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Abstract. This work presents an adaptive block Lanczos method for large-scale non-Hermitian
Eigenvalue problems (henceforth the ABLE method). The ABLE method is a block version of the
non-Hermitian Lanczos algorithm. There are three innovations. First, an adaptive blocksize scheme
cures (near) breakdown and adapts the blocksize to the order of multiple or clustered eigenvalues.
Second, stopping criteria are developed that exploit the semiquadratic convergence property of the
method. Third, a well-known technique from the Hermitian Lanczos algorithm is generalized to
monitor the loss of biorthogonality and maintain semibiorthogonality among the computed Lanczos
vectors. Each innovation is theoretically justified. Academic model problems and real application
problems are solved to demonstrate the numerical behaviors of the method.
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1. Introduction. A number of efficient numerical algorithms for solving large-
scale matrix computation problems are built upon the Lanczos procedure, a procedure
for successive reduction of a general matrix to a tridiagonal form [28]. In the 1970s and
’80s, great progress in mathematical and numerical analysis was made on applying
the Lanczos algorithm for solving large sparse Hermitian eigenvalue problems. Today,
a Lanczos-based algorithm has been accepted as the method of choice to large sparse
Hermitian eigenvalue problems arising in many computational science and engineering
areas.

Over the last decade there has been considerable interest in Lanczos-based algo-
rithms for solving non-Hermitian eigenvalue problems. The Lanczos algorithm with-
out rebiorthogonalization is implemented and applied to a number of application
problems in [12]. Different schemes to overcome possible failure in the non-Hermitian
Lanczos algorithm are studied in [38, 17, 53]. A Lanczos procedure with look-ahead
scheme is available in QMRPACK [18]. Theoretical studies of breakdown and insta-
bility can be found in [21, 36, 23, 6]. Error analyses of the non-Hermitian Lanczos
procedure implemented in finite precision arithmetic are presented in [2, 14].

Despite all this progress, a number of unresolved issues, some of which are related
to the use of nonorthogonal basis and hence its conditional stability property, obstruct
a robust and efficient implementation of the non-Hermitian Lanczos procedure. These
issues include

• how to distinguish copies of converged Rayleigh–Ritz values from multiple or
clustered eigenvalues,
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• how to treat a (near) breakdown to preserve the stringent numerical stabil-
ity requirements on the Lanczos procedure for eigenvalue problems in finite
precision arithmetic,
• how to explain and take advantage of the observed semiquadratic convergence

rate of the Lanczos procedure, and
• how to extend the understanding of the Hermitian Lanczos algorithm with

semiorthogonality [46] and the non-Hermitian Lanczos algorithm with semibi-
orthogonality [14] to the block non-Hermitian Lanczos algorithm.

In the adaptive block Lanczos method for large-scale non-Hermitian Eigenvalue prob-
lems (ABLE method) proposed in this work, we address each of these issues as follows:

• A block version of the Lanczos procedure is implemented. Several nontrivial
implementation issues are addressed. The blocksize adapts to be at least the
order of multiple or clustered eigenvalues, and the linear independence of the
Lanczos vectors is maintained. This accelerates convergence in the presence
of multiple or clustered eigenvalues.
• The blocksize also adapts to cure (near) breakdowns. The adaptive block-

ing scheme proposed here enjoys the theoretical advantage that any exact
breakdown can be cured with fixed augmentation vectors. In contrast, the
prevalent look-ahead techniques require an arbitrary number of augmenta-
tion vectors to cure a breakdown and may not be able to cure all breakdowns
[38, 17, 36].
• An asymptotic analysis of the second-order convergence of the Lanczos pro-

cedure is presented and utilized in the stopping criteria.
• A scheme to monitor the loss of the biorthogonality and maintain semibior-

thogonality is developed in the adaptive block Lanczos procedure.

The ABLE method is a generalization of the block Hermitian Lanczos algorithm
[10, 19, 39, 22] to the non-Hermitian case. For general application codes that represent
their matrices as out-of-core, block algorithms substitute matrix block multiplies and
block solvers for matrix vector products and simple solvers [22]. In other words, higher
level BLAS are used in the inner loop of block algorithms. This decreases the I/O
costs essentially by a factor of the blocksize.

We will demonstrate numerical behaviors of the ABLE method using several nu-
merical examples from academic model problems and real application problems. There
are many competitive methods for computing large sparse non-Hermitian eigenvalue
problems, namely, the simultaneous iteration method [5, 50, 15], Arnoldi’s method
[1, 42], the implicitly restarted Arnoldi method [48, 29], block Arnoldi [43, 45], the
rational Krylov subspace method [40], Davidson’s method [13, 44], and the Jacobi–
Davidson method [47, 8]. In particular, ARPACK [31], an implementation of the
implicitly restarted Arnoldi method, is gaining acceptance as a standard piece of
mathematical software for solving large-scale eigenvalue problems. A comparative
study of simultaneous iteration-based methods and Arnoldi-based methods is pre-
sented in [30]. It is beyond the scope of this paper to compare our ABLE method
with the rest of the methods. However, a comprehensive comparison study is certainly
a part of our future work.

The rest of this paper is organized as follows. In section 2, we present a basic block
non-Hermitian Lanczos algorithm, discuss its convergence properties, and review how
to maintain biorthogonality among Lanczos vectors computed in finite precision arith-
metic. An adaptive block scheme to cure (near) breakdown and adapt the blocksize to
the order of multiple or clustered eigenvalues is described in section 3. In section 4, we
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1. Choose starting n× p vectors P1 and Q1 so that PT1 Q1 = I
2. R1 = (PT1 A)T and S1 = AQ1

3. For j = 1, 2, . . . . . .
3.1. Aj = PTj Sj
3.2. Rj := Rj − PjATj and Sj := Sj −QjAj
3.3. Compute the QR decompositions: Rj = Pj+1B

T
j+1 and Sj = Qj+1Cj+1

3.4. Compute the singular value decomposition: PTj+1Qj+1 = UjΣjV
H
j

3.5. Bj+1 := Bj+1UjΣ
1/2
j and Cj+1 := Σ

1/2
j V Hj Cj+1

3.6. Pj+1 := Pj+1ŪjΣ
−1/2
j and Qj+1 := Qj+1VjΣ

−1/2
j

3.7. Rj+1 = (PTj+1A− Cj+1P
T
j )T and Sj+1 = AQj+1 −QjBj+1

Fig. 2.1. Basic block non-Hermitian Lanczos algorithm.

model the loss of biorthogonality among the Lanczos vectors in finite precision arith-
metic and present an efficient algorithm for maintaining semibiorthogonality among
the computed Lanczos vectors. The complete ABLE method is presented in section
5. In section 6, we briefly discuss how a spectral transformation is used to solve a
generalized eigenvalue problem using the ABLE method. Numerical experiments are
reported in section 7.

2. A block non-Hermitian Lanczos algorithm. In this section we present a
block implementation of the non-Hermitian Lanczos algorithm and discuss its conver-
gence properties for solving non-Hermitian eigenvalue problems. An adaptive block
non-Hermitian Lanczos algorithm (see section 5) builds into this algorithm features
presented in the intervening sections.

