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Abstract

Optimization of large scale linear algebra computations is a long-standing prob-

lem in numerical analysis and scientific computing communities. In this pape, we

describe our recent synergistic effort on the development of robust, accurate and

efficient linear algebra techniques and applications to quantum mechanical simu-

lation. We demonstrate the feasibility, through the use of newly developed linear

algebra solvers, of 1000-electron quantum monte carlo simulations on a modern

desktop machine. Such simulations would allow us to address important ques-

tions concerning the magnetic and transport properties of materials with strong

electron-electron interactions.

The results of robust and efficient linear algebra solvers have more general

impact on forefront scientific computing beyond the application discussed here.

As one example, the methodology described has close connections to problems in

lattice gauge theory, dynamical mean field theory, and localization.
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1 Introduction

Forefront problems of scientific and engineering computing often require solutions
involving large scale matrix computations. Great progress has been made both
in general procedures and also in more focused situations which exploit specific
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matrix structure and sparsity patterns. A generation of excellent algorithms has
been developed and presented in textbooks, see for example [22, 14, 46], and
research monographs, such as [34, 37, 38, 10, 26, 23, 48]. Vast amounts of public
and proprietary software libraries, packages and templates have been made widely
accessible, such as LAPACK and ScaLAPACK among many others. The impact of
progress in large scale matrix computations to the advancement of computational
science and engineering cannot be overstated.

However, challenges of the advancement of multi-scale mathematical mod-
eling and simulation to numerical linear algebra theory and algorithms have not
been widely addressed. Most solvers are not designed in ways that are robust
and efficient for underlying multi-length scale simulations. This is an emerging re-
search area. A broad range of scientific and engineering modeling and simulation
problems involve multiple scales for which traditional monoscale approaches have
proven to be inadequate, even with the largest supercomputers.

In this paper, we describe a range of synergistic activities on development of
robust and efficient linear algebra solvers which are specially designed for multi-
length scale numerical linear algebra problems arising from quantum mechanical
simulations of materials. This includes new algorithm design and analysis, hybrid
use of existing algorithms and development of high-performance software. We fo-
cus on the following computational kernels of quantum simulations to be described
later: (a) Study of the dynamics of the eigenvalue distributions, condition numbers
and other critical properties of multi-length scale matrices. (b) Development of
robust and efficient self-adapting linear algebra solvers. (c) Development of high
performance software solving real multi-length scale phenomena.

2 Computational material science and

Hubbard model

Our effort is triggered by a specific application which forms one of the core prob-
lems in materials science: How do the interactions between electrons in a solid give
rise to properties like magnetism, superconductivity, and metal-insulator transi-
tions? Our ability to solve this central question in quantum statistical mechanics
is presently limited to systems of a few hundred electrons. While simulations at
this scale have taught us a considerable amount about certain classes of materials,
they have very significant limitations, especially for recently discovered materials
which have mesoscopic magnetic and charge order.

High temperature superconductors [13] are one example. These materials
have ‘parent’ phases which are antiferromagnetic insulators. It was suggested very
early on that superconductivity arises from the exchange of vibrations of the an-
tiferromagnetically aligned spins (“spin waves”) instead of the usual vibrations
of the nuclear positions (“phonons”) in conventional materials. The original pic-
ture was that the magnetism and superconductivity more or less coexist uniformly
throughout the material. It is now believed that instead, “striped” and “checker-
board” patterns arise in which antiferromagnetic and superconducting regions are
separate. The work [24] shows a map of the conductance obtained when tunneling
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into a cuprate material. Larger scale checkerboard structures are evident. Exactly
how these arise is still a puzzle, especially since the models which successfully
describe much of their behavior contain only local interactions. Manganites are
a second example [16, 12]. These materials are key ingredients in magnetic stor-
age disks owing to their giant magneto-resistance – the large change in resistance
they exhibit under the application of a small magnetic field. In the manganites,
coexisting mesoscopic clusters of ferromagnetic and charge ordered states arise at
scales which are much larger than the simple atomic separations. The delicate bal-
ance between the two causes the great sensitivity of the resistance to an external
magnetic field, and leads to their technological usefulness.

