International Journal of High Speed Computing, Vol. 1, No. 1 (1989) 97-112
© World Scientific Publishing Company

ON A BLOCK IMPLEMENTATION OF HESSENBERG
MULTISHIFT QR ITERATION

Zhaojun Bai and James Demmel
Courant Institute of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012

Received December 8, 1988

ABSTRACT

The usual QR algorithm for finding the eigenvalues of a Hessenberg matrix H is
based on vector-vector operations, e.g. adding a2 multiple of one row to another.
The opportunities for parallelism in such an algorithm are limited. In this paper,
we describe a reorganization of the QR algorithm to permit either matrix-vector
or matrix-matrix operations to be performed, both of which yield more efficient
implementations on vector and parallel machines. The idea is to chase a k by k
bulge rather than a 1 by 1 or 2 by 2 bulge as in the standard QR algorithm. We
report our preliminary numerical expetiments on the CONVEX C-1 and CYBER
205 vector machines.

Keywords: Eigenvalue; Hessenberg matrix; QR algorithm; BLAS; Parallel algo-
rithm.

1. Introduction. The usual QR algorithm for finding the eigenvalues
of a Hessenberg matrix H is based on vector-vector operations, e.g. adding
a multiple of one row to another, or one column to another. The computed
eigenvalues are deflated one by one for real eigenvalues, or pair by pair for
complex conjugate eigenvalues. The opportunities for parallelism in such an
algorithm are limited.

There are several papers proposing parallel implementations of the QR
algorithm, e.g. [1,15,9,2]. All these implementations perform vector-vector
operations in their innermost loops.

Our approach is motivated by the availability of the Level 2 and Level 3
BLAS (Basic Linear Algebra Subroutines) for performing matrix-vector and

97

98 Bas & Demmel

matrix-matrix operations efficiently on high performance machines[4,5,6].
Matrix-vector operations include matrix-vector multiplication, rank-1 ma-
trix update, and solving triangular systems of equations; matrix-matrix op-
erations include matrix-matrix multiplication, rank-k matrix update, and
solving triangular systems with many right hand sides.

The vector-vector operations (Level 1 BLAS) on which the usual QR
algorithm is based can generally not be implemented as efficiently as the
larger granularity matrix-vector and matrix-matrix operations. This ineffi-
ciency is usually a result of poor memory hierarchy utilization. This leads
us to attempt to restructure the usual QR algorithm to have matrix-vector
and matrix-matrix operation inside the inner loops. Even if more floating
point operations are introduced by restructuring, the more efficient inner
loops may provide a faster overall algorithm.

In this paper, we will describe such a restructured QR algorithm. Briefly,
instead of a single or double shift providing a 1 by 1 or 2 by 2 “bulge” which
is “chased” one column at a time as in the usual QR algorithm, we will use
k simultaneous shifts, resulting in a k by k bulge which is then chased p
columns at a time. p and k are architecture dependent parameters, which
can be tuned to optimize performance. We choose the k shifts to be the
eigenvalues of the bottom right k by k principal submatrix.

We have performed numerical tests of the algorithm on the CONVEX
C-1 and CYBER 205. Using straightforward Level 2 and Level 3 BLAS
implementations, our algorithm performs better then the vectorized usual
QR algorithm (hgr from the EISPACK library[13]). When we use optimized
BLAS for these architectures and polish our codes, we expect to get even
better performance.

For simplicity, it is assumed that the reader is familiar with the se-
quential QR algorithm[14]. The following is an outline of the algorithm.
Let A € R™"*™, the explicitly shifted QR algorithm produces a sequence
Ag, Ay, ..., of similar matrices as follows:

Ag=A

for k=1,2,...
Ag-1 — Sg-11 = Q-1 Ri_y;
Ak = Rp1Qp-1 + sk—11;

The scalars s;_y are called origin shifts. Qx_; is orthogonal and Rx_; is
upper triangular. For accelerating convergence and avoiding complex arith-
metic for real matrices, the implicit double shift QR algorithm is used, re-
sulting in 2 by 2 bulge chasing in each QR sweep, see [8,14].

The QR iteration has two important properties: Let us first introduce

Hessenberg Multishift QR Heration 99
some additional notation. Let
Qr-1 = QoQ1- - Qk-1
and
Ri—y = Rk-1Rk-2--Ro..
Then from the fact Ax = QT_, Ak-1Qk-1, it follows that
Ar = QF_1AoQk1

or since Q-1 is orthogonal

Ay — sk1] = QF_ (A= 51 1)Qk-1-
Denote

k) = (A - soI)(A~ s1I)- (A — sk-1]).