2.1. A basic block Lanczos algorithm. The basic block non-Hermitian Lanc-
zos procedure presented in Figure 2.1 is a variation of the original Lanczos procedure
as proposed by Lanczos [28]. Given an n by n matrix A and initial n by p block vec-
tors P1 and Q1, two sequences of n by p block vectors {Pj} and {Qj}, called Lanczos
vectors, are generated such that for j = 1, 2, . . . ,

span{PT1 , PT2 , . . . , PTj } = Kj(PT1 , A ) := span{PT1 , PT1 A, PT1 A2, . . . , PT1 A
j−1 },

span{Q1, Q2, . . . , Qj } = Kj(Q1, A ) := span{Q1, AQ1, A
2Q1, . . . , A

j−1Q1 },

where Kj(Q1, A) and Kj(PT1 , A) are right and left Krylov subspaces. The block
vectors {Pj} and {Qj} are constructed so that they are biorthonormal. Together
these properties determine the computed quantities up to a scaling. Several nontrivial
practical issues are resolved in the implementation presented in Figure 2.1.

The basic block Lanczos iteration implements the three-term recurrences

Bj+1P
T
j+1 = PTj A−AjPTj − CjPTj−1,(2.1)

Qj+1Cj+1 = AQj −QjAj −Qj−1Bj .(2.2)

The procedure can be also viewed as a successive reduction of an n×n non-Hermitian
matrix A to a block tridiagonal form. If we let

Pj = [P1, P2, . . . , Pj ], Qj = [Q1, Q2, . . . , Qj ],
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and

Tj =


A1 B2

C2 A2
. . .

. . .
. . . Bj
Cj Aj

 ,(2.3)

then the three-term recurrences (2.1) and (2.2) have the matrix form

PTj A = TjPTj + EjBj+1P
T
j+1,(2.4)

AQj =QjTj +Qj+1Cj+1E
T
j ,(2.5)

where Ej is a tall thin matrix whose bottom square is an identity matrix and which
vanishes otherwise. Furthermore, the computed Lanczos vectors Pj and Qj satisfy
the biorthonormality

PTj Qj = I.(2.6)

When the blocksize p = 1, this is just the unblocked non-Hermitian Lanczos algorithm
discussed in [20, p. 503].

Remark 1. For a complex matrix A we still use the transpose ·T instead of the
conjugate transpose ·H . If A is complex symmetric and P1 = Q1, then (2.4) is the
transpose of (2.5), and it is necessary to compute only one of these two recurrences
provided that a complex symmetric scaling scheme is used at step 3.4 in Figure 2.1.

Remark 2. The above block Lanczos algorithm can breakdown prematurely if
RTj Sj is singular (see step 3.6 in Figure 2.1). We will discuss this issue in section 3.

Remark 3. Many choices of the p×p nonsingular scaling matrices Bj+1 and Cj+1

satisfy RTj Sj = Bj+1Cj+1. The one presented here involves a little more work (com-

puting singular value decomposition (SVD) of PTj+1Qj+1), but it maintains that the
local basis vectors in Pj+1 and Qj+1 are orthogonal and at the same time biorthogonal
to each other. Furthermore, the singular values provide principal angles between the
subspaces spanned by Pj+1 and Qj+1, which is a measure of the quality of the bases
constructed (see Remark 4 below).

An alternative scaling maintains the unit length of all Lanczos vectors. This
scaling scheme for the unblocked Lanczos algorithm is used in [17, 36, 14]. In this

case the Lanczos algorithm determines a pencil (T̂j ,Ωj), where T̂j is tridiagonal and
Ωj is diagonal. It can be shown that the tridiagonal Tj determined by the above
unblocked (p = 1) Lanczos algorithm and this pencil are related by

Tj = ±|Ωj |1/2T̂j |Ωj |1/2.

The Lanczos vectors are also related, up to sign, by a similar scaling.
Remark 4. The condition numbers of the Lanczos vectors Pj and Qj can be

monitored by the diagonal matrices Σ1,Σ2, . . . ,Σj . Recall that the condition number
of the rectangular matrix Qj is defined by

cond(Qj) def
= ‖Qj‖2‖Q†j‖2 =

‖Qj‖2
σmin(Qj) ,
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where σmin(Qj) = min‖x‖2=1 ‖Qjx‖2. To derive the bound for cond(Qj) observe from

step 3.6 in Figure 2.1 that ‖PTi ‖2 = ‖Qi‖2 = ‖Σ−1/2
i ‖2. Then for a unit vector v such

that ‖PTj ‖2 = ‖PTj v‖2,

‖PTj ‖22 = ‖PTj v‖22 =

j∑
i=1

‖PTi v‖22 ≤
j∑
i=1

1

min(Σi)
,

where min(Σi) denotes the smallest diagonal element of Σi. The latter bound also
applies toQj . Furthermore, we note that the biorthonormality condition (2.6) implies
that ‖Pj‖2 σmin(Qj) ≥ 1. Therefore,

cond(Qj) ≤ ‖Pj‖2‖Qj‖2 ≤
j∑
i=1

1

min(Σi)
.

The bound applies to cond(Pj) by the similar argument. This generalizes and slightly
improves a result from [36].

Remark 5. This implementation is a generalization of the block Hermitian Lanc-
zos algorithms of Golub and Underwood [19] and Grimes, Lewis, and Simon [22] to
the non-Hermitian case. A simple version of the block non-Hermitian Lanczos proce-
dure has been studied in [3]. Other implementations of the basic block non-Hermitian
Lanczos procedure have been proposed for different applications in [7].

2.2. Eigenvalue approximation. To extract approximate the eigenvalues and
eigenvectors of A, we solve the eigenvalue problem of the jp × jp block tridiagonal
matrix Tj after step 3.3 in Figure 2.1. Each eigentriplet (θ, wH , z) of Tj ,

wHTj = θwH and Tjz = zθ,

determines a Rayleigh–Ritz triplet , (θ, yH , x), where yH = wHPTj and x = Qjz.
Rayleigh–Ritz triplets approximate eigentriplets of A.

To assess the approximation, (θ, yH , x), of an eigentriplet of the matrix A, let s
and r denote the corresponding left and right residual vectors. Then by (2.4) and
(2.5), we have

sH = yHA− θyH = (wHEj)Bj+1P
T
j+1,(2.7)

r = Ax− xθ = Qj+1Cj+1(ETj z).(2.8)

Note that a remarkable feature of the Lanczos algorithm is that the residual norms
‖sH‖2 and ‖r‖2 are available without explicitly computing yH and x. There is no
need to form yH and x until their accuracy is satisfactory.

The residuals determine a backward error bound for the triplet. The biorthogo-
nality condition, (2.6), applied to the definition of x and yH yields

PTj+1x = 0 and yHQj+1 = 0.(2.9)

From (2.8) and (2.7), we have the following measure of the backward error for the
Rayleigh–Ritz triplet (θ, yH , x):

yH(A− F ) = θyH and (A− F )x = xθ,
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where the backward error matrix F is

F =
rxH

‖x‖22
+
ysH

‖y‖22
(2.10)

and ‖F‖2F = ‖r‖22/‖x‖22 + ‖sH‖22/‖y‖22. That is, the left and right residual norms
bound the distance to the nearest matrix to A with eigentriplet (θ, yH , x). In fact it
has been shown that F is the smallest perturbation of A such that (θ, yH , x) is an
eigentriplet of A − F [25]. The computed Rayleigh–Ritz value θ is a ‖F‖F -pseudo
eigenvalue of the matrix A [51].

