler structure and to gain better performance with 
optimized B U S .  

SPARSKIT of Saad [43] is a tool to manipulate and perform simple operations with 
sparse matrices, such as exchange data structure, as well as basic linear algebra routines 
for sparse matrices. Its use in software development has been growing. 

The most recent release of MATLAB includes sparse matrix storage and operation 
features [24]. 

2. The so-called algorithm independency: It means that an algorithm refers the matrix 
in question only through external user supplied subroutines to form the matrix-vector 
multiplications Au and/or A T v  (or f ( A ) u  and/or f ( A T ) u ,  where f(.) is a spectral 
transformation function). Although this has been known for decades, today it has been 
further exploited and is used in terms of reverse communication [28,50]. It implies that 
one can develop a set of ‘universal’ software that is applicable to any matrix. To apply 
the software to a particular matrix, one simply provides a subroutine to evaluate the 
required matrix-vector products. For some involved applications faster algorithms can 
be developed for such desired matrix-vector operations. 

3. Spectrum transformation (preconditioning): These techniques have been reviewed in 
section 5.2. 

4. Acceleration techniques: The idea of acceleration techniques is to update the initial 
vector(s) in the restarted simultaneous iteration and Krylov subspaces methods and to 
force the convergence of the residual vector(s) to zero faster. These techniques have been 
used in simultaneous iteration and Arnoldi method [44,49]. 

5. Deflation technique: As a common phenomenon in all algorithms, some of the eigen- 
values (and eigenvectors or Schur vectors) converge faster than the others. Therefore, 
deflation procedures for those convergent eigenvalues (and eigenvectors or Schur vec- 
tors) can be quite effective in terms of execution time in practice. Although the technique 
has been used since before 1982, for example, in [52], there is a complete study of the 
so-called Wielandt deflation procedure by Saad from 1985 [40]. It has become very 
common to include such deflation procedure in software. 

6. Assessment of computed results: The nonsymmetric eigenvalue problem is harder than 
the symmetric counterpart, partly because of the possible extreme ill-conditioning of 
the problem and higher sensitivity to the roundoff error. For nonsymmetric matrices the 
norms of the residuals of approximate eigenpairs do not provide sufficient information 
to bound the error in the approximate eigenvalue. Kahan-Parlett-Jiang’s theorem [30], 
developed in 1982, first gives a bound on the distance to the nearest matrix for which 
the given approximations are exact. This is the best we can expect. Such backward 
error analysis has served as the stopping criterion for iteration methods. The numerical 
practices of this bound were reported by Cullum and Willoughby in 1986 [12]. 

7. Work in progress 

The nonsymmetric eigenproblem, whether small or large, dense or sparse, is one of the 
hardest linear algebra problems to solve effectively and accurately. For the dense eigen- 
value problem, research in recent years has mostly concentrated on the parallel algorithm 
development. The following is an outline of some of the work in progress. 
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Increasing the efficiency of the QR algorithm on the parallel computing environment 
is still a challenging problem. Dubrulle [17] reported the performance of the modified 
multishift QR algorithm on IBM 3090 machines; Henry [27] studied different strategies in 
the QR algorithm to improve the performance, such as the use of block methods, reducing 
the average stride and data movement with hybrid steps, and the use of block data structures. 
Van Dooren [54] proposed a prototype of block QR algorithm, but the applicability of this 
idea is unclear. The convergence analysis of the general QR algorithm is carried out in [55]. 

The great success of the divide and conquer idea for the symmetric tridiagonal eigenprob- 
lem has led several researchers to extend it to the nonsymmetric Hessenberg eigenproblem. 
By setting one (or more) subdiagonal element(s) of the Hessenberg matrix to zero to form 
independent Hessenberg eigenproblems which can be solved in parallel, and then merg- 
ing the solutions of subproblems by rank-update and iterative refinement technique [ 161 
or homotopy technique [31] to yield the solution of the original problem. Although some 
successful aspects have been seen, more investigation is needed to deal with the possible 
divergence of the iteration and identification problem, which means that we need to know, 
if two iterations converge to the same root, whether it is a multiple root or whether we 
have missed a root? Theoretical aspects of such a divide and conquer method have been 
discussed in recent papers by Adams and Arbenz [l], Jessup [29]. 

A new divide and conquer method to find the Schur decomposition by using tools such as 
the matrix sign function or beta function is under investigation by several groups [32,3,5]. 
There is no identification problem for the methods and is built on highly blocked matrix 
operations. But the use of the inverse of the original matrix and the possible significant 
increase in the number of the floating-point operations are the potential barrier for the idea. 
It will be interesting to see what happens. 

The numerical analysis community is still at the stage of developing more reliable, robust 
and efficient sequential algorithms for the sparse eigenproblem, and of analyzing the nu- 
merical behaviors of the algorithms. Most recently, a generalization of the shift-and-invert 
Krylov subspace methods (Amoldi or Lanczos) for the nonsymmetric matrix pencil eigen- 
value problem has been investigated by Ruhe [39]. It uses several shifts at a time to build a 
rational Krylov subspace. The work is at its early stage. 

A recent report by Chatelin and Godet-Thobie [lo] is focused on the influence of the 
departure from normality of the matrix on the stability of the Arnoldi algorithm. The research 
being undertaken by Bai [4], and Day [14] is aiming at the error analysis of the Krylov 
subspaces method in the presence of the floating-point arithmetic and the effect of the loss 
of the (bi-)orthogonality in the practical computation. 

We terminate this section with an interesting practical higher-order A-matrix eigenvalue 
problems of the form 

(A. 5 A0 + A. 4 A1 + A3A2 + A2A3 + A.A4 + As)x = 0 

The problem is from structural mechanics combined with aerodynamics [ 101. Besides trans- 
forming such an eigenvalue problem to the standard eigenvalues problem, not much progress 
has been made concerning how to solve such A-matrix eigenvalue problems directly and 
efficiently. 



232 Z. Bai 

8. Conclusions 

The nonsymmetric eigenvalue problem is inherently a much harder problem than the sym- 
metric eigenvalue problem. For small problems the QR algorithm essentially occupies the 
picture, although the best way to solve it on parallel computational environment is still 
challenging us. For large problems it is still an open research topic despite all the progress 
made. While numerical analysts are seeking better ways to implement existing algorithms 
or new algorithms, engineers will go ahead and try to solve their problems with or without 
help from numerical analysts. Certainly, when numerical analysts provide better tools for 
solving the problem, the number of applications will grow. 

Finally, in honor Professors Kahan’s and Parlett’s 60th birthdays, we quote a conversation 
between Professor Kahan and a group of computer science students: 

Question: Working on the problem you have been honored for (Turing award), 
you must have had time when you thought about throwing it all in. So, what 
motivated you to continue to reach your aim? 
Kahan: The thought of ‘throwing it all in’ never occurred to me; I was motivated 
by curiosity, each obstacle was just another problem to analyze, understand, and 
then overcome. 
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