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ABSTRACT 

We discuss a new version of an existing algorithm for reordering the eigenvalues 
on the diagonal of a matrix in real Schur form by performing an orthogonal similarity 
transformation. A detailed error analysis and software description are presented. 
Numerical examples show the superiority of our algorithm over previous algorithms. 

1. INTRODUCTION 

The problem of reordering the eigenvalues into a desired order along the 
(block) diagonal of a quasitriangular real matrix arises in several applications: 
computing an invariant subspace corresponding to a given group of eigenval- 
ues, estimating condition numbers for a cluster of eigenvalues or their 
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associated invariant subspace [18, 21, computing partial eigenvalues of a large 
nonsymmetric matrix by the simultaneous iteration method [I4], computing 
matrix functions [4, 111, solving the linear-quadratic control problem [lo], and 
so on. These problems can be solved in two phases: the first is to compute 
the Schur decomposition of the given matrix, and the second is to reorder a 
group of specified eigenvalues to appear at the upper left comer of the 
matrix. In this paper we describe an algorithm and its implementation for this 
reordering problem. The software is available in LAPACK [l], a public domain 
numerical linear algebra library. 

Specifically, for a real matrix A, there is a real orthogonal matrix Q such 
that 

A = QTQ’, (1) 

where T is a real upper quasitriangular matrix, called the real Schurform. 
This means that T is block upper triangular with 1 X 1 and 2 X 2 blocks on 
the diagonal. The 1 X 1 blocks contain the real eigenvalues of A. The 
eigenvalues of the 2 X 2 diagonal blocks are the complex conjugate eigenval- 
ues of A. The real Schur form may be computed using subroutine HQK from 
EISPACK [13] from LAPACK [l]. Here Q provides 

for invariant subspaces of certain subsets of eigenvalues 
the matrix and conformally 

Q = 
Tl, TN 

[ 1 0 T22 ’ 

then from (1) we have 

AQ, = Q,T,,, (2) 

and hence Q, gives an orthonormal basis for the invariant subspace of A 
corresponding to the eigenvalues contained in T,,. 

Unfortunately, the T,, given by the QR algorithm will not generally 
contain the eigenvalues in which we are interested. We must therefore 
perform some further orthogonal similarities that preserve block triangular 
form but reorder the desired eigenvalues of A to the upper left comer of the 
Schur form T. The crux of such a reordering is to swap two adjacent 1 x 1 or 
2 X 2 diagonal blocks by an orthogonal transformation. Formally, let A,, be 
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a p x p matrix, A,, be a q X q matrix, p, q = I or 2; we want to compute 
an orthogonal ( p + q> X ( p + q) matrix Q such that 

where iii is similar to Aii, i = 1, 2, so that the eigenvalues are unchanged 
but their positions are exchanged along the (block) diagonal. 

To this end, Stewart [15] has described an iterative algorithm for swap- 
ping consecutive 1 x 1 and 2 X 2 blocks of a quasitriangular matrix, which 
we refer to as algorithm EXCHNG. In his method, the first block is used to 
determine an implicit QR shift. An arbitrary QR step is performed on both 
blocks to create a dense ( p + q) X ( p + q> matrix. Then a sequence of QR 
steps using the previously determined shift is performed. Theoretically, after 
one step of QR iteration, the eigenvalues of the first block will emerge in the 
lower part, But in practice, two or even more QR iterations may still fail to 
reorder the eigenvalues for some hard problems. This use of QR iteration has 
been extended by Van Dooren 1191 to reordering the eigenvalues of a 
generalized eigenvalue problem using QZ iteration. 

Another algorithm to be further developed in this paper is the so-called 
direct swapping method, which was originally motivated by the work of Ruhe 
[I2], and by that of Dongarra, Hammarling, and Wilkinson (in 1983, although 
the paper was not finished until 1991 [7]). Ng and Parlett [ll] also developed 
a program to implement the direct swapping algorithm. A similar idea has 
also been published by Cao and Zhang [6]. 

This previous work still does not solve the problem satisfactorily. The 
iterative swapping algorithm has the advantage of guaranteed backward 
stability, since it just multiplies the data by orthogonal matrices. But it may be 
inaccurate and even fail to reorder the eigenvalues in ill-conditioned cases. 
On the other hand, the direct swapping algorithm is simple and can better 
deal with ill-conditioned cases. But there are examples where these imple- 
mentations fail to be stable. 