If we write A = B+F , where B = A−F , then a first-order perturbation analysis
indicates that there is an eigenvalue λ of A such that

|λ− θ| ≤ cond(θ)‖F‖2,

where cond(θ) = ‖yH‖2 ‖x‖2/|yHx| is the condition number of the Rayleigh–Ritz
value θ [20]. This first-order estimate is very often pessimistic because θ is a two-
sided or generalized Rayleigh quotient [34]. A second-order perturbation analysis
yields a more realistic error estimate, which should be used as a stopping criterion.
Global second-order bounds for the accuracy of the generalized Rayleigh quotient may
be found in [49] and [9]. Here we derive an asymptotic bound.

Recall that (θ, yH , x) is an eigentriplet of B = A − F and that yHF = sH

and Fx = r. Assume that B has distinct eigenvalues {θi} and the corresponding
normalized left and right eigenvectors {yHi , xi} (‖yHi ‖2 = ‖xi‖2 = 1). Let us perturb
θ = θ(0) toward an eigenvalue λ of A using the implicit function θ(t) = θ(B + tE)
for E = F/‖F‖2. Under classical results from function theory [26], it can be shown
that in a neighborhood of the origin there exist differentiable θ(t), yH(t), and x(t)
(‖yH(t)‖2 = ‖x(t)‖2 = 1) such that

yH(t)(B + tE) = θ(t)yH(t) and (B + tE)x(t) = x(t)θ(t).(2.11)

Next expand θ(t) about t = 0:

λ = θ(‖F‖2) = θ(0) + θ′(0)‖F‖2 +
1

2
θ′′(0)‖F‖22 +O(‖F‖32).

By differentiating (2.11) with respect to t, and setting t = 0, we obtain

θ′(0) =
1

‖F‖2
yHFx

yHx
.

Note that from (2.10), yHFx = yHr + sHx. Substitute (2.7), (2.8), and (2.9) to find
yHFx = 0. This implies the stationarity property θ′(0) = 0. Differentiate (2.11) with
respect to t twice, and set t = 0, and there appears

θ′′(0) =
2

‖F‖2
sH

yHx
x′(0).

Now the standard eigenvector sensitivity analysis gives

x′(0) =
∑
θi 6=θ

yHi Ex

(θ − θi)yHi xi
xi.
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See, for example, Golub and Van Loan [20, p. 345]. From the above two formulas, up
to the second order of ‖F‖2, we obtain

|λ− θ| ≤ ‖s
H‖2 ‖r‖2

gap(θ,B)

 1

|yHx|
∑
θi 6=θ

1

|yHi xi|

 .(2.12)

Here gap(θ,B) = minθi 6=θ |θ− θi|. Note that the term in the parentheses involves the
condition numbers of the eigenvalues {θi} of B.

The bound (2.12) shows that the accuracy of the Rayleigh–Ritz value θ is pro-
portional to the product of the left and right residuals and the inverse of the gap
in eigenvalues of B. We call this the semiquadratic convergence. Since gap(θ,B) is
not computable, we use the gap(θ, Tj) to approximate gap(θ,B) when ‖F‖2 is small.
From (2.10) and (2.12), we advocate accepting θ as an approximate eigenvalue of A if

min

{
‖sH‖2, ‖r‖2, ‖s

H‖2 ‖r‖2
gap(θ, Tj)

}
≤ τc,(2.13)

where τc is a given accuracy threshold. Note that for ill-posed problems, small resid-
uals (backward errors) do not imply high eigenvalue accuracy (small forward error).
In this case, the estimate is optimistic. In any case, since both the left and right
approximate eigenvectors are available, the approximate eigenvalue condition num-
bers are readily computable. This detects ill-posedness in an eigenvalue problem. See
numerical example 5 in section 7.

It is well known that for Hermitian matrices, the Lanczos algorithm reveals first
the outer and well-separated eigenvalues [35]. In the block Hermitian Lanczos algo-
rithm with blocksize p, the outer eigenvalues and the eigenvalue clusters of order up
to p that are well separated from the remaining spectra converge first [19, 41]. This
qualitative understanding of convergence has been extended to the block Arnoldi al-
gorithm for non-Hermitian eigenproblems in [42, 24].

2.3. Maintaining the biorthogonality of the Lanczos vectors. The quan-
tities computed in the block Lanczos algorithm in the presence of finite precision
arithmetic have different properties than the corresponding exact quantities. The
biorthogonality property, (2.6), fails to hold, and the columns of the matrices Pj and
Qj are spanning sets but not bases. The loss of linear independence in the matrices
Pj and Qj computed by the three-term recurrence is coherent; as a Rayleigh–Ritz
triplet converges to an eigentriplet of A, copies of the Rayleigh–Ritz values appear.
At this iteration, Qj is singular because it maps a group of right eigenvectors of Tj
to an eigenvector of A.

For example, in a Lanczos run of 100 iterations, one may observe 5 copies of
the dominant eigenvalue of A among the Rayleigh–Ritz values. This increases the
number of iterations required to complete a given task. As a partial remedy, we
advocate maintaining local biorthogonality to ensure the biorthogonality among con-
secutive Lanczos vectors in the three-term recurrences [14]. Local biorthogonality is
maintained as follows. After step 3.2 in Figure 2.1,

Rj := Rj − Pj(QTj Rj),
Sj := Sj −Qj(PTj Sj).

Repeating this inner loop increases the number of floating point operations in a Lanc-
zos iteration. However, no new data transfer is required, and without repetition
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the local biorthogonality would normally be swamped. The cost effectiveness seems
indisputable.

Another limitation of simple implementations of the three-term recurrences is
that the multiplicity of an eigenvalue of A is not related in any practical way to the
multiplicity of a Rayleigh–Ritz value. To reveal the multiplicity or clustering of an
eigenvalue it typically suffices to explicitly enforce (2.6). This variation has been
called a Lanczos algorithm with full rebiorthogonalization [38]. It is maintained by
incorporating a variant of the Gram–Schmidt process called the two-sided modified
Gram–Schmidt biorthogonalization (TSMGS) [36]. After step 3.6 in Figure 2.1, we
biorthogonalize Pj+1 and Qj+1 in place against all previous Lanczos vectors Pj =
[P1, P2, . . . , Pj ] and Qj = [Q1, Q2, . . . , Qj ]:

for i = 1, 2, . . . , j
Pj+1 := Pj+1 − Pi(QTi Pj+1)
Qj+1 := Qj+1 −Qi(PTi Qj+1)

end
Maintaining full biorthogonality substantially increases the cost per iteration of the
Lanczos algorithm. To be precise, at Lanczos iteration j, an additional 8p2jn flops
is required. More importantly all the computed Lanczos vectors are accessed at each
iteration. This is very often the most costly part of a Lanczos run, although there
are cases where the matrix-vector multiplications may be the dominating factor. A
less-costly alternative to full biorthogonality is presented in section 4.