Condensed matter physicists have developed a number of models which seem
to capture both the different types of order in these solids, and their competition.
The Hubbard Hamiltonian [15] is a popular one. Specifically, a two-dimensional
Hubbard model is defined by the Hamiltonian

H = HK +Hµ +HV , (2.1)

where HK , Hµ and HV stand for kinetic, chemical and potential energy, respec-
tively, and are defined as

HK = −t
∑

〈i,j〉,σ

(c†iσcjσ + c†jσciσ),

Hµ = −µ
∑

i

(ni↑ + ni↓)

HV = U
∑

i

(ni↑ −
1

2
)(ni↓ −

1

2
)

and

• i and j label the spatial sites of the lattice. 〈i, j〉 represents a pair of nearest-
neighbor sites in the lattice and incidates that the electrons only hopping to
nearest neighboring sites.
• c†iσ and ciσ are the fermion creation and annihilation operators for electrons

located on the ith lattice site with z component of spin-up (σ = ↑) or spin-
down (σ = ↓), respectively.

• The operators niσ = c†iσciσ are the number operators which count the num-
ber of electrons of spin σ on site i.
• t is the hopping parameter of kinetic energy, and describes the motion of

electrons between the atoms.
• U is an interaction parameter and measures the cost of two electrons occu-

pying the same atomic site.
• µ is the chemical potential parameter which controls the electron numbers

(or density).

The physics of the Hubbard Hamiltonian is determined by the competition be-
tween these two scales, t and U , and by the temperature T , and by the density
of electrons. When U dominates, magnetic order tends to be favored at low tem-
peratures. Similarly, at appropriate electron densities, large values of U cause
insulating states to form.
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The Hubbard Hamiltonian has successfully described many of the qualita-
tive features of materials like the cuprate superconductors- their antiferromag-
netism [28], unconventional superconductivity [40, 39], mesoscopic charge ordering
[17, 18, 45]. and the charge and spin patterns in a limit of the Hubbard model
[51]. Despite this success, the restriction of such numerical studies to a few hundred
sites/electrons has prevented many fundamental issues from being addressed, not
only for the cuprate superconductors, but also for many strongly correlated sys-
tems, including manganites and cobaltates. The inhomogeneous phases exhibited
by these materials pose an enormous challenge to simulations since the lattice sizes
required to capture the physics is considerably larger than for homogeneous states.
Therefore modeling these important materials constitutes a valuable application
for our multiscale matrix algorithms. In addition, it should be emphasized that
a host of other applications awaits the development of multiscale linear algebra
solvers. Problems very closely related to the Hubbard Hamiltonian described here
include lattice gauge theory [20, 36, 5], which shares many of the matrix structures
and algorithms with condensed matter QMC simulations, dynamical mean field
theory [50, 21], and Hatano-Nelson problems in localization [25].

3 Multi-length scale numerical linear algebra

Considerably less attention has been devoted to multi-length scale numerical lin-
ear algebra problems, where the underlying matrices for example, have a block
structure defining one scale (the size of the blocks) but then also internal scales
within the blocks themselves. The existence of multiple ‘length (block)’ scales is
often accompanied by the presence of multiple scales in the size of the matrix
elements. In the case of the applications we shall consider, these size scales are
associated with the several energy scales in our materials. As we shall describe in
the subsequent sections, we have investigated several important aspects of multi-
length scale numerical linear algebra problems. Before turning to this work, let
us describe the specific multi-length scale matrices arising in the quantum monte
carlo simulations of the Hubbard model which will enable us to describe the fun-
damental issues within a concrete context.

The matrix computation kernels of the determinant and hybrid QMC simu-
lations of the Hubbard model [9, 27, 41, 4] form an important practical illustration
of multi-length scale numerical linear algebra problems. The matrices start with
the simple block cyclic structure

M =




I B1

−B2 I
−B3 I

. . .
. . .

−BL I




,

where the nontrivial blocks Bℓ are constructed as the product of the exponentials
of two matrices arising from the kinetic and potential energies:

Bℓ = et∆τKeσνVℓ(h),
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where K is a lattice structure matrix, namely, Kij = 1 if i and j are nearest
neighbors, otherwise, Kij = 0. Vℓ(h) = diag(hℓi), hℓi are Hubbard-Stratonovich
(random) variables which must be sampled stochastically using monte carlo or
molecular dynamics. The integer L = β/∆τ is given by the ratio of the inverse
of the temperature being simulated to a discretization stepsize ∆τ . σ = ± are
spins, and ν = cosh−1(2U∆τ). More complex structures of M are possible, and
will arise in applications. For instance, the matrices Vℓ describing the potential
energy become non-diagonal if interactions between electrons on different sites or
orbitals are considered. The key features of these matrices can be summarized as
the following:

• M incorporates multiple structural scales: The inverse temperature β de-
termines the number of blocks L = β/∆τ . The dimension of the individ-
ual blocks is set by N the number of spatial sites. In a 2D simulations
N = Nx × Ny ∝ 102. Thus the total dimension of the M currently being
studied is 104. Our goal is to extend this by an order of magnitude to 105.
• M incorporates multiple energy scales: The parameter t which enters K

determines the kinetic energy of the electrons, and the interaction energy
scale U enters Vℓ(h).
• M is a function of a collection of NL variables, the Hubbard-Stratonovich

field hℓi. The role of the simulation is to determine the configurations of these
variables which make large contributions to operator expectation values, and
then to sum over those configurations. Therefore, the associated matrix
computation problems need to be solved O(104) times in a full simulation.

Numerical linear algebra which enter quantum simulations are the following:

1. Solution of Mx = b for x.
2. Solution of MT Mx = b is needed in a molecular dynamics step.
3. Computation of specific elements of the inverse (M−1)ij . These determine

all the physical observables: energy, density, magnetic moments, etc.
4. Computation of trace(M−1).

5. Computation of det(cM)

det(M)
, where M̂ is a low-rank update of M is needed in the

accept/reject decision of a monte carlo move involving a change to a small
number of hℓi.

The computational challenge is to increase the spatial dimension N = Nx × Ny

from O(102) to O(103), that is, to do a 1000 electron QMC simulation. Such
an increase would have a tremendous impact on our understanding of strongly
interacting materials because it would allow for the first time the simulation of
systems incorporating a reasonable number of the mesoscopic structures, such as
the checkerboards and stripes shown in [24].

4 Multi-length scale matrix analysis

Before achieving our goals of developing robust and efficient algorithmic techniques
and high performance software, we first study the dynamics and transitional be-
havior of mathematical and numerical properties of the underlying matrices, such
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as eigenvalue distribution and condition number as functions of the multi-lenght
scales. As described in section 3, the Hubbard matrix M is characterized by struc-
tural scales N = Nx ×Ny and L, and energy scales U and t and others. Figure 1
shows the eigenvalue distributions when N , L, U and t vary independently in
various simple limits. The eigenspectrum behavior is much more dramatic and
complex when N , L, U and t vary simultaneously in ranges of interest in simu-
lations. In such cases the eigenvalue distributions are typically much more dense
and shifted away from the center λ = (1, 0). This is the origin of difficult arising
in the numerical computations. For the non-interacting limit (U = 0) of the 2-D
Hubbard model, we have extended the previous known result [49] for an analytical
expression of eigenvalues of M :

λ(M) = 1− et∆τǫx,yei
(2ℓ+1)π

L , 0 6 ℓ 6 L− 1,

where ǫx,y = 2(cos θx + cos θy) and θx = 2kxπ
Nx

, θy =
2kyπ

Ny
for kx = 1, 2, · · ·Nx and

ky = 1, 2, · · ·Ny.

Figure 1 Eigenvalue distributions with respect to the changes of length scale parameters N

and L, and energy scale parameters U and t.

Let us now consider how this evolution of the eigenspectrum is reflected in
the condition number of the matrix M with respect to inversion, namely, κ(M) =
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‖M‖ ‖M−1‖. First, if U = 0, the matrix M is independent of the Hubbard-
Stratonovich field configuration h. In this case, we can derive a theoretical bound
to show that the condition number of M only increases slowly with respect to the
increase of the multiscale parameter L:

κ(M) 6
1 + e4t∆τ

sin π
L

≈ O(L).

However, if U 6= 0, there is no known rigorous theoretical bound. Figure 2 shows
the average condition numbers for 100 Hubbard-Stratonovich field configurations
as a function of L for U = 2, 4, 6. The figure illustrates two key points concerning
the transition from well-conditioned to ill-conditioned behavior: When U 6= 0
the condition number increases much more rapidly than the linear rise which we
know analytically at U = 0; Not only does the condition number increase with U ,
but also so do its fluctuations over the 100 chosen field configurations. The first
observation tells us the parameter L is critical to the difficulty of our solvers. The
second suggests that widely varying condition number might be encountered in
the course of a simulation, and therefore that codes might need to have the ability
to adopt different solution strategies on the fly.