In this paper, we further improve the direct swapping algorithm. Various 
strategies have been designed at each stage of the algorithm to improve its 
accuracy and robustness. A detailed analysis of the algorithm shows that 
backward instability is possible only in very ill-conditioned cases, so ill-condi- 
tioned in fact that we have been unable to construct a case where it fails. Our 
goal was to have an absolute stability guarantee, however; we achieved this by 
directly and cheaply testing for instability and rejecting a swap if it would 
have been unstable. This can occur only when the eigenvalues are so 
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ill-conditioned as to be indistinguishable in a certain reasonable sense. 
Numerical experiments show the superiorities of our direct swapping algo- 
rithm over previous implementations. 

The rest of the paper is organized as follows: Section 2 describes the 
direct swapping algorithm. The error anaIysis of the algorithm is carried out 
in Section 3. The software implementation and numerical experiments are 
reported in Section 4. Section 5 draws conclusions. All software including test 
software for the algorithms in this paper can be found in the LAPACK library 

Dl. 
We assume that any 2 x 2 diagonal block in the quasitriangular matrix is 

in standardized form. This means that its diagonal entries are equal and its 
off-diagonals nonzero and of opposite sign: 

ff P 
[ I Y a! ’ PY<O. 

For any 2 x 2 block with complex conjugate eigenvalues, we can easily 
compute an orthogonal similarity transformation to standardize the block. 

2. DIRECT SWAPPING ALGORITHM 

(4) 

As we described in the introduction, the crux of reordering the diagonal 
blocks is to interchange the consecutive diagonal blocks A,, and A,, in the 
following block matrix: 

Al, Al, 
A= o 

[ 1 A > 

22 
(5) 

where A,, is p X p, A,, is q X q, and p, q = 1 or 2. Throughout this 
paper, we assume that A,, and A,, have no eigenvalue in common; 
otherwise, they need not be exchanged. It is seen that the block matrix (5) 
can be block diagonalized as 

where X is the solution of the Sylvester equation 

A,,X - XA,, = A,,. (6) 
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Since it is assumed that A,, and A,, have no eigenvalue in common, the 
solution X exists and is unique. If we choose an orthogonal matrix Q such 
that 

Q'[ Jqx] = [:I 
and conformally partition Q in the form 

then 

Since both matrices on the left are invertible, so are R and QT2. Thus 

QT[4;' :"]Q=QT[! iqx] [? d’,,] [:; ;“ly 

where .& is similar to Aii, i = 1, 2, so that the eigenvalues are invariant, but 
their positions are exchanged. Furthermore, we have the following theorem 
to specify such orthogonal transformation: 

THEOREM l(Ng and Parlett [ll]). An orthogonal ( p + q) X ( p + 9) 

matm’x Q swaps A,, and A,, if and only if 

Q'[ yqx] = [a] (7) 
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for some invertible q X q matrix R where X is defined in (6). 

In the presence of rounding errors, the biggest concern is solving the 
Sylvester equation (6). It could possibly be ill conditioned if A,, and A,, 
have close eigenvalues. In the extreme case, if A,, and A,, have the same 
eigenvalues, the Sylvester equation is singular and the solution X may be 
infinite. To prevent possible overflow, we instead solve the equation 

A,,X - X4, = 14, 

or the corresponding linear system 

Kx = yb, (9) 

where y is a scaling factor (y < l), K = I, @ A,, - A:z @ I,, @ is the 
Kronecker product, x = col( X >, and b = col( Ai,). Here col(W) denotes the 
column vector formed by taking columns of W and stacking them atop one 
another from left to right. Possible overflow of X is taken care of by choosing 
a small scaling factor y. In the extreme case, when A,, and A,, have the 
same eigenvalues, we choose y = 0. Because the linear system (9) can only 
be 1 X 1, 2 X 2, or 4 X 4, it does not cost too much to use Gaussian 
elimination with complete pivoting to solve it with better numerical proper- 
ties (in particular, the pivots are within a modest factor of the singular values 
of the 4 x 4 matrix, so setting tiny pivots to a chosen tiny value controls the 
conditioning of the system and norm of the solution). Applying standard 
results from [2O], a straightforward analysis shows that for the computed 
solution X of the Sylvester equation one has 

where E = X - _?, p is a small constant of order O(l), cM is the machine 
precision, and sep( A,,, A,,) = a,,,,,(K) is called the separation of the 
matrices A,, and A,,. 