Our QR algorithm, which we call block multishift QR, depends on the
following two well-known facts about QR iteration. We call an upper Hes-
senberg matrix A is unreduced if Ai41,: # 0 for alli=1,...,n—1.

Fact 1: Q~k_1Rk..1 = I1(F), see [14].

FacT 2: Let A be an unreduced upper Hessenberg matriz, and suppose
that it is transformed by an orthogonal matriz W into WTAW, which is
also an unreduced upper Hessenberg matriz. Then if the first column of
W is given by w1 = mwgk), where 1r§k) is the first column of k), the

resulting matriz is identical uo to signs to the kth matriz generated by shifted
QR iteration, i.e. Ax = WTAW, see [8].

Fact 1 reveals the connection between the QR iteration and the power
method applied to II¥). Fact 2is a restatement of a theorem from [8] in
more modern terminology. It is usually called the “ implicit Q” theorem as
presented in [14,10,11}. Taken together, they show that if we can compute
just the first column wgk) of (%), Ay can be computed directly from Ag by
finding an orthogonal W such that WTAW is upper Hessenberg and the
first column of W is proportional to w{k).

The rest of this paper is organized as follows. In section 2, we describe
the implicit multishift QR algorithm. Then, in sections 3 to 6, more de-
tails about the implementation of the algorithm, such as the choice of the
shifts, determining the first column of the TI(¥), k by k bulge chasing and the
convergence criterion are presented. Preliminary numerical tests of the algo-
rithm on the CONVEX C-1 and CYBER 205 vector machines are reported
in section 7. Finally, we discuss future work.

100 Bas 8 Demmel

2. The Implicit Multishift QR Algorithm. The usual explicit or
implicit QR algorithm uses 1 or 2 shifts to compute A; or A, from Ag = A.
If we assume k shifts {u;}%_, are available, we will show that the following
algorithm computes Ay directly from Ao.

1. Find the first column ng) of II(¥), where.

™ = (Ao — paI)(Ao — p2l) -+ (Ao = pel).
9. Determine a Householder transformation Py = I — ulu'lr such that
P17l'§k) = oé;.

where e; is the first column of the identity matrix I.
3. Premultiply and postmultiply A by P

P AgP, = B.
4. Reduce B to upper Hessenberg form
Poy-++PyBPy---Py_y = B | AgPyy = By.

where B,_y = PyP;---P,_1, and for i > 1, P; is a Householder
matrix chosen to zero out rows i+ 1 through min(i +k, n) of column
i—1.

We will show that B; = Ax. To see this, note that r{k) is a vector
with the last n — k — 1 elements zero, since {Ap — pil} is a set of upper
Hessenberg matrices. Then Householder matrix Py transforms)) to oe;.
After P, pre- and post-multiplies Ao , it is easy to see that B is an upper
Hessenberg matrix with a k by k bulge, e.g. for n =9,k =3

(xxxxxxxxx\

X X X X X X X X

X X X X X X X X X

X X X X X X X X X

(2.1) X X X X X X X X X
X X X X X

X X X X

X X X

\ X X

Then a sequence of Householder transformations P; are used to reduce B
to upper Hessenberg form. After each application P;(-)F;, the k by k bulge
moves one step down the subdiagonal; this is called “chasing”. It is easy to
see that

Pn_1 e = Plel .

Hessenberg Multishift QR Iteration 101

Since P, is determined by the first column of II(®), we know that By = Ax
by Fact 2.

The above algorithm defines a single QR sweep. Then we take Ai as
Ao to start another sweep. Now we will consider how to choose k shifts
simultaneously, how to efficiently compute the first column of II(*), and how
to chase the k by k bulge of B. All of these problems will be discussed in
detail in the following sections.

3. Multishift Schemes. How to choose k shifts {m}L, in a QR sweep
is one of the basic problems of the algorithm. The motivation of using mul-
tishifts rather than 1 or 2 shifts is to deflate a small submatrix, presumably
about k by k. The prospective shifting schemes are as follows:

S1. k eigenvalues of the k X k trailing principle submatrix.

$2. The k diagonal elements of the k X k trailing principle submatrix.

S3. 1 = 42 = ... = Pk = Gn;n.