Figure 2 Average condition numbers of sample matrices and theoretical and empirical bounds

There are a number of directions to extend both theoretical analysis and em-
pirical observation of the influence of parameters N , L, U and t on distributions
of eigenvalues and condition numbers of Hubbard matrices M . This study will
reveal the conditioning of the problems to be solved and the impact to the sta-
bility and convergence behaviors of direct and iterative methods we will develop.
The methodology and paradigms developed here will also help in the study of
multi-length scale matrices arising in other applications. The most closely related
problem is that of lattice gauge theory, an area which has traditionally been one
of the central fields of computational science (with many of the largest blocks of
time at national supercomputer centers devoted to its solution). There is in fact
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an incredible similarity in the formalisms and computational kernels of the two
fields.

5 Self-adaptive direct solvers

As we have discussed in the previous sections, one of our major goals in this
project is to develop algorithmic techniques and paradigms that can robustly and
efficiently solve the linear algebra problems with underlying multi-length scale
matrices in a self-adapting fashion to achieve a required simulation accuracy. We
have exploited the development of such an algorithmic technique for the linear
system of equations associated with the Hubbard matrix M as described in sec-
tion 3 The matrix M exhibits the form of a so-called block p-cyclic consistently
ordered matrix [49]. p-cyclic matrices arise in a number of important contexts
in applied mathematics, including numerical solution of boundary value problems
for ordinary differential equations [47], finite-difference equations for the steady-
state solution of a parabolic equation with periodic boundary conditions [43], and
computing the stationary solution of Markov chains with periodic graph structure
[42].

It is known that the block Gaussian elimination with and without pivoting for
solving p-cyclic linear systems can be numerically unstable, similar to the case of
multiple shooting method for solving two-point boundary value problems [53, 19]
and Markov chain modeling [35]. Block cyclic reduction [11] is a powerful idea to
solve such p-cyclic system. However, a full block cyclic reduction is applicable only
for small energy scales, namely, U 6 1, due to the emerging of ill-conditioning of
the reduced system. A stable p-cyclic linear system solver is based on the structural
orthogonal factorization [52, 19]:

M = QR, (5.1)

where Q is an orthonormal matrix, and R is a block upper triangular matrix of
the form

R =




R11 R12 R1p

. . .
. . .

...
Rp−1,p−1 Rp−1,p

Rpp


 .

Unfortunately, the orthogonal factorization forces the significant increase of fill-in
in R, and requires O(N2L) memory in general, which could be prohibitively ex-
pensive when the length scales N and L increase. Furthermore, the computational
cost of floating point operations is O(N3L).

To take advantage of significant reduction of memory requirement and float-
ing point computations in the block cyclic reduction and numerical stability of
the orthogonal factorization method, and to carefully examine the accuracy needs
in our quantum monte carlo simulation, we have studied a hybrid method. The
method has three stages:



Numerical Linear Algebra Solvers and Applications 261

1. Perform a factor k block cyclic reduction:

Mx = b =⇒ M (k)x(k) = b(k).

Namely, the initial block L–cyclic system is cyclically reduced to a block
Lk = L

k
–cyclic system with the coefficient matrix

M (k) =




I B
(k)
1

−B
(k)
2 I

−B
(k)
3 I

. . .
. . .

−B
(k)
Lk

I




.

and

B
(k)
1 = BkBk−1 · · ·B2B1

B
(k)
2 = B2kB2k−1 · · ·Bk+2Bk+1

...

B
(k)
Lk

= BLBL−1 · · ·B(Lk−1)k+1.

The conditioning number of M (k) increases with the increase of the reduction
factor k.

2. Solve the reduced cyclic system by the structural block orthogonal factor-
ization

QT
L
k
−1
· · ·QT

1 M (k) = R(k).

In this way, the memory and computational costs are effectively reduced by
a factor of k comparing to the original system.

3. Forward and back substitute to find the remaining block components xi of
the solution x:

xi ←− x(k) −→ xj .

We use both forward and back substitutions to minimize the propagation of
errors induced at the steps 1 and 2.