In the following error analysis of the algorithm, we will see that the 
numerical stability is essentially governed by the residual Y = A,, - A,,X + 
%& = - A,,E + EA,,. Applying standard error analysis of Gaussian elimi- 
nation [9], we have 

IIY IIF = ll A,, - A,,z + a,,lh G P~M(II~lIIIF + ~IA,,I~F)IIXIIF. (11) 



SWAPPING DIAGONAL BLOCKS 79 

Note that the bound does not involve sep( A,,, A,,). 
Next we form the QR factorization of the matrix (-XT, TZ)~ by House- 

holder elementary reflectors, so that 

[ ;:I =@I7 (12) 

where Q = Q + SQ, 1/13Qll = Ed, Q’Q = I. In other words, the computed 
matrix Q is orthogonal to machine precision [20]. 

In the next section, we will show that in some pathological cases, the 
norm of the (2,I) (block) entry of PA0 may be larger than O( Ed 11 All), i.e., 
it may be backward unstable if we are forced to treat PAQ as block upper 
triangular by setting the (2,l) entry to zero. Therefore we propose to perform 
adjacent blocks swapping tentatively: if the norm of the (2,I) (block) entry of 
PAQ is less than or equal to O(E~ 11 All), we swap the blocks; otherwise we 
return without performing the swap. This gives an absolute guarantee of 
backward stability. We can fail to swap only if the eigenvalues A,, and A,, 
are so close that a small perturbation of the matrix could make them 
identical. If p = 4 = 1, then swapping will always succeed. 

If the two blocks are exchanged, then an orthogonal similarity transforma- 
tion is performed on the 2 X 2 blocks (if any exist) to return them to standard 
form. 

Finally, since the nonsymmetric eigenvalue problem is an ill-conditioned 
problem, a small perturbation to a 2 X 2 block (complex conjugate eigenpair) 
could cause a large perturbation of its eigenvalues. In the extreme case, a 
2 X 2 block could split into two 1 X 1 blocks if its complex conjugate 
eigenvalues become real. Carefully designed standardization steps will detect 
and report such phenomena. All above considerations are summed up in the 
following algorithm. 

DIRECT SWAPPING ALGORITHM SLAEXC. 

1. Copy A to T: 

2. Use Gaussian elimination with complete pivoting to solve 

T,, X - XT,, = YT,, > 
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where y is a scaling factor to prevent overflow. If there is a small 
diagonal element during Gaussian elimination, set it to roughly ma- 
chine precision (times the norm of the matrix). 

3. Compute the QR factorization G = (-XT, ~1)~ = QR by House- 
holder transformations. 

4. Perform swapping tentatively: if the norm of the (2,I) (block) entry of 
Q’TQ is of order less than ~,~,llTlI~~, go to the next step, and 
otherwise exit. 

5. If the swap is accepted, replaced A by Q’AQ and set the (2,l) (block) 
entry of Q’AQ to zero. 

6. Standardize 2 X 2 diagonal block(s) if any exist. 

In our implementation of SLAEXC in LAPACK, we have chosen 10~,~ II AllM 
as the stability criterion in step 4, where 11 AllhI = maxi, jlaijI. Finally, we note 
that we also provide a subroutine STREXC in LAPACK which calls SLAEXC to 

reorder all the eigenvalues into a user selected order. In particular, the user 
may select any subset of the spectrum which will be reordered to appear at 
the top left of the matrix using the fewest possible calls to SLAEXC. 

3. ERROR ANALYSIS 

In this section, we give an error analysis of the direct swapping algorithm 
SLAEXC described in the last section. We assume that p = q = 2, i.e., we only 
consider swapping two 2 X 2 blocks, the hardest case of the problem. In 
addition, for the sake of exposition, we also assume that the computation of 
QR factorization and the similarity transformation Q’AQ are exact, and the 
scaling factor y = I. Including these rounding errors does not change the 
conclusion of the analysis, but makes the exposition appear more compli- 
cated. 