S4. py = pa = ... = px = the eigenvalue of the k x k trailing principle
matrix that is nearest to an .

S5. Compute k + 1 eigenvalues of the bottom k +1 by k +1 matrix, and
pick k of them closest to the last set of k shifts, see [12].

The scheme S1 is a generalization of the double shift QR scheme. The
schemes S2 and S3 can be regarded as the generalized Rayleigh shifts. The
scheme S4 generalizes Wilkinson’s shift. All the schemes were numerically
tested using MATLAB. The test results eliminated the schemes S2 and S3 as
noncompetitive. The schemes S1 and S4 are competitive for small matrices,
but for large matrices (e.g., larger than 100), the scheme S1 is more efficient.

Kahan claims the scheme S5 raises the order of convergence, and makes
cycling much less likely. But our preliminary tests for scheme S5 have not
shown much benefit over scheme S1. More analysis is necessary for this
scheme.

In practice, we will always take k even to avoid complex arithmetic and
simplify the logic. It is well-known that to find all eigenvalues of a k X k real
matrix using standard QR, about 8k® flops are necessary, see [10].

4. Determining the First Column of II(¥). We recall that II(*¥) is
defined as

1" = (A= pI)(A = pal)- (A~ mid).
or
0™ = (4~ peI)(A = pr=ad) (A -),

since the (A — p;I) commute. It is easy to see that II(*) is a lower banded
matrix, with lower bandwidth k + 1 because A is upper Hessenberg. A

102 Bai & Demmel

trivial way to compute the first column w{k) = [OMe,; is to use matrix-
vector multiplications directly to form the first column of II®); this takes
§k3 + O(k?) flops, if we assume that all shifts are real. But this would be
rather susceptible to overflow and underfiow. Thus, after each multiplication
by (A — p;I), we must rescale the resulting vectors to have approximately
unit norm. Since we only need the direction of the final vector, no essential
information is lost. '

5. Block k by k Bulge Chasing. From section 2, we see that chasing
the k by k bulge is the core of the algorithm. Of course, instead of using
Givens rotations to chase 1 by 1 or 2 by 2 bulges as in the usual QR algorithm,
we can use Householder transformations to chase a k by k bulge column by
column. We will see that this leads to an algorithm with matrix-vector
(Level 2 BLAS) operations in the inner loop. But since our purpose in
developing the multishift QR, algorithm is to make the computation rich in
matrix-matrix operations, we can do block chasing. The idea is to partition
the matrix by columns into n/p blocks:

B = (BI, B27 ceey Bn/p)

where each B; has roughly P columns, and then chase the bulge block by
block, p columns at a time. At each block, we aggregate the Householder
transformations and apply them in a blocked fashion.

The process with p = 1 can be described as follows: At the ith step, the
bulge has been chased to ith column. e.g. for n = 9, at the 3th step, the
matrix is of the form)

/xxxxxxxxx\
X X X X X X X X X
X X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X X X

\ X x)

From the ith column of the reduced matrix B;, we can construct the House-
holder transformation P, = J — wiul, (| w ||= v2) to “chase” the bulge
from the ith column to the (¢4 1)-st column. Applying P; to the matrix B;
can be expressed as a rank-2 update (Level 2 BLAS):

Biy1.= PBP=(I- wiul) Bi(I - yiul)
= By~ u;v;-r - w,-u;-r

—

e - o

Hessenberg Multishift QR Iteration 103

where
T
Y% = Bg’ Us,y
z; = B,
A . T, N
v o= Y- (zi u;) u;,
w = z

In the process, B is repeatly modified. At each stage, the matrix is
updated by a rank-2 matrix, and only & + 2 rows and k + 2 columns of the
matrix are changed. To achieve better memory utilization, we can aggregate
a sequence of transformations, say p of them, so that the matrix is updated
by a rank 2p matrix, and so (p+ k + 1) rows and (p + k + 1) columns of the
matrix will be updated simultaneously. This works as follows: Let us start
from B, = B for simplicity. Instead of explicitly updating the matrix with
a rank two change, we only form the second column of Bj, say b, i.e.

132 1= by — vfz)ul - ugz)wl,

where v?), u&” are the second elements of the vector v; and u;. From b, we
can compute u3, and construct ¥, and z; as follows:

v2 = (B1~uv] —wiul)ug,

Zy = (Bl - U1‘I)1T - wlu}‘)uz.
We then explicitly form Bj as follows:

Bs = By - ulv'lr - wlu;r - ‘U.g’ng - W2u'2r
By ~ (u1,uz)(v1,v2) T — (w1, wa)(u, uz)T
= By, - UV - W,UL.