3. An adaptive block Lanczos algorithm. In this section, we present an
adaptive block scheme. This algorithm has the flexibility to adjust the blocksize to
the multiplicity or the order of a cluster of desired eigenvalues. In addition, the
algorithm can be used to cure (near) breakdowns.

3.1. Augmenting the Lanczos vectors. In a variable block Lanczos algo-
rithm, at the jth iteration, Pj and Qj have pj columns, respectively. At the next
(j+ 1)th iteration, the number of columns of the Lanczos vectors Pj+1 and Qj+1 can
be increased by k as follows.

First note that for any n by k matrices P̂j+1 and Q̂j+1, the basic three-term recur-

rences (2.1) and (2.2) also hold with augmented (j+1)th Lanczos vectors [Pj+1 P̂j+1]

and [Qj+1 Q̂j+1]:

[
Bj+1 0

] [ PTj+1

P̂Tj+1

]
= PTj A−AjPTj − CjPTj−1

and [
Qj+1 Q̂j+1

] [ Cj+1

0

]
= AQj −QjAj −Qj−1Bj .

Provided that [
Pj+1 P̂j+1

]T [
Qj+1 Q̂j+1

]
(3.1)

is nonsingular , the Lanczos procedure continues as before under the substitutions

Pj+1 ←
[
Pj+1 P̂j+1

]
, Qj+1 ←

[
Qj+1 Q̂j+1

]
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with proper normalization and

Bj+1 ←
[
Bj+1 0

]
, Cj+1 ←

[
Cj+1

0

]
.

The only other constraint on P̂j+1 and Q̂j+1 is that they satisfy the biorthogonality
condition among the Lanczos vectors; i.e., it is required that

P̂Tj+1Qj = 0 and PTj Q̂j+1 = 0.

As a consequence, the adaptive block scheme has the same governing equations and
the same resulting Rayleigh–Ritz approximation properties as the basic block Lanczos
method described in section 2.

Before we turn to the usage of the adaptive block scheme, we discuss the choice of
the increment vectors P̂Tj+1 and Q̂j+1. Ideally we would like to choose augmentations

so that the resulting matrix PTj+1Qj+1 is well conditioned. To be precise we want

the smallest singular value of PTj+1Qj+1 to be larger than the given threshold τb, say

τb = 10−8 in double precision. However, there may not exist P̂Tj+1 and Q̂j+1 such

that the given threshold τb is satisfied. A natural choice to choose P̂j+1 and Q̂j+1 in
practice is to biorthogonalize a pair of random n by k vectors to the previous Lanczos
vectors. In other words, the vectors P̂j+1 and Q̂j+1 are computed by applying TSMGS
(see section 2.3) to a pair of random n by k vectors. The construction is repeated a
few times (say, 3 at most) if necessary to ensure that the smallest singular value of
(3.1) is larger than a threshold. We observe that this works well in practice.

3.2. Adaptive blocking for clustered eigenvalues. If A has an eigenvalue of
multiplicity greater than the blocksize, then the Rayleigh–Ritz values converge slowly
to this group of eigenvalues [12, 19, 22, 3]. In some applications, information about
multiplicity is available a priori and then the blocksize can be chosen accordingly. But
when this information is not available, it is desirable to adjust the blocksize using the
information obtained during the iteration.

In any variable block implementation of the Lanczos algorithm in which the
biorthogonality of the computed Lanczos vectors is maintained, it is advantageous
to increase the blocksize to the order of the largest cluster of Rayleigh–Ritz values,
{θi}. The adaptive block scheme proposed in section 3.1 offers such flexibility.

The cluster of Rayleigh–Ritz values about θi is the set of all θk such that

|θi − θk| ≤ ηmax(|θi|, |θk|),(3.2)

where η is a user-specified clustering threshold. The order of the largest cluster of
Rayleigh–Ritz values is computed whenever we test for convergence, and the blocksize
is increased to the order of the largest cluster.

3.3. Adapting the blocksize to treat breakdown. A second reason to in-
crease the blocksize is to overcome a breakdown in the block Lanczos algorithm. Recall
from section 2.1 that breakdown occurs when RTj Sj is singular. There are two cases:

I. Either Rj or Sj is rank deficient.
II. Both Rj and Sj are not rank deficient but RTj Sj is.

Exact breakdowns are rare, but near breakdowns (i.e., RTj Sj has singular values
close to 0) do occur. In finite precision arithmetic this can cause numerical instability.

In case I, if Sj vanishes in step 3.2 of Figure 2.1 of the basic block Lanczos
algorithm, an invariant subspace is detected. To restart the Lanczos procedure choose
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Qj+1 to be any vector such that PTj Qj+1 = 0. If Sj is just (nearly) rank deficient,
then after the QR decomposition of Sj , Sj = Qj+1Cj+1, we biorthogonalize Qj+1

to the previous left Lanczos vectors Pj . This also effectively expands the Krylov
subspace and continues the procedure. Rank deficiency of Rj is treated similarly.
Note that in this case, the blocksize is not changed. This generalizes the treatment
suggested by Wilkinson for the unblocked Lanczos procedure [52, p. 389].

Case II is called a serious breakdown [52]. Let us first examine the case of exact
breakdown. Let Rj = Pj+1B

T
j+1 and Sj = Qj+1Cj+1 be the QR decompositions of

Rj and Sj . In this case, PTj+1Qj+1 is singular. Suppose that PTj+1Qj+1 has the SVD

PTj+1Qj+1 = U

[
Σ 0
0 0

]
V H ,

where Σ is nonsingular if it exists (Σ may be 0 by 0). Let us see how to augment
Pj+1 and Qj+1 so that PTj+1Qj+1 is nonsingular. For clarity, drop the subscript j + 1

and partition PŪ and QV into

PŪ =
[
P(1) P(2)

]
and QV =

[
Q(1) Q(2)

]
.

Here the number of columns of P(2) and Q(2) is the number of zero singular values of
PTQ. Let the augmented Lanczos vectors be

P :=
[
P(1) P(2) P̂

]
and Q :=

[
Q(1) Q(2) Q̂

]
,

where

P̂ = (I −Πj)
T Q̄(2) and Q̂ = (I −Πj)P̄(2).

Πj = QjPTj is the oblique projector. The biorthogonality condition (2.6) and then

the orthonormality of the columns of
[
P(1) P(2)

]
yield

PT(1)Q̂ = PT(1)(I −Πj)P̄(2) = PT(1)P̄(2) = 0

and

PT(2)Q̂ = PT(2)(I −Πj)P̄(2) = PT(2)P̄(2) = I.

Similarly, P̂TQ(1) = 0 and P̂TQ(2) = I. Therefore, we have

PTQ =

 Σ 0 0
0 0 I

0 I P̂T Q̂

 ,
which is nonsingular for any P̂T Q̂. Therefore, we conclude that exact breakdowns are
always curable by the adaptive blocksize technique.

However, for the near breakdown case, the situation is more complicated. The
above choice may not succeed in increasing the smallest singular value of PTj+1Qj+1

above a specific given threshold, τb. The difficulty involves the fact that the norms of P̂
and Q̂ can be large because of the use of oblique projector Πj . In our implementation,

we have chosen P̂ and Q̂ by dualizing a pair of random n by k vectors to the previous
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Lanczos vectors as described in section 3.1. The increment to the blocksize is the
number of singular values of PTj+1Qj+1 below a specified threshold.