Let X be the computed solution of the Sylvester equation, where 
_% = X + E, X is the exact solution, and E is an error matrix. By the 
argument of (12) and a result of Stewart [17] on the perturbation of the QR 
factorization, we know that under mild conditions (such as llGt llZll EllF < l), 
the QR factorization of ( -XT, ZIT can be written as 

[ -;I + [ ;;] = G + [-:I = @i = (Q + W)[R; “1; .(13) 

where W and F are the perturbations*of the orthogonal matrix Q and the 
triangular matrix R, respectively, and Q = Q + W is orthogonal. llW\lF and 
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IIFIIF are essentially bounded by the terms of order JJG+~I~I~EII~. From 
(Q + W*)‘(Q + W> = I, up to the first order we have Q’W = - W ‘Q. 
When Q = Q + W transforms A, ignoring the second order perturbations, 
we have 

Q’AQ = (Q + W)TA(Q + W) 

= QTAQ + WTAQ + QTAW + WTAW 

=A+ WTQ.QTAQ + Q’AQ.Q’W 

= A + AQ’W - Q’WA. 

Defining 2 = Q’W and partitioning it conformally with A in the form 

we have 

where 

E,, = &A, - Z,,h,. 

(14) 

En and E,, perturb the eigenvalues directly and do not affect stability. E,, 
is of interest because it measures the numerical stability of swapping. E,, is 
the error in the block A,,. It is not of interest, since it neither affects the 
numerical stability of the algorithm nor perturbs the eigenvalues. The task is 
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to give bounds on the norms of E,,, E,,, and E,,. To do so, let us first 
express Zij in terms of the blocks Qij of Q, E, F, and R. From (13) we have 

(Z+QTW)[R;:F] =QT[ ;‘] +Q'[ -,“I 

= [::I + [:g]. 
PostmuItiplying by (R + F)-’ on both sides of the above equation, and 
noting that Z = Q’W, we get 

(I + z,[:] = [ R:Q;y](R + F)_l, 

so that 

Z,, = -Z + (R - Q;,E)(R + F)-I, 

Z,, = -QT2E(R + F)-‘, 

and up to the first order perturbations, we have 

Z,, = -QflER-l - FR-l, 

Z,, = -QT2ER-? 

(15) 

(16) 

To express Z,,, again from (13) 

(I+ QW')[ -“I “] = Q[ f] + Q[ ;] 

= [ -;] + Q[;]. 

By canceling ( - XT, Z)T from both sides of the equation and premultiplying 

br 0’3 we obtain 

wT[ -‘FE] = [f;] +QT[;]. 
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By inserting Q’Q = 1 in the left side of the above equation and noting that 
WTQ = -QTW= -Z,we have 

#] -#:] = -[$;I - [;;:I. 
Thus the “bottom” equation is 

Z,,R - Z,,Q:J - Z,,QkE = -Q:& 

By (16) and assuming that error matrix E is nonsingular, we get 

Z,, = -Z,lQ:iQ,i’ = Q:,ER-lQ:lQiiT. (17) 

From the expressions (15), (16), and (17) for Z,,, Z,,, and Z,,, the 
expressions for E,,, E,,, and E,, are recast as 

El, = QT,A,,Q~TQOTzER-lQ~lQ~T - Q~~ER-lQ:,Q~TQ~A,,Q,-; 

+ Q@-‘( -W,R-lQ:,QiT + Q:AIQLzT) 

= Q&%,E - ~-m)R-~Q;lQii~ 

= -Q;l‘zYR-'Q:LQ,i', 

E,, = -RA~,R-~(Q:~ER-~ + FR-1) + (Q:~ER-~ + FR-1)~,,~-1 

-( -~,J’Q~~Q,_;T + Q:F%,Q~~~)T)Q:&R-~ 

= Q;l(-A,,E + EA,JR-~ -&FR-~ + FR-+i,, 

= Q;,YR- ' - A,, FR-1 + FR- ‘A,, , 

and 

E,, = -Q;,A,,Q,jTQ;,ER-l + Q;2ER-1RA22R-1 

= -Q&(-A,,E +EA,,)R-' 

= Q;,YR-'. 
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We see that E,,, E,, and E,, are essentially related to the residual vector Y 
of the Sylvester equation solver, R, and the subblocks Qrr and Qr2 of Q. 
Furthermore, rewriting (7) as 

we see that 

and 

Qzl = R-’ 

RTR = Z + XTX. 