We see that by Step 1, the order of M (k) is reduced by a factor of k, therefore,
it is desirable that the larger k, the better. The computational cost is reduced
from O(N3L) to O(N3 L

k
), an effective factor k speedup. However, the condition

number of M (k) increases when k increases, which means the accuracy of the
computed solution decreases. Therefore, the critical question turns to how to find
a reduction factor k, such that the computed solution has the required accuracy
for the application. Such a reduction factor k should be determined in a self-

adapting fashion with respect to the changes of underlying problem length and
energy scales.
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By a rigorous error analysis, we show that the relative error in the computed
block components x̂ℓ is governed by κ(M (k))ǫ and the propagation error in the
substitution. Specifically,

‖xℓ − x̂ℓ‖

‖xℓ‖
6 ‖B k

2
‖ · · · ‖B2‖ ‖B1‖ κ(M (k))ǫ,

where ǫ is the machine precision. Subsequently, the focus turns into how to es-
timate the condition numbers of reduced matrices κ(M (k)). By exploiting the
reduction process and the structure of the matrices involved, we have shown that

κ(M (k)) 6 cek(4t∆τ+ν)κ(M),

where t, ∆τ and ν(U) are energy scale parameters. c is a constant independent of
these parameters. The left plot of Figure 3 shows the actual condition numbers
of sample matrices κ(M (k)) associated with the increase of the reduction factor
k, and the theoretical bound. The plot suggests that the growth of the condition
numbers of the reduced cyclic matrices κ(M (k)) is more close to e

k
2 (4t∆τ+ν)κ(M).

It is a subject of future study.
Combining these analyses, for a desired accuracy “tol” of the solution vec-

tor x with machine precision ǫ, then a reduction factor k can be self-adaptively

determined by

k =

⌊ 2
3 ln(tol/ǫ)

4t∆τ + ν

⌋
.

The right plot of Figure 3 shows the reduced blocksizes L(k) in a self-adaptive fash-
ion with respect to the variations of energy parameters U and β(t). All computed
solutions satisfy the specified relative errors tol = 10−8 with double precision
arithmetic ǫ = 10−16. We observed that the reduction factor k is immediately
translated into a factor k of speedup in computational time.

Figure 3 Left: condition numbers of the reduced L(k)–cyclic system and theoretical bounds.

Right: Self-adaptively determined reduction factor k with respective to different scales of U and

β.

The self-adapting block cyclic reduction solver is robust, and effectively re-
duces both memory and computation by a factor of k. We expect it will be a
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workhorse in the whole QMC simulation package we are currently working on.
We note that block cyclic reduction is natural for parallelism. On the orthogo-
nal factorization, we will exploit the parallel structural orthogonal factorization
techniques, such as developed in [52, 2, 19].

6 Preconditioning techniques

Iterative methods with the proper preconditioning techniques often reduce the
computational complexity of solving large scale linear algebra problems by an
order of magnitude or more. For our particular targeted application domain of
the multiscale quantum statistical mechanical simulations, it might be the only
path toward optimal simulations, in which the computational complexity increases
linearly with the number N of electrons or the lattice size.

The development of preconditioning techniques has been an active research
topic for decades, for example [3, 48], and reference therein. For precondition-
ing techniques, we consider the QMC computational kernel of solving symmetric
positive definite systems of the form

Ax = b,

where A = MT M , M is the multi-length scale Hubbard matrix as described in
section 3. We use the preconditioned conjugate gradient (PCG) method to solve
symmetrical preconditioned linear system

R−T AR−1 · Rx = R−T b,

where R is a preconditioner. Normally, R is constructed such that (a) RT R is a
good approximation of A in some sense, (b) the cost of constructing R is affordable,
and (c) the application of R is not expensive, namely the system Rz = c is much
easier to solve than the original system. However, in the multi-length scale setting,
we have to consider the dynamics of the underlying matrix M to be preconditioned.
Therefore, the preconditioner R should also try to accommodate.

Earlier work on preconditioning techniques to solve the linear system turned
out to be unsuccessful, high cost (memory and flops) for the construction of R,
and/or large number of iterations and high CPU cost, particularly when N, U, β(L)
increase. The key question often asked in the quantum simulation community
is “is there a linear-scaling iterative solver?”. More specifically, when U and β
increase, whether there is a solver with the number of iterations grow slowly, not
“exponentially” as seen from the previous work?