We can continue the process and in general find for a rank-2p updating:
Byy1 = B1 - U, VT - w,UT.

e.g. starting from the matrix in (2.1) with p = 2, after the first block
updating the matrix looks like

| (e \
X

XX X X X X X
XX X X X x %
X X X X X X X
X X X X X X X

X X X X X X X X
X XXX X X X X X

N

XXX XX X X X X

104 Bai & Demmel

These considerations may be summed up in the following algorithm,
where the jth column of a matrix Xy is denoted by z; or X,gj), a submatrix
composed of the ith to jth columns of matrix X is denoted by X ,(,"’j), and
zg:j) denotes a sub-vector composed by the ith to jth components of vector
Zk.

Algorithm 1(Bulge Chasing). Let A be an upper Hessenberg matrix
with a k by k bulge. This algorithm chases the bulge to reduce A to upper
Hessenberg form. In particular, to reduce a full real general matrix to upper
Hessenberg form, choose k = n — 2. p is the block size.

N =(n-2)/p; N is the number of the blocks.
forl=1,..,N; outer loop. ,
s=(-1)p+1; sis the first column index in each block.
for j=3s,..,8+p—1; inner loop.
g=s+mod(j - 1,p)+1;
kg=q+k-1; ‘ .
b = bgq:kv) - 2?;:(v§')u'(q=k0) + uf-’)w'(q:k"));
compute ii; such that (I — ;4T)b; = ojey;
let u; =(0,...,0,%;,0, ...,O)T; where 4; occupies the gth
to kqth components of u;.
Y = (B _ Ul(a:{'—l)vl(azj:—l)'r _ vvl(a:j—l)Ul(a:j—-l):)Tuj;
z = (B - U’(s.J—l)VI(a.J—l) _ Wl(a:J-l)Ul(s:J—l))uj;
v = y5 — (2] u;)us;
wj = z; — 3(4] u;)uj;

v = uj;
VI(J) = v;;
W{(J) = wj;

end of 5 loop
B=B- UIV,T— VVIUIT;
end of [loop

Note that by choosing k = n — 2, the above algorithm reduces a dense
matrix to upper Hessenberg form. Thus, QR iteration and reduction to
Hessenberg form can be thought of as special cases of the same general
algorithm.

Thus restructuring QR to chase a k¥ by k bulge p columns at a time lets
us use Level 3 BLAS in the innermost loop of the algorithm. The aggregation
idea was proposed in [7], which showed how to reduce a full matrix to upper
Hessenberg form.

Heasenberg Multiahift QR Iteration 105

Counting the floating-point operations reveals that if we chase the k by
k bulge one column at a time (p = 1), one sweep costs 2kn? flops. k sweeps
of the usual single shift QR or k/2 sweeps of the usual double shift QR al-
gorithm also cost approximately 2kn? flops. In aggregating transformations
to perform the block chasing, additional work is required to form y; and z;.
The additional work amounts to:

(k + 5p)* + O(n)

Note that we use matrix-vector operations (Level BLAS 2) in the j loop for
computing y; and 2, and matrix-matrix operations (Level 3 BLAS) for the
[loop updating. Thus, the new algorithm must have an execution rate at
least %+ £ times as great as the standard algorithm in order to have a speed
up (assuming approximately equal convergence rates).

8. Convergence Criterion. We recall that in the standard QR algo-
rithm, the convergence test first looks for a negligible subdiagonal element
to set to zero and deflate a submatrix (called deflation technique I), and
then looks for two small consecutive subdiagonal elements whose product is
negligible (called deflation technique I1). The QR iteration then works on
the smaller submatrices. The approximate eigenvalues are computed one by
one for real eigenvalues, or pair by pair for complex conjugate eigenvalues.

The motivation of multishift QR iteration is to deflate several eigenvalues
simultaneously, i.e. to find a negligible subdiagonal element near subdiagonal
n — k rather thann—lorn—2asin standard QR iteration. If a deflated
submatrix has dimension smaller than some ng (which depends on k), we will
simply use standard QR (hgr from EISPACK) to compute its eigenvalues.
Thus the algorithm is a hybrid of the standard and block multishift QR
algorithms.