Another scheme for adjusting the block size to cure (near) breakdown is the look-
ahead strategy [38, 17]. In the look-ahead Lanczos algorithm, the spans of the columns
of Pj and Qj remain within K(PT1 , A) and K(Q1, A), respectively. Specifically, PTj+1

and Qj+1 are augmented by

P̂ = (I −Πj)
TATPj+1 = ATPj+1 − PjCTj+1

and

Q̂ = (I −Πj)AQj+1 = AQj+1 −QjBj+1.

If [Pj+1 P̂
T ] [Qj+1 Q̂] is not (nearly) singular, then one step of look-ahead is successful

and Pj+1 and Qj+1 are obtained from P and Q, respectively, after normalization.
Since

span(Qj+1) = span(Qj , [Qj+1, Q̂])

and

span(Qj+2) = span(Qj , [Qj+1, Q̂], A[Qj+1, Q̂])

= span(Qj+1, A
2Qj+1),

Qj+2 has no more columns than Qj+1 prior to augmentation. That is, the block
size doubles at step j + 1 only and then returns to the ambient block size at the
following step j+2. It may be necessary to repeatedly augment the (j+1)th Lanczos
block-vectors [36]. In contrast, we have shown that the adaptive strategy has the
property that an exact breakdown is cured in using a fixed number of augmentation
vectors. Moreover, to reveal clustered eigenvalues and to eliminate a potential source
of slow convergence, we store Pj and Qj and maintain biorthogonality (see section
4). We have found the adaptive block scheme to be a viable alternative to look-ahead
strategies here.

4. Maintaining semibiorthogonality. In this section we present a form of
limited rebiorthogonalization that is more efficient than the full rebiorthogonalization
described in section 2.3. This method extends the block Hermitian Lanczos algorithm
with partial reorthogonalization to the non-Hermitian case [22]. Instead of maintain-
ing full biorthogonality (section 2.3), only semibiorthogonality is maintained at each
iteration; i.e., for j ≥ 1,

dj+1 = max

(
‖PTj Qj+1‖1
‖Pj‖1‖Qj+1‖1 ,

‖QTj Pj+1‖1
‖Qj‖1‖Pj+1‖1

)
≤ √ε,(4.1)

where ε is the roundoff error unit. This generalizes the definition of semibiorthogonal-
ity for the unblocked Lanczos algorithm [14]. We will show that semibiorthogonality
requires less computation and data transfer to maintain than full biorthogonality. In
particular, Pj and Qj are accessed only at certain iterations.

In section 4.1 we show how to monitor the loss of numerical biorthogonality
without significantly increasing the number of floating point operations in the Lanczos
recurrences. In section 4.2 we show how best to correct the loss of biorthogonality.
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4.1. Monitoring the loss of biorthogonality. When the Lanczos algorithm
is implemented in finite precision arithmetic, the computed quantities can be modeled
by perturbed three-term recurrences:

Bj+1P
T
j+1 = PTj A−AjPTj − CjPTj−1 − FTj ,(4.2)

Qj+1Cj+1 = AQj −QjAj −Qj−1Bj −Gj ,(4.3)

where Fj and Gj represent the roundoff error introduced at iteration j. By applying
the standard model of the rounding errors committed in floating point arithmetic [52],
it can be shown that to first order in roundoff errors there holds

‖Fj‖F ≤ u(‖A‖1 ‖Pj‖1 + ‖Aj‖1 ‖Pj‖1 + ‖Cj‖1 ‖Pj−1‖1),

‖Gj‖F ≤ u(‖A‖1 ‖Qj‖1 + ‖Aj‖1 ‖Qj‖1 + ‖Bj‖1 ‖Qj−1‖1),

where u is a constant multiple of the roundoff error unit ε. The governing equations
for the computed quantities are

PTj A = TjPTj + EjBj+1P
T
j+1 +FTj ,(4.4)

AQj =QjTj +Qj+1Cj+1E
T
j + Gj ,(4.5)

where the matrices F j = [F1, F2, . . . , Fj ] and Gj = [G1, G2, . . . , Gj ] are such that

max(‖F j‖F , ‖Gj‖F ) ≤ u(‖A‖1 + ‖Tj‖1) max(‖Pj‖F , ‖Qj‖F ).(4.6)

A detailed analysis for the unblocked case can be found in [2, 14].
Now we use this model of rounding errors in the Lanczos process to quantify the

propagation of the loss of biorthogonality from iteration to iteration. The biorthogo-
nality of the (j+1)th Lanczos vectors to the previous Lanczos vectors can be measured
using the short vectors

Xj = PTj Qj+1 and Yj = PTj+1Qj .
In the following, we show that these vectors satisfy perturbed three-term recurrences
which we can use to efficiently monitor the biorthogonality loss.

The recurrence for Xj is derived as follows. Note that

PTj Qj =

[
Xj−1

0

]
+ Ej .(4.7)

Let Wij = PTi Qj . Multiply (4.3) by PTj on the left, substitute in (4.4) × Qj , and
there appears

XjCj+1 = TjPTj Qj −PTj QjAj −PTj Qj−1Bj(4.8)

+ EjBj+1Wj+1,j +FTj Qj −PTj Gj .
Substitute (4.7) above and (2.3), the definition of Tj , and simplify to find

TjPTj Qj −PTj QjAj = Tj

[
Xj−1

0

]
−
[
Xj−1

0

]
Aj + Ej−1Bj .(4.9)

In addition, we have the identity

PTj Qj−1 =

 Xj−2

0
0

+ Ej−1 +Wj,j−1Ej .(4.10)
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Substituting (4.9) and (4.10) into (4.8) finally yields

XjCj+1 = Tj

[
Xj−1

0

]
−
[
Xj−1

0

]
Aj −

 Xj−2

0
Wj,j−1

Bj(4.11)

+ EjBj+1Wj+1,j +O(uj),

where O(uj) represents the local rounding error term FTj Qj −PTj Gj and

uj = u(‖Tj‖1 + ‖A‖1) max(‖Pj‖F , ‖Qj‖F ).

The similar analysis of the left Lanczos vectors yields

Bj+1Yj = [Yj−1, 0 ]Tj −Aj [Yj−1, 0 ]− Cj [Yj−2, 0, Wj−1,j ](4.12)

+ Wj,j+1Cj+1Ej +O(uj).

Equations (4.11) and (4.12) model the propagation of the loss of the numerical
biorthogonality among Lanczos vectors from iteration to iteration. The following
algorithm implements these recurrence relations to monitor the biorthogonality loss.
Note that the scalar parameter d̂j+1 is our measure of the biorthogonality. When

d̂j+1 >
√
ε, then TSMGS is invoked to recover biorthogonality as described in the

next section.1

Algorithm for monitoring the loss of biorthogonality.
Initially, when j = 1, we set X1 = 0, Y1 = 0, d1 = u, compute

X2 = PT1 Q2, Y2 = PT2 Q1, and let W
(l)
1 = Y2, W

(r)
1 = X2. When

j > 1.