Incomplete Cholesky (IC) factor R is a popular preconditioner:

A = RT R + E,

where R is an upper triangular matrix and E is the error matrix. We have ob-
served that for our multi-length scale system, if by only imposing a certain sparsity
pattern of R (based on the block structure of M), or by dropping small elements,
then typically, IC leads to high cost to apply R due to large number of fill-ins,
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and poor quality, such as large numbers of PCG iterations, Furthermore, the IC
preconditioning is not robust. It suffers pivot break-down due to loss of positive
definiteness of A− E when the energy scale U is large. Mathematically, provable
existence for such an incomplete factorization is only for special classes of matrices
[31, 30].

Figure 4 Comparison of the speed of ICd and RIC3 preconditioners. Left: for small U . Right:

for large U . where N = 32 × 32 and L = 80.

We have pursued the work of robust incomplete Cholesky (RIC) precondi-
tioners, previously developed in [1, 44, 29, 7, 8]. The RIC preconditioners avoid
the pivot-break down by imposing the positive definiteness of A− E:

{
A− E = RT R

subject to A− E > 0.

A simple statical approach is to use a global shifting of the diagonal entries of A
[30], i.e, compute A+αDA = RRT +E, where α is a shift and DA = diag(A). We
refer to it as the ICd preconditioner.

Alternatively, one can dynamically impose the robust by further constraints
in the structure of the error matrix E. For example, it is proposed to impose
E = RT F + FT R + S to improve the quality of the preconditioner R, in addition
to the requirement of positive definite A−E [44, 29]. We refer such a preconditioner
as RIC3.

ICd is cheaper to construct, but of poor quality for the system with large
energy scale U . On the other hand, RIC3 is more expensive to construct, but is
a better preconditioner for large U . See Figure 4 for the CPU performance with
respect to the different energy scale. In these performance data, we have used a
modified version of commonly used compressed sparse rom (CSR) format for the
sparse matrix data structure to accommodate the data access pattern in the RIC
factorizations.

We have demonstrated that with the preconditioner RIC3, the number of
PCG iterations and CPU timing scale linearly with N for small to moderate energy
scale U 6 3, see Figure 5 Such a linear scaling algorithm is an exciting progress. U -
dependence in terms of the number of PCG iterations and CPU is unexpected (not
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exponential growth with the increase of U as seen in the previous work). However,
when the interaction energies are high, i.e., U > 4, the linear system becomes ill-
conditioned and the linear scaling is lost. Extending our success to U > 4 remains
a challenge. We have observed that for large energy scale, the PCG stagnates
after some initial rapid decline. This stagnation of PCG convergence (plateau)
is often due to the slow convergence of components of residual vectors associated
with small eigenvalues. Several techniques have been proposed to deflate these
components from the residual vector so that the plateau of convergence can be
avoided [32, 33].

Figure 5 Left: the number of PCG iteration. Right: CPU timing. Both grow linearly with

respect to N , where L = 80.

It is important to extend both theoretical analysis and empirical observation
of the performance of different preconditioners under the influence of scaling pa-
rameters N , L, U , β and t. We are considering a technique to use the knowledge
gained from the previous solutions in the course of simulation. If the precondi-
tioner may be reused over several solutions, it eliminates the cost to reconstruct
the preconditioner. Such study should lead to a precise quantification of the se-
lection of the optimal preconditioners with respect to the changes of multi-length
scales. It should be similar to the self-adapting reduction factor k as described
section 5 Automatic optimization of sparse matrix operations have been intensely
studied in the past years. We have examined Optimized Sparse Kernel Interface
(OSKI) [6], which provides automatically tuned computational kernels for sparse
matrices on a particular platform. However, because of extreme sparse nature of
our matrices, this technique does not result in performance improvement yet.

7 Concluding remarks

Large-scale numerical linear algebra problems arise throughout the computational
simulation process of scientific discovery and engineering design. In this paper,
we have presented our synergistic effort in the past few years on the development
of efficient and accurate numerical linear algebra solvers appropriate for multi-
length scale simulations. We focus on: (a) Reliable computing, which includes
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theoretical study of existing and new numerical methods, and post-processing
verification tools and analysis. (b) Structure exploitation, which is particularly
important for the ever larger and more complex problems arising from realistic
modeling of important physical systems. (c) Software and toolbox development,
particularly user interface design, which requires intensive communication with
intended users. (d) Use of high-performance computing, which exploits today’s
and emerging computer architectures and programming environments.
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