Experience with MATLAB indicates that deflation technique II intro-
duces extra flops and data movement exceeding the benefit of the faster
convergence, so we have chosen not to implement it in our code (although it
is retained in hgr, which our code calls).

7. Numerical Tests. Numerical tests of the block multishift QR iter-
ation were carried out on the CONVEX C-1 computer at Courant Institute,
New York University and CYBER 205 at John von Neumann National Su-
percomputer Center. The CONVEX has a vector architecture with register
to register operations and pipelined functional units, and has a cycle time of
100 ns which results in a theoretical peak performance of 10 MFLOPS for
simple operations and 20 MFLOPS for compound add/multiply operations
assuming 64-bit arithmetic. The memory is managed on a fixed-size page

108 Bai & Demmel

TaBLE 1
Reduction timing on CONVEX C-1

n matrices orthes sgehrd(pi). speedup
timings timings

200 [0,] 7.30 283(12) 2.58
200 [1,]] 693 3.03(12) 2.29
200 normal 7.53 2.85(12) 2.54
256 [0,1] 1435 5.90(8) 2.43
256 normal 14.90 5.55(8) 2.68

300 [0,1] 92.45 8.87(12) 2.53
300 [-1,1] 23.00 8.78(12) 2.62
300 normal 21.95 8.58(12) 2.56

400 [1,] 5213 10.75(12) 2.64
400 normal 50.85 19.88(12) 2.56

basis. There is a FORTRAN vectorizing compiler. CONVEX rates their
machine as 1/6 of the CRAY 1-S in speed.

The Control Data Corporation CYBER 205 is a vector computer like the
Cray-1, but does not contain vector registers. Hence any data to be processed
is transferred directly from memory to the designated vector functional unit
and back to memory. The cycle time of the CYBER 205 is 20 nsec. Vector
units may run in parallel under certain circumstances.

All the codes for the block implementation of reduction to upper Hessen-
berg form (in short: sgehrd) and multishift QR iteration (in short: shsegr) for
Hessenberg form are written in standard Fortran 77, with as many matrix-
vector(Level 2 BLAS) and matrix-matrix(Level 3 BLAS) operations as pos-
sible in order to exploit the memory hierarchy.

For the test results reported on the CONVEX in this paper we used
VECLIB, a collection of FORTRAN-callable subprograms providing basic
mathematical software including the BLAS. We use the —O2 option in the
CONVEX FORTRAN compiler fc to perform machine-independent local
and global optimizations plus vectorization.

On the CYBER 205, we have so far programmed all the BLAS codes

smﬂm 3 ‘sf-’,,".‘v‘i :

Hessenberg Multsshift QR Iteration 107

ourselves in Fortran, and so expect future performance improvements.

The parameters k, p; and p; denote the number of shifts in each QR
sweep and block sizes for Hessenberg reduction and bulge chasing, (see [7]
for details on the Hessenberg reduction algorithm). As stated in section 3,
the k shifts are chosen as the k eigenvalues of the k¥ x k trailing principle
submatrix. So for k = 2 and p; = p; = 1, our algorithm can be regarded as
the “standard” implicit double shift QR iteration.

Our preliminary experiments are based on the following classes of ma-
trices (each matrix entry chosen independently as follows):

normal : standard normal distribution with mean 0, variance 1
[-1,1]: uniform distribution on [-1,1]
[0,1]: uniform distribution on [0, 1]

The sizes of the test matrices range from 100 up to 400. The timing in
seconds for finding all eigenvalues and no eigenvectors of full real matrices by
EISPACK orthes and hgr, and sgehrd(p;) and shsegr(k, p;) in 64 bit precision
on the CONVEX are listed in Table 1 and 2, where the EISPACK codes are
also optimized using the —02 compiler option. We see from Table 2 that
the block multishift QR algorithm is about 20% to 45% faster than the
EISPACK codes. We expect that shseqr with more careful coding would
perform better. Evidence for this is shown in that the shseqr with optimal
choices of the parameters k, p; and p; is 2 to 4 times faster than shseqr with
k =2, p1 = p; = 1, which should be equivalent to the “standard QR”.

The timing costs of reduction to upper Hessenberg form and QR itera-
tion on the CYBER 205 in 32-bit precision arithmetic are listed in Tables 3
and 4 respectively. The last column of each table lists the speedups. We im-
prove EISPACK’s performance by a factor 8-14 in reduction to Hessenberg
form and a factor 1.7-2.6 in QR iteration.