Let a(C) denote the set of singular values of matrix C, and h(C) denote the 
set of eigenvalues of matrix C. Then 

a’(R) = A( RTR) = A( Z + XTX) = 1 + A( XTX) = 1 + a’(X). 

Therefore 

IIQ,,llz = IIR-‘112 = --!- = 1 

g2( R) [l + a;2( x)y ’ 
(18) 

where a,(X) > a,(X) > 0. Now to estimate the norm of the blocks Qij of 
Q, we use the following CS decomposition of a partitioned orthogonal matrix, 
which was introduced by Stewart [16]. A proof of the existence of the 
decomposition can be found in [18]. 

CS DECOMPOSITION. Let the orthogonal matrix Q E [w2 k ’ 2k be parti- 

tioned in the form 

k k 

Q= 

The there are orthogonal matrices U = diag(UI, U,) and V 
with U,, V, E R kX k such that 

dia$V,, V,) 

k k 

UTQV = :(-c, 3 
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where 

C = diag(c,,c,, . . ,ck) > 0, S=diag(s,,s, ,..., sk) 20, 

c2 + s2 = I. 

By the CS decomposition of Q and (18), we have 

llQ,,llz = 
Cl( x> 

[l + a;2(X)y2 

and 

11412112 = llQ2,112, IlQ22112 = llQ&. 

Thus, for E,,, we have 

dX) 
lIE,,llz < llQ~2ll2llY ll~ll~-‘ll~l~Q~~llel~Q12~~~~ = 1 + a2cX> IlyllF. 

2 

Similarly, for E,,, from [l7], we have lIFRp’llF < 211GthllEll~; therefore 

a1(x) G 1 + &X) 
IIY tIF + 4~~~,,~~2~~~+llzllEll~. 

Finally, for E,,, we have 

lIE,,ll2 G IIQ~211211Y ll~llR-~l12 = 1 + jltxJ llyllF. 
2 

Hence we have the following theorem. 

THEOREM 2. Let Y = A,, - A,,2 + %A,,, where 2 = X + E is the 
computed solution of the Sylvester equation (6), assullze that the error matrix 
E is nonsingular, and let the QR factorization of (-XT, Z>T satisfy 

[-“I =Q[$ 
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where Aij is similar to A,{, i = 1, 2, and up to the first order perturbation 

O(llElln>, 

(19) 

IlE& =s a1( ‘) 
1 + 0,2(X) 

112’ IIF + 41 ~2~ll~~l~t~~z~lE~~~ (20) 

1 
llE,,lle G 

1 + a,2( X) 
IIY IIF. (21) 

Three remarks are in order: 

REMARK 1. From the theorem, we see that the departure llE21112 from 
upper block triangular form (the measure of numerical instability) is bounded 

by l(Y llF/[l + a,2(X>l. It is easy to see that 

IIXIIF G 
11 A,,IIF 

sep( Ai,) 422 1 ’ 
(22) 

where the equality is attained when col( A,, > is a left singular vector of K 
corresponding to the smallest singular value g,i,i,(K) = sep( A,,, A,,). Com- 
bining (221, (111, and (ZI), we have 

llE,,llz < 
PE~(IIA~~IIF + IlAzzll~)IIA1211~ 

[l + ~2”( X)] =p( AlI7 4~) 

Logically, the above bound indicates that the numerical instability will occur 
if we have small sep( A,, , A,,). But in practice, numerical experiments show 
that this upper bound is very pessimistic. Small sep( A,,, A,,) does not imply 
instability. We will discuss this further in the following section. 
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REMARK 2. Iterative refinement applied to the Sylvester equation will 
improve the accuracy of computed X (unless the Sylvester equation is too 
close to singular), but it need not improve (IY IIF, at least when Gaussian 
elimination with complete pivoting is used to solve the Sylvester equation. 

REMARK 3. The factor uJX)/[l + c,~(X)I that affects llElllle and 
IIE,,l12 is interesting, since it warns that large and ill-conditioned X may 

endanger accuracy, because of (11) and 

a,( X) K(X) 

1 + c;(x) = gz( X) + fl,‘( X) i 

where K(X) = ~,(X>/CT~,(X). How K(X), sep(A,,,A,,), and the accuracy 
of the swapped eigenvalues are related in practice needs further investigation. 

