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Summary. We discuss an inverse-free, highly parallel, spectral divide and con-
quer algorithm. It can compute either an invariant subspace of a nonsymmetric
matrix A, or a pair of left and right deflating subspaces of a regular matrix
pencil A− λB. This algorithm is based on earlier ones of Bulgakov, Godunov
and Malyshev, but improves on them in several ways. This algorithm only uses
easily parallelizable linear algebra building blocks: matrix multiplication and
QR decomposition, but not matrix inversion. Similar parallel algorithms for the
nonsymmetric eigenproblem use the matrix sign function, which requires matrix
inversion and is faster but can be less stable than the new algorithm.
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1. Introduction

We are concerned with the following two computational problems.

1. For a givenn × n nonsymmetric matrixA, we want to find an invariant
subspaceR (i.e. AR ⊆ R) corresponding to the eigenvalues ofA in a
specified regionD of the complex plane. In other words, we want to find a
unitary matrixQ = (Q1, Q2) with R = span{Q1} such that
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QHAQ =

(
A11 A12

0 A22

)
,(1.1)

and the eigenvalues ofA11 are the eigenvalues ofA in D . We shall call this
problem an(ordinary) spectral divide and conquer (SDC) problem.

2. A regular matrix pencilA− λB is a square pencil such that det(A− λB) is
not identically zero. Given such ann by n nonsymmetric pencil, we want to
find a pair of left and right deflating subspacesL and R (i.e. AR ⊆ L
and BR ⊆ L ) corresponding to the eigenvalues of the pairA− λB in a
specified regionD on complex plane. In other words, we want to find a
unitary matrixQL = (QL1, QL2) with L = span{QL1}, and a unitary matrix
QR = (QR1, QR2) with R = span{QR1}, such that

QH
L AQR =

(
A11 A12

0 A22

)
and QH

L BQR =

(
B11 B12

0 B22

)
,(1.2)

and the eigenvalues ofA11−λB11 are the eigenvalues ofA−λB in the region
D . We shall call this problem ageneralized spectral divide and conquer
(SDC) problem.

The regionD in the above problems will initially just be the interior (or exterior)
of the unit disk. By employing M̈obius transformations (αA+βB)(γA+δB)−1 and
divide-and-conquer,D can be the union of intersections of arbitrary half planes
and (complemented) disks, and so a rather general region. We will assume that
the given matrixA or matrix pencilA− λB has no eigenvalues on the boundary
D (in practice this means we might enlarge or shrinkD slightly if we fail to
converge).

The nonsymmetric eigenproblem and its generalized counterpart are important
problems in numerical linear algebra, and have until recently resisted attempts
at effective parallelization. The standard serial algorithm for the spectral divide
and conquer problem is to use the QR algorithm (or the QZ algorithm in the
generalized case) to reduce the matrix (or pencil) to Schur form, and then to
reorder the eigenvalues on the diagonal of the Schur form to put the eigenvalues in
D in the upper left corner, as shown in (1.1) and (1.2) (see [8] and the references
therein). The approach is numerically stable, although in some extremely ill-
conditioned cases, the swapping process may fail1. Although some thought this
approach was too fine grain to parallelize easily [23], the QR iteration itself
was recently parallelized successfully [34]. While this parallelization scheme
works well for a modest number of processors, it may not scale as well to very
large numbers of processors as our approach. Also, it must compute all or most
eigenvalues even if only a few are desired. For these reasons, we will pursue the
divide and conquer approach.

There are two highly parallel algorithms for the spectral divide and conquer
problem, those based on thematrix sign function(which we describe in Sect. 3),

1 Recently Bojanczyk and Van Dooren [13] have found a way to eliminate this possibility, although
the theoretical possibility of nonconvergence of the QR algorithm remains [11]
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and aninverse-free methodbased on original algorithms of Bulgakov, Godunov
and Malyshev [30, 16, 40, 41, 42], which is the main topic of this paper. Both
kinds of algorithms are easy to parallelize because they require only large matrix
operations which have been successfully parallelized on most existing machines:
matrix-matrix multiplication, QR decomposition and (for the sign function) ma-
trix inversion. The price paid for the easy parallelization of these algorithms is
potential loss of stability compared to the QR or QZ algorithms; they can fail
to converge in a number of circumstances in which the QR and QZ algorithms
succeed. Fortunately, it is usually easy to detect and compensate for this loss of
stability, by choosing to divide and conquer the spectrum in a slightly different
location.