Clearly much remains to be done. Nevertheless, we can make the fol-
lowing remarks.

Remark 1: In our test examples, the shsegr produces the same eigen-
values as the EISPACK codes to at least ten decimal places even for very
ill-conditioned eigenproblems. Shsegr is, of course, backward stable.

Remark 2: In table 1, the parameters k and p1 and p; are chosen by
local optimization. For example, let matrix A be 128 x 128 having entries
chosen independently from the uniform distribution on [0,1]. Using shsegr,
we first fix parameter p; and vary k to find the & minimizing the running
time (Fig. 1). Then for this locally optimal k, we vary p; to minimize the
running time (Fig. 2). How to characterize the optimal parameters k and P2
is still not very clear. We expect these parameters to be machine-dependent,
depending on the number of vector registers, cache size etc.

108 Bai & Demmel

TABLE 2
QR iteration timing on CONVEX C-1

n matrices hgr timings shsegqr timings(k,pz) speedup
iter. (sec) iter. (sec)
200 [0,1) 342 15.65 44 13.02(18,6) 1.20
200 [-1,1] 372 15.83 40 11.90(18,7) 1.33
200 normal 386 17.03 50 15.78(18,6) 1.20
256 [0,1] 478 30.73 87 26.34(12,6) 1.17
956 normal 481 3147 70 21.45(14,6) 1.47
300 [0,1] 550 47.15 106 38.53(12,6) 1.22
300 [-1,1] 551 46.22 100 35.15(12,6) 1.31
300 normal 573 46.67 104 36.54(12,6) 1.28
400 [1,1] 702 96.65 122 69.68(14,6) 1.39
400 normal 711 97.27 127 75.15(14,6) 1.29

timingisecond}

1

1 1 1 1 1 1 L L 1 I 1
4 [8 106 12 14 16 18 20 22
k(The nusber of shifts)

FIG. 1. The timing cost depending on k, pz = 4.

mm o -

Hessenberg Multishift QR Heration

TABLE 3
Reduction timing on Cyber 205

n matrices orthes shsegr(py) speedup
timing timing
200 [0,1] 481 0.58(12) 8.29
200 [1,1] 4.80 0.58(12) 8.28
200 normal 4.80 0.59(12) 8.14
256 [0,1) 1050 1.01(8) 10.40
256 normal 10.50 0.99(8) 10.60
300 [0,1) 1721 1.46(12) 1179
300 [-1,1 17.19 1.44(12) 1193
400 [1,1] 42.07 2.92(12) 1441
400 normal 42.65 2.88(12) 14.81
TABLE 4
QR iteration timing on Cyber 205
n matrices hgr shseqr(k,p;) speedup
timing timing
200 [0,1] 15.63 9.21(18,6) 1.70
200 [-1,1) 17.23 7.25(18,7) 2.38
200 normal 17.62 8.78(18,6) 2.01
256 [0,1] 20.81 17.50(12,6) 1.70
9256 normal 34.75 14.28(14,6) 2.43
300 [0,1] 45.11 23.94(12,6) 1.88
300 [-1,1] 45.26 23.26(12,6) 1.94
400 [-1,1] 132.31 50.71(14,6) 2.61
400 normal 127.46 51.53(14,6) 2.47

109

110 Bas & Demmel

98-

9.6

timing{second)

7.8[
7.6f
7.4
7.2 :

7.0
2

6.8

[2 4 6 8 19 12 14 16 18 20 R
piThe block size)

F1G. 2. The timing cost depending on p2, k = 14,

TABLE §
QR steps for splitting a small block

iter 31 2 1 1 5 4 4 5 4 4 3 3 4

block 26 22 3 10 26 26 24 26 26 25 26 25 35

Remark 8: By ’iter’, we mean the total number of QR sweeps to find all
eigenvalues. In general, it is seen that the more shifts used, the fewer QR
sweeps are necessary. The Eispack QR routine hgr takes about 2n sweeps
to find all eigenvalues, but shsegr takes only about in sweeps. We observe
empirically that in shsegr, after several QR sweeps, a small subdiagonal
element appears near the position n — k, i.e. a submatrix of approximate
size k x k is split out, s0 we can find its eigenvalues directly by calling Eispack
QR algorithm. For example, for a 300 x 300 [-1, 1] uniformly distributed
matrix, using shsegr with k = 26 and p; = 4, the number of QR sweeps and
corresponded size of the deflated submatrix blocks are shown in Table 5.