4. SOFTWARE DEVELOPMENT AND 
NUMERICAL EXPERIMENTS 

In this section, we first discuss the development of software for the 
swapping algorithm SLAEXC. Then we discuss numerical experiments to show 
the capability of our software to deal with ill-conditioned cases, compare with 
Stewart’s swapping algorithm EXCHNC, and finally demonstrate the sharpness 
of our perturbation bounds. 

4.1. Software Development 

A set of FORTRAN subroutines has been developed to implement the direct 
swapping algorithm described in Section 3. It is part of the LAPACK project 
[l]. As with other LAPACK routines, this algorithm was designed for accuracy, 
robustness and portability. 

The main subroutine is called STREXC. STREXC moves a given 1 X 1 or 
2 X 2 diagonal block of a real quasitriangular matrix to a user specified 
position. On return, parameter INFO reports whether the given block has 
moved to the desired position, or whether there are blocks too close to swap, 
and what is the current position of the given block. The subroutine STREXC 

is supported by subroutine SLAEXC, which exchanges adjacent blocks. The 
subroutine SLAEXC is an implementation of the algorithm SLAEXC described 
in Section 3, where the subproblem of solving the Sylvester equation (8) by 
Gaussian elimination with complete pivoting is implemented in subroutine 
SLASY2, and the subproblem of standardizing a 2 X 2 block is implemented 
in subroutine SLANV~. 
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In the interest of simplicity, we also used some other subroutines from 
LAPACK and the BLAS to perform some basic linear algebra operations, such 
as generating Householder transformations, computing the e-norm of a 
vector, and so on. 

Finally, a test subroutine has been written to automatically test the 
subroutine SLAEXC. There are nested loops over different block sizes, 
different numerical scales, and different conditionings of the problem. 

4.2. Numerical Experiments 

Backward Stability Test. To measure the backward_stability of a swap- 
ping algorithm, we need to test (I) how close the matrix Q is to an orthogonal 
matrix, and (II) how close GAP is to the original matrix A, where A, is the _ 
computed A. In other words, we need to test whether the two quantities 

Q 
= III - QTQlll 

- Y_ 

E E 
A 

= (IA - QAQ'Ih 

EM eM II Ah 

are around 1, where Em is the machine precision. To check the changes 
among eigenvalues is not required to judge the correctness of an algorithm, 
since we know that there must be at least an O(E~ 1) All) perturbation to the 
original matrix after swapping, and the nonsymmetric eigenvalue problem is 
potentially ill conditioned. However, for reasonably conditioned matrices, the 
changes in the eigenvalues do measure the accuracy of a swapping algorithm. 
For this reason, in the following numerical examples, we also compare the 
eigenvalues before and after swapping, besides checking the quantities EQ 
and E,. 

All numerical experiments were carried out on a Sun Sparcstation 1 + . 
The arithmetic is IEEE standard single precision, with machine precision 

EM 
=2-23 = 1.192 x lo-‘. 
We have done extensive testing on matrices with various mixtures of the 

block sizes, scales, and closeness among eigenvalues. More specifically, we 
show algorithm SLAEXC on the following four types of matrices: 

Test Matrix 1: Good separation of A,, and A,,. The eigenvalues before 
swapping are 

A, = 0.2000000E + 01 + i0.2085666E + 02, 

A, = 0.1000000E + 01 f i0.2017424E + 02. 
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Test Matrix 2: Moderate separation of A,, and A,,. The eigenvalues 
before swapping are 

A, = 0.1000000E + 01 f i0.1732051E + 01, 

A, = 0.1001000E + 01 k i0.1732916E + 01. 

Test Matrix 3: Close eigenvalues. The corresponding the Sylvester equa- 
tion is very ill conditioned; the eigenvalues before swapping are 

A, = 0.1000000E + 01 & i0.1000000E + 01, 

h, = 0.1001000E + 01 5 i0.1000000E + 01. 