1. W
(l)
2 = PTj+1Qj

2. X3 = Tj

[
X2

0

]
−
[
X2

0

]
Aj −

[
X1

W
(l)
1

]
Bj +

[
0

Bj+1W
(l)
2

]
3. X3 := (X3 + Fj)C

−1
j+1

4. X1 =

[
X2

0

]
; X2 = X3

5. W
(r)
2 = PTj Qj+1

6. Y3 =
[
Y2 0

]
Tj−Aj

[
Y2 0

]−Cj [ Y1 W
(r)
1

]
+
[

0 W
(r)
2 Cj+1

]
7. Y3 := B−1

j+1(Y3 + FTj )

8. Y1 =
[
Y2 0

]
; Y2 = Y3

9. W
(l)
1 = W

(l)
2 ; W

(r)
1 = W

(r)
2

10. d̂j+1 = max(‖X2‖1/(‖Pj‖1‖Qj+1‖1), ‖Y2‖∞/(‖Qj‖1‖Pj+1‖1))
The matrix Fj is a random matrix scaled to have norm uj to simulate the roundoff
errors in the three-term recurrences. The number of floating point operations per
iteration of the monitoring algorithm is 2j2 +O(n), where the 2j2 is for the multipli-
cations by Tj in steps 2 and 6 above and the n comes from the “inner products” of
block Lanczos vectors in steps 1 and 5 above. If the block tridiagonal structure of Tj
is taken in account, then the cost is just O(n). Therefore the cost of the monitoring
algorithm is not significant, as promised.

1To economize on storage there is a subtle change of notation in the following monitoring algo-
rithm. At Lanczos iteration j, the vectors Xj−1, Xj , and Xj+1 are denoted X1, X2, and X3, and
the previous Xk are not stored. Similar conventions apply to {Yi} and {Wi,k}.
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4.2. Correcting the loss of biorthogonality. When action is required to
maintain semibiorthogonality (4.1), TSMGS (see section 2.3) is invoked to rebiortho-
normalize or correct the candidate Lanczos vectors Pj+1 and Qj+1. Recall from (4.11)
that the sequence {Xj} satisfies a perturbed three-term recurrence. Correcting Qj+1

annihilates the O(
√
ε) matrix Xj , but at the next Lanczos iteration Xj+1 will be a

multiple of the nearly O(
√
ε) matrix Xj−1. Instead, as Qj+1 is corrected to maintain

semibiorthogonality, we also correct Qj ; in this way the biorthogonality of the fol-
lowing Lanczos vectors can deteriorate gradually. The similar comments hold for the
left Lanczos vectors. There is a much better way to do this than to apply TSMGS
at consecutive iterations to the pairs of Pj and Qj and Pj+1 and Qj+1, respectively.
Instead, as the columns of Pj and Qj are transferred from slow storage to the com-
putational unit to correct Pj+1 and Qj+1, the previous Lanczos vectors Pj and Qj
also can be retroactively corrected. This halves the amount of data transfer required.

Retroactive TSMGS. Biorthogonalize Pj , Pj+1, Qj , and Qj+1 against the
previous Lanczos vectors in place.

for i = 1, 2, . . . , j − 1

Pj := Pj − Pi(QTi Pj)
Pj+1 := Pj+1 − Pi(QTi Pj+1)

Qj := Qj −Qi(PTi Qj)
Qj+1 := Qj+1 −Qi(PTi Qj+1)

end

Pj+1 := Pj+1 − Pj (QTj Pj+1)

Qj+1 := Qj+1 −Qj(PTj Qj+1)

We do not update the QR decompositions and SVDs computed in the basic Lanczos
algorithm after retroactive TSMGS for the same technical reasons discussed in section
6.3 of [14] for the unblocked Lanczos algorithm.

5. The ABLE method. In summary, the ABLE method presented in Figure
5.1 incorporates an adaptive blocking scheme (section 3) into the basic block Lanczos
algorithm (section 2) and maintains the local and semibiorthogonality of Lanczos
vectors (section 4). Specifically, we have the following:

• At step 3.3, we suggest the use of (2.13) in section 2.2 as the stopping criterion.
Then, at the end of a Lanczos run, we compute the residual norms ‖sH‖2 and
‖r‖2 corresponding to the converged Rayleigh–Ritz triplets (θ, yH , x). See
(2.7) and (2.8) in section 2.2. Note that the theory in section 2.2 is based
on the exact biorthogonality. When only semibiorthogonality is maintained,
θ′(0) is no longer zero. However, using (4.4), (4.5), and semibiorthogonality
(4.1), it is easy to see that θ′(0) is still in the magnitude of

√
ε. Thus, as far as

‖F‖2 is not too small (not less than O(
√
ε)), the second term in the expansion

for λ still dominates the first term θ′(0)‖F‖2, and therefore, (2.13) would be
valid. (Specifically, yHr ∼ √ε‖r‖2 and the first term in the expansion satisfies
θ′(0)‖F‖2 ∼ 1

|yHx|
√
ε‖F‖2.)

• At step 3.4, (3.2) is used to compute the order of the largest cluster as de-
scribed in section 3.2.
• For step 3.7, see section 3.3 for an explanation.
• At step 3.9, τb is a threshold for breakdown. min(Σ) is the smallest singular

value of the matrix PTj+1Qj+1. If there is (near) breakdown and/or the order
of the largest cluster of the converged Rayleigh–Ritz values is larger than the
blocksize, then the blocks are augmented as described in section 3.1.
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1. Choose starting vectors P1 and Q1 so that PT1 Q1 = I
2. R = (PT1 A)T and S = AQ1

3. For j = 1, 2, . . . until convergence
3.1. Aj = PTj S

3.2. R := R− PjATj and S := S −QjAj
3.3. Compute the eigen-decomposition of Tj , and test for convergence
3.4. Find the largest order δ of the clustering of converged Rayleigh–Ritz

values
3.5. Local biorthogonality: R := R− Pj(QTj R) and S := S −Qj(PTj S)

3.6. Compute the QR decompositions: R = Pj+1B
T
j+1 and S = Qj+1Cj+1

3.7. If R or S (or both) is rank deficient, apply TSMGS to biorthogonalize
Pj+1 and Qj+1 against the previous Lanczos vectors

3.8. Compute the SVD: PTj+1Qj+1 = UΣV H

3.9. Increase blocksize if min(Σ) < τb and/or δ > pj
3.10. Bj+1 := Bj+1UΣ1/2 and Cj+1 := Σ1/2V HCj+1

3.11. Pj+1 := Pj+1ŪΣ−1/2 and Qj+1 := Qj+1V Σ−1/2

3.12. Monitor the loss of biorthogonality, and correct if necessary
3.13. R = (PTj+1A− Cj+1P

T
j )T and S = AQj+1 −QjBj+1

Fig. 5.1. ABLE method.

• Algorithms for monitoring the loss of biorthogonality and maintaining semibi-
orthogonality at step 3.12 are described in sections 4.1 and 4.2.