This performance is what we expected. More tests and analysis will
be needed to see whether this is occurs generally. Recently, Watkins and
Elsner develop the theory of convergence of a generic GR algorithm for the

s

Hessenberg Multishift QR Iteration 111

matrix eigenvalue problem which includes the QR and other algorithms as
special cases. They show that with certain obvious shifting strategy the GR
algorithm typically has a quadratic asymptotic convergence rate [16].
Remark 4: If we can consistently deflate k by k subblocks as suggested
in Remark 3, this could be used to design a parallel divide and conquer

scheme. .
Remark 5: The shseqr with scheme S4 (cf. Section 3) took about double
the time of shseqr with shift scheme S1.

8. Future Work. This is the first report of work in progress. Future
work will include optimizing our shsegr codes, numerical tests on CRAY and
Alliant FX/8 machines, and finding optimal parameters k, p; and p; for
different size matrices and specific machine architectures. The final version
of this code will be a part of the LAPACK linear algebra library(3].

Acknowledgements. The first author acknowledges the financial sup-
port of DARPA, grant F49620-87-C0065, and the second author the support
of NSF, grant ASC-8715728. The second author is also a Presidential Young
Investigator.

REFERENCES

[1] D. BoLEY, Solving the Generalized Eigenvalue Problem on a Synchronous Linear Pro-
cessor Array, Parallel Computing 3(1980), pp. 152~166.

{2] G. J. Davis, R. E. FUNDERLIC AND G. A. GEIST, A Hypercube Implementation of the
Implicit Double Shift QR Algorithm, Hypercube Multiprocessors’87, M. T. Heath
ed. SIAM publisher, 1987.

[3] J. DEMMEL, J. DONGARRA, J. DU Croz, A. GREENBAUM, S. HAMMARLING AND
D. SORENSEN, Prospectus for the Development of a Linear Algebra Library for
High-Performance Computers, Argonne National Laboratory, ANL-MCS-TM-97,
September, 1987

{4) J. J. DoNGARRA, J. DU CroZ, S. HAMMARLING AND R. J. HANSON, An Extended Set
of the Fortran Basic Linear Algebra Subprograms. ACM Trans. on Math. Software,
14(1988), pp. 1-17.

[5] J. J. DoNGARRA, J. DU CRoZ, I. DUFF AND S. HAMMARLING, 4 Set of Level 8 BLAS
Linear Algebra Subprograms, Argonne National Laboratory, ANL-MCS-TM 88,
May 1988.

{6] » An Update Notice on the Level 8 BLAS, ACM SIGNUM Newsletter, 24(1989),
pPp. 9-10.

[7) J. J. DONGARRA, S. J. HAMMARLING, AND D. C. SORENSEN, Block Reduction to
Condensed Forms for Eigenvalue Computations, LAPACK Working Notes # 2,
Mathematics and Computer Science Division, Argonne National Lab, Sep. 1987

(8] J. G. F. Francis, The QR Transformation - A Unitary Analogue to the LR Trans-
formation, Computer J. 4(1961/1962), pp. 265-271 and 332-345.

[9] R. A. vaN pE GEWN, Implementation the QR-Algorithm on an Array of Processors,
Univ. of Maryland, Dept. of Computer Science Technical Report CS-TR-1897,
August 1987.

112 DBas & Demmel

[10] G. H. GoLuB aND C. van LoAN, Matriz Computations, Johns Hopkins University
Press, Baltimore, 1983,

(11] C. C. PaIGE, The Gatlinburg X Meeting talk, October 1987.

(12] W. KAHAN, private communication, April, 1988,

(13] B. T. SmitH, J. M. BoviLe, Y. IkeBE, V. C. KrLEMA AND C. B. MoOLER, Ma-
triz Eigensystem Routines: EISPACK Guide, 2nd ed. Springer-Verlag, New York,
1970. R

(14] G. W. STEWART, Introduction to Matriz Computations, Academic Press, New York,
1973.

[15] ———, A Parallel Implementation of the QR-algorithm, Parallel Computing 5(1987),
pp. 187-196.

{16] D. WATKINS anD L. ELSNER, Convergence of Algorithm of Decomposition Type Sor
the Eigenvalue Problem. Submitted to Lin. Alg. and its Applic. 1989