Test Matrix 4: The extreme case, where the eigenvalues of A,, and A,, 
are the same, and theoretically, the Sylvester equation solution is infinite. 
This matrix is used to test the robustness of our software against overflow. 
The eigenvalues before swapping are 

A, = 0.1000000E + 01 f i0.1732051E + 01, 

A, = 0.1000000E + 01 f i0.1732051E + 01, 

Table 1 summarizes the results of algorithm SLAEXC, where sep( A,,, A,,) 

is computed by MATLAB, and included here for the sake of theoretical analysis. 
From Table 1, we see that both the backward stability and the accuracy of 
algorithm SLAEXC are satisfactory. 

Comparison with Stewart’s Algorithm EXCHNG. We have done numeri- 
cal comparisons between the direct swapping algorithm SLAEXC and Stewart’s 
swapping algorithm EXCHNG [ 151, which uses QR iteration. Both algorithms 
perform well in most cases, but in certain cases, EXCHNG is inferior to SLAEXC. 
For example, let 

39.47 22.27 

- 12.27 36.0~ 

7.01 -11.7567 ’ 
37 7.01 1 
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where 7 is a parameter. The matrix A(T) has the same eigenvalues for all T: 

h, = 0.7001000E + 01 + i0.2085666E + 02, 

A, = 0.7010000E + 01 + i0.2085660E + 02, 

and sep( A,,,A,,) = 0.0024. When r = 1, the output matrix of algorithm 
SLAEXC is 

0.70100012E + 01 -0.86993660E + 02 - 0.39390938E + 02 -0.222410058 + 02 

A= 

i 

0.50003409E + 01 0.70100012E + 01 0.12191071E + 02 -0.35999401E + 02 
0.00000000E + 00 0.00000000E + 00 0.70009995E + 01 -0.11755549E + 02 
0.00000000E + 00 0.00000000E + 00 0.37003792E + 02 0.70009995E + 01 

The eigenvalues after swapping are 

i, = 0.7010001E + 01 + i0.2085661E + 02, 

/i, = 0.7000999E + 01 + i0.2085665E + 02, 

which are accurate to machine precision. However, the output of algorithm 
EXCHNG after eight QR iterations isiE 

I 0.28140299E + 02 -0.81122643E + 02 -0.39849255E + 02 -0.15834051E + 02 
A= 0.10856283E + 02 -0.14087547E + 02 -0.23942078E + 02 0.32877380E + 02 

0.00000000E + 00 0.00000000E + 00 0.19211971E + 02 
0.00000000E + 00 0.00000000E + 00 -0.27540298E + 02 -0.52427406E + 01 

which has eigenvalues 

i, = 0.7026377E + 01 + i0.2085408E + 02, 

;i, = 0.6984615E + 01 + i0.2085919E + 02 

They only have two decimal digits correct. 
Table 2 shows the numerical results with different choices of parameter 

7; when r = 10, it takes 17 QR iterations to converge. It clearly shows the 
superiority of algorithm SLAEXC. In particular, we note that algorithm EXCHNG 

is nonconvergent when G- = 100. It means that the eigenvalues are not able to 

’ Where the stopping criterion used in QR iteration is eps = 1.2 X 10e7 
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1 i, = 0 7010001r: + 01 * ~0.2085661E + 02 1, = OiOPfi3iip + 01 ? i0.2085408~ + 02 

& = 0.7000999n + 01 k iO.2085665~ + 02 h, = 06YH4615~ + 01 + iO2085919E + 02 

10 i2 = 07010000E + 01 * i0.20R5660E + 02 ,c, = 0.7063053C + 01 + to.2086175E + 02 

,i, = 0.700099YE + 01 + i0.20856fi5b + 02 h, = 0.694i9iOE + 01 * iO2085144E + 02 

100 ,$ = 0.7009999E + 01 + iO2085660~ + 02 Not convergent 

,i, = 0.7000999E + 01 * ~02085665E + 02 afkr 30 QR steps 

be exchanged by algorithm EXCHNG. But algorithm SLAEXC has no difficulty. 
This convergence difficulty may reflect recent work of Batterson [3], who has 
discovered classes of nonsymmetric matrices where QR iteration fails to 
converge, or converges quite slowly. 