The non-Hermitian Lanczos algorithm is also called the two-sided Lanczos algo-
rithm because both the operations

XTA and AX

are required at each iteration. A is referenced only as a rule to compute these matrix-
vector products. Because of this feature, the algorithm is well suited for large sparse
matrices or large structured dense matrices for which matrix-vector products can be
computed cheaply. The efficient implementation of these products depends on the
data structure and storage format for the A matrix and the Lanczos vectors.

If no Lanczos vectors are saved, the three-term recurrences can be implemented
using only six block vectors of length n. To maintain the semibiorthogonality of the
computed Lanczos vectors Pj and Qj , it is necessary to store these vectors in core
or out-of-core memory. This consumes a significant amount of memory. The user
must be conscious of how much memory is needed for each application. For very
large matrices it may be best to store the Lanczos vectors out-of-core. After each
Lanczos iteration, save the current Lanczos vectors to an auxiliary storage device.
The Lanczos vectors are recalled in the procedure TSMGS for rebiorthogonalization
and when the converged Rayleigh–Ritz vectors are computed at the end of a Lanczos
run.

A block Lanczos algorithm is ideal for application codes that represent A out-of-
core. The main cost of a Lanczos iteration, with or without blocks, is accessing A.
Block algorithms compute the matrix block vectors product with only one pass over
the data structure defining A, with a corresponding savings of work.

The most time-consuming steps in a Lanczos run are to
1. apply the matrix A (from the left and the right),
2. apply retroactive TSMGS to maintain semibiorthogonality, and
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3. solve the eigenproblem for the block tridiagonal matrix Tj when j increases.
Items 1 and 2 have been addressed already (see the above and section 4.2). For item
3, we presently use the QR algorithm for Tj . We note that it is not necessary to solve
the eigenproblem for Tj at each Lanczos iteration. A way to reduce such cost is to
solve the eigenvalue problem for Tj only after a correction iteration has been made
to maintain semibiorthogonality. This technique utilizes the connection between the
loss of the biorthogonality and convergence [33, 35, 2].

6. A spectral transformation ABLE method. In this section we briefly
discuss how to use the ABLE method to compute some eigenvalues of the generalized
eigenvalue problem

Kx = λMx(6.1)

nearest an arbitrary complex number, σ. We assume that K−σM is nonsingular and
that it is feasible to solve the linear system of equations with coefficient matrix K −
σM . The reward for solving this linear system of equations is the rapid convergence of
the Lanczos algorithm. In section 7 we apply the ABLE method to such a generalized
eigenvalue problem arising in magneto-hydro-dynamics (MHD).

We apply a popular shift-and-invert strategy to the pair (K,M) with shift σ [16].
In this approach, the ABLE method is applied with

A = (K − σM)−1M.(6.2)

The eigenvalues, µ, of A are µ = 1/(λ − σ). The outer eigenvalues of A are now
the eigenvalues of (K,M) nearest to σ. This spectral transformation also generally
improves the separation of the eigenvalues of interest from the remaining eigenvalues
of (K,M), a very desirable property.

When we apply the ABLE method to the matrix A = (K − σM)−1M , the gov-
erning equations become

PTj (K − σM)−1M = TjPTj + EjBj+1P
T
j+1,(6.3)

(K − σM)−1MQj =QjTj +Qj+1Cj+1E
T
j .(6.4)

If (θ, wH , z) is an eigentriplet of Tj , then from the above governing equations (6.3)
and (6.4), the triplet(

λ̃, ỹH , x̃
)

:=

(
σ +

1

θ
, wHPTj (K − σM)−1, Qjz

)
is an approximate eigentriplet of the matrix pair (K,M). The corresponding left and
right residuals are

sH = ỹHK − λ̃ỹHM = −1

θ
wHEjBj+1P

T
j+1,

r = Kx̃− λ̃Mx̃ = −1

θ
(K − σM)Qj+1Cj+1E

T
j z.

The matrix-vector products Y = [(K−σM)−1M ]X and ZT = XT [(K−σM)−1M ]
required in the inner loop of the algorithm can be performed by first computing the
LU factorization of K − σM = LU and then solving the linear systems of equations
LUY = MX and ZT = XT (LU)−1M for Y and ZT , respectively.
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If K and M are real, and the shift σ is complex, one can still keep the Lanczos
procedure in real arithmetic using a strategy proposed by Parlett and Saad [37].

In many applications, M is symmetric positive definite. In this case, one can avoid
factoring M explicitly by preserving M -biorthogonality among the Lanczos vectors
[16, 35, 11, 22]. Numerical methods for the case in which M is symmetric indefinite
are discussed in [22, 32].

7. Summary of numerical examples. This section summarizes our numerical
experience with the ABLE method. We have selected test eigenvalue problems from
real applications to demonstrate the major features of the ABLE method. Each
numerical example illustrates a property of the ABLE method. All test matrices
presented here can be found in the test matrix collection for non-Hermitian eigenvalue
problems [4].

The ABLE method has been implemented in Matlab 4.2 with sparse matrix com-
putation functions. All numerical experiments are performed on a SUN Sparc 10
workstation with IEEE double precision floating point arithmetic. The tolerance
value τc for the stopping criterion (2.13) is set to be 10−8. The clustering threshold
(3.2) is η = 10−6. The breakdown threshold is τb = 10−8.

Example 1. The block algorithm accelerates convergence in the presence of mul-
tiple and clustered eigenvalues. When the desired eigenvalues are known in advance
to be multiple or clustered, we should initially choose the blocksize as the expected
multiplicity or the cluster order. For example, the largest eigenvalue of the 656× 656
Chuck matrix has multiplicity 2. If we use the unblocked ABLE method, then at
iteration 20 the converged Rayleigh–Ritz values,

5.502378378875370e+ 00,
1.593971696766128e+ 00,

approximate the two largest distinct eigenvalues. But the multiplicity is not yet
revealed. However, if we use the ABLE method with initial blocksize 2, then at
iteration 7 the converged Rayleigh–Ritz values are

5.502378378347202e+ 00,
5.502378378869873e+ 00.

Each computed Rayleigh–Ritz value agrees to 10 to 12 decimal digits compared with
the one computed by the dense QR algorithm.

Example 2. Full biorthogonality is very expensive to maintain in terms of floating
point operations and memory access. Based on our experience, maintaining semibi-
orthogonality is a reliable and much less expensive alternative. Our example is a
2500 × 2500 block tridiagonal coefficient matrix obtained by discretizing the two-
dimensional model convection-diffusion differential equation

−∆u+ 2p1ux + 2p2uy − p3u = f in Ω,

u = 0 on ∂Ω

using finite differences, where Ω is the unit square {(x, y) ∈ R2, 0 ≤ x, y ≤ 1}.
The eigenvalues of the coefficient matrix can be expressed analytically in terms of
the parameters p1, p2, and p3. In our test run, we choose p1 = 0.5, p2 = 2, and
p3 = 1. For this set of parameters, all eigenvalues of the resulting matrix A are
positive real and distinct. With full biorthogonality, at iteration 132, the two largest
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Fig. 7.1. The exact (solid line) and estimated (dash-dot line) biorthogonality of the Lanczos
vectors and the smallest singular values (+) of PTj+1Qj+1.

eigenvalues are converged. If we use the ABLE method with semibiorthogonality, at
iteration 139, the same two largest eigenvalues are converged to the same accuracy.
The difference is that only 8 corrections of biorthogonality loss are invoked to maintain
semibiorthogonality, compared to 132 corrections for full biorthogonality.