On the Upper Bound of 11 Ezlllz. Finally, in the interest of theoretical 
analysis, we discuss the sharpness of the bound on (1 E,,[j2, which controls the 
numerical stability of algorithm SLAEXC. In most of the test examples, we see 
that the bound (21) of IIE,l\lz is very pessimistic. However, we do find some 
examples indicating that the bound in (21) can roughly be attained. Let us 
consider the following example:’ 

2 2 

l.OOOOE + 00 -l.OOOOE + 02 1.9900E + 04 1.0201E + 02 

1 .OOOOE + 00 1 .OOOOE + 02 - 1.9800E + 00 
0 l.OlOOE + 00 -l.OOOOE 02 

I 

’ - 
0 l.OOOOE + 02 l.OlOOE + 00 

where sep( A,,, A,,) = 2 X 10e6. The A,, block of A is designed so that 

-2.OOOOE + 02 
l.OOOOE + 00 - l.OOOOE + 00 

is the solution of the Sylvester equation. Note that o,(X) = 200.01, a&X) 

’ For brevity, only five digits are displayed for all the data in this section, though we did run 
in double precision. 
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= 0.99498. We used MATLAB to 
bound (where machine precision 
the norm of the residual matrix 
Sylvester equation is 

IIYIIF = II& - A,$ 

93 

compute the different quantities in the 
is doubled: sM = 2.2204 X 10-16). First 
Y for the computed solution X of the 

+ iiA,,j& = 4.0272 x 1O-12, 

which almost reaches the estimated bound (11) of Y: 

E~(/A~~~IF + IIA,,IIF)IIXI~F = 8.8830 X-l'. 

Furthermore, the observed norm of (2,l) block A,, after swapping is 

IIA,,II, = 1.2973 x lo-12, 

which also roughly attains the bound (21) for I( E,,ll2; 

i/E21112 G ’ 
1 + U,‘(X) 

IIYlfF = 2.0237 x 10-l’. 

Note that for this example, the algorithm is still backward stable, since 

II&J2 = 1.2973 x 10-l’ Q E~IIAIIF = 4.4189 X lo-“. 

After setting A,, = 0, then the measures of backward stability are Eq = 2.3 
and E, = 1.8. 

From Remark 1 after Theorem 2, we might worry that a huge IIXI(r or 
tiny sep( A,,, A,,) could cause numerical instability. However, the following 
example illustrates how in practice a small separation of A,, and A,, does 
not necessarily lead to instability. Let 

A,,=[; -‘pP6], A,,=A,,+&I. 

The the separation of A,, and A,, is tiny; namely, sep(All,A,,) = 2.9802 
x 10-14. Let A,, be chosen such that col( A,,) is left the singular vector of 
K corresponding to the smallest singular value ami,( so that the norm of 
the solution X of the Sylvester equation A,, X - XA,, = A,, reaches its 
upper bound (22), that is, 

IIXIIF = 
II A12ll~ 

sep( All ) b) 
= 3.3554 x 1o13 
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and K(X) = 106. Hence the estimated bound of the norm of the residual Y 
is 

~~(IlAi~ll~ + IlA,,IIr)llXll~ = 2.5810 X IO-‘. 

However in practice, the observed residual norm (IY \JF = 3.7253 X lo-‘. 
After swapping, it turns out that 

l&,\lF = 7.3985 x 1O-24 Q eMl(AIIF = 5.8747 x 10-l”. 

So the swapping is perfectly stable. 

5. CONCLUSIONS 

In this paper, we have developed a direct swapping algorithm which 
reorders the eigenvalues on the diagonal of a matrix in real Schur form by 
performing an orthogonal similarity transformation. A complete set of FOR- 
TRAN subroutines has been developed and included in the LAPACK library [l]. 
The algorithm is guaranteed to be numerically stable because we explicitly 
test for instability and do not reorder the eigenvalues if it happens; it can only 
happen if the eigenvalues are so close as to be numerically indistinguishable. 
Unfortunately, there is no proof of the backward stability of the algorithm 
without this explicit test, even though we have not seen an example where 
instability occurred. The detailed error analysis and numerical examples show 
how well it deals with ill-conditioned cases, whereas the alternative stable 
algorithm EXCHNG may occasionally fail to converge. 

The authors would like to thank K C. Ng and B. Parlett for sharing their 
programs during our initial work on the subject. The valuable comments of G. 
W. Stewart and B. Parlett during the development of soBware are gratefully 
acknowledged. The authors are also indebted to A. Edelman and N. Higham 
for their valuable comments on the subject. 
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