In Figure 7.1 the solid and dotted lines display the exact and estimated biorthog-
onality of the computed Lanczos vectors, and the “+”-points concern breakdown and
are the smallest singular values of PTj Qj . The solid line plots

dj+1 = max

(
‖PTj Qj+1‖1
‖Pj‖1‖Qj+1‖1 ,

‖QTj Pj+1‖1
‖Qj‖1‖Pj+1‖1

)
for j = 1, 2, . . . , 132. Each sharp decrease corresponds to a correction. The dotted
line plots the estimate, d̂j+1, of this quantity computed by the monitoring algorithm
of section 4.2. Correction iterations are taken when the dotted line increases to the
threshold

√
ε, where ε denotes the machine precision. The observation that the solid

line is below the dotted line indicates that the monitoring algorithm is prudent. A
near breakdown occurs if the smallest singular value of PTj+1Qj+1 is less than the
breakdown threshold, but this is not the case in this example.

Example 3. As mentioned before, when we know the multiplicity of the eigenvalues
in advance, we should choose the appropriate blocksize, otherwise the adaptive scheme
presented in section 3 can dynamically adjust the blocksize to accelerate convergence.
This smooths the convergence behavior to clusters of eigenvalues. For example, we
apply the ABLE method with initial blocksize 1 to the 656 × 656 Chuck matrix. At
iteration 24, the double eigenvalue is detected and the blocksize is doubled.

Example 4. Exact breakdowns are rare but near breakdowns are not. In general,
we can successfully cure the near breakdowns. For example, when the ABLE method
is applied to the 882 × 882 Quebec Hydro matrix from the application of numerical
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Fig. 7.2. Spectra (+) and pseudospectra (◦) of 30 by 30 Wilkinson bidiagonal matrix.

methods for power systems simulations, four near breakdowns are cured. At iteration
37, the four leading eigenvalues are converged.

In the further investigation of this example, we found that the breakdowns are
solely caused by the bad balancing of the entries of the matrix A. If we balance the
matrix first (say, using the balance function available in Matlab), then the breakdown
does not occur for the balanced matrix. The balancing of a large sparse matrix is a
subject of further study.

Example 5. One of the attractive features of the ABLE method is that condition
numbers of the approximate eigenvalues can be readily computed at the end of the
ABLE method. This makes it possible to detect ill-posed eigenvalue problems. Our
example is the 30 by 30 Wilkinson bidiagonal matrix [52, p. 90],

A =


30 30

29 30
. . .

. . .

2 30
1

 .
In the ABLE method with blocksize 1, all the residual errors after 30 iterations indi-
cate convergence but the Rayleigh–Ritz values do not approximate exact eigenvalues;
see Figure 7.2. This is understandable since all corresponding condition numbers
cond(θi) are of the order 1011 to 1013. The eigenvalue problem for the Wilkinson
matrix is ill-posed and the “converged” Rayleigh–Ritz values are pseudospectra.

Example 6. In this example, we apply the spectral transformation ABLE method
to a generalized eigenvalue problem

Kx = λMx(7.1)

arising from MHD [27, 11], where K is non-Hermitian and M is Hermitian positive
definite. The interesting part of the spectrum in MHD problems is not the outer part
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of the spectrum but an internal branch, known as the Alfvén spectrum. We need to
use a spectral transformation technique to transfer the interesting spectrum to the
outer part. In section 6, we have outlined a general approach. Now, we show the
numerical results of this general approach for the MHD test problem. Both K and
M are 416 by 416 block tridiagonal matrices with 16 by 16 blocks. To two significant
digits, there holds

‖K‖1 = 3100 and ‖M‖1 = 2.50,

but the estimated condition number of M is 5.05×109; M is quite ill conditioned. The
computational task is to calculate the eigenvalues close to the shift σ = −0.3 + 0.65i
[8].

We ran the unblocked spectral transformation ABLE method. After only 30
iterations, 10 Rayleigh–Ritz values are converged; their accuracy ranges from 10−8 to
10−12, compared with the eigenvalues computed by the QZ algorithm. The following
table lists the 10 converged Rayleigh–Ritz values θi and the corresponding left and
right residual norms, where

Res-Li =
‖yHi K − θiyHi M‖2
max(‖K‖1, ‖M‖1)

, Res-Ri =
‖Kxi − θiMxi‖2

max(‖K‖1, ‖M‖1)
,

and (yHi , xi) are the normalized approximate left and right eigenvectors of (K,M)
(i.e., ‖yHi ‖2 = ‖xi‖2 = 1):

i θi Res-Li Res-Ri

1 −2.940037576164888e− 01 + 5.871546479737660e− 01i 3.82e− 12 6.59e− 11
2 −2.381814888866186e− 01 + 5.914958688660595e− 01i 2.66e− 11 4.46e− 11
3 −3.465530921874517e− 01 + 5.468970786348115e− 01i 1.23e− 11 2.76e− 10
4 −3.780991425908282e− 01 + 5.071655448857557e− 01i 6.18e− 11 3.98e− 10
5 −2.410301845692590e− 01 + 5.238090347100917e− 01i 9.81e− 11 4.32e− 10
6 −1.989292783177918e− 01 + 5.900118523050361e− 01i 5.34e− 11 8.55e− 11
7 −2.045328538082208e− 01 + 5.678048139549289e− 01i 5.97e− 11 1.12e− 10
8 −3.092857309948118e− 01 + 4.687528684165645e− 01i 5.23e− 09 2.59e− 08
9 −1.749780170739634e− 01 + 5.920044440850396e− 01i 5.62e− 10 9.58e− 10
10 −1.573456542107287e− 01 + 5.976613227972810e− 01i 5.98e− 09 9.63e− 09

In addition, six other Rayleigh–Ritz values range in accuracy from 10−5 to 10−7.
Figure 7.3 shows Alfvén spectrum computed by the QZ algorithm (+) and the Ray-
leigh–Ritz values (◦) computed by the spectral transformation ABLE method.

Three corrections to maintain semibiorthogonality were taken at iterations 13,
20, and 26. The convergence history of the Rayleigh–Ritz values are shown in the
following table, where j is the Lanczos iteration and k is the number of converged
Rayleigh–Ritz values at the jth iteration:

j ≤ 14 15–18 19 20–22 23–24 25–26 27–28 29 30
k 0 1 2 3 4 7 8 9 10

Moreover, at Lanczos iteration 45, the entire Alfvén branch of spectra of the MHD test
problem are revealed: 20 Rayleigh–Ritz values converged, and 12 other Rayleigh–Ritz
values range in accuracy from 10−7 up to 10−5. No copies of eigenvalues are observed.

Acknowledgments. The authors would like to thank the referees for their valu-
able comments on the manuscript.
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Fig. 7.3. The Alfvén spectra of the MHD test problem. “ +” denotes the eigenvalues com-
puted by the QZ algorithm. “◦” are the Rayleigh–Ritz values computed by 30 steps of the spectral
transformation ABLE method. “ ∗” is the shift σ = −0.3 + 0.65i.
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