In brief, the difference between the sign-function and inverse-free methods
is as follows. The sign-function method is significantly faster than inverse-free
when it converges, but there are some very difficult problems where the inverse-
free algorithm gives a more accurate answer than the sign-function. This leads
us to propose the following 3-step algorithm [22, 25]:

1. Try to use the matrix sign-function to split the spectrum. If it succeeds, stop.
2. Otherwise, if the sign-function fails, try to split the spectrum using the

inverse-free algorithm. If it succeeds, stop.
3. Otherwise, if the inverse-free methods fails, use the QR (or QZ) algorithm.

This 3-step approach works by trying the fastest but least stable method first,
falling back to slower but more stable methods only if necessary.

This paper is primarily concerned with an algorithm based on the pioneering
work of Godunov, Bulgakov and Malyshev [30, 16, 40], in particular on the
work of Malyshev [41, 42]. We have made the following improvements on their
work:

– We have eliminated the need for matrix exponentials, thus making their algo-
rithm truly practical. By expressing the algorithms for computing the ordinary
and generalized spectral divide and conquer decompositions in a single frame-
work, we in fact show it is equally easy to divide the complex plane along
arbitrary circles and lines with the same amount of work.

– Our error analysis is simpler and tighter. In particular, our condition number
can be as small as the square root of the condition number in [41], and is
precisely the square of the reciprocal of the distance fromA−λB to a natural
set of ill-posed problems, those pencils which have an eigenvalue on the unit
circle.

– We have simplified their algorithm by eliminating all inversions and related
factorizations.

– We propose a realistic and inexpensive stopping criterion for the inner loop
iteration.

Many simplifications in these algorithms are possible in case the matrixA
is symmetric. The PRISM project, with which this work is associated, is also
producing algorithms for the symmetric case; see [6, 12] for more details.
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The rest of this paper is organized as follows. In Sect. 2 we present our
algorithm for the ordinary and generalized spectral divide and conquer problems,
discuss some implementation details and options, and show how to divide the
spectrum along arbitrary circles and lines in the complex plane. In Sect. 3, we
compare the cost of the new algorithm with the matrix sign function based
algorithms. In Sect. 4, we explain why the new algorithm works, using a simpler
explanation than in [41]. Section 5 derives a condition number, and Sect. 6 uses it
to analyze convergence of the new algorithm. Section 7 does error analysis, and
Sect. 8 contrasts our bounds to those of Malyshev [41]. Section 9 discusses the
stopping criterion of the new algorithm. Section 10 presents numerical examples,
Sect. 11 lists open problems, and Sect. 12 draws conclusions.

Throughout this paper we shall use the notational conventions in [31]: Matri-
ces are denoted by upper case italic and Greek letters, vectors by lower-case italic
letters, and scalars by lower-case Greek letters or lower-case italic if there is no
confusion. The matrixAT is the transpose ofA, andAH is the complex conjugate
transpose ofA. ‖ · ‖, ‖ · ‖F, and‖ · ‖1 are the spectral norm, Frobenius norm, and
1-norm of a vector or matrix, respectively. The condition number‖A‖ · ‖A−1‖
will be denotedκ(A). λ(A) and λ(A,B) denote the sets of eigenvalues of the
matrix A and the matrix pencilA − λB, respectively. span{X} is a subspace
spanned by the columns of the matrixX. det(A) is the determinant of matrix
A. The lower-case italic letteri equals

√−1 throughout. Machine precision is
denoted byε.

2. Algorithm

Algorithm 1 below computes left and right deflating subspaces of a matrix pencil
A− λB corresponding to the eigenvalues inside (or outside) the unit disk. When
B = I , these left and right deflating subspaces are identical, both are equal to an
invariant subspace ofA, and only the first half of Algorithm 1 is necessary to
compute this space. Since most of the results in this paper do not change when
B = I , we will describe the case of generalB, and remark on any simplifications
whenB = I .

Algorithm 1 is similar to the matrix sign function based algorithm in that
it begins by computing orthogonal projectors onto the desired subspaces. Later,
we will show how to divide into more general regions. Algorithm 1 applies to
complex matricesA and B. But if A and B are real, then Algorithm 1 requires
only real arithmetic.

2.1. Algorithm for spectral division of(A,B)

Algorithm 1. Given n × n matricesA andB, compute two unitary matricesQL

andQR, such that

QH
L AQR =

(
A11 A12

E21 A22

)
, QH

L BQR =

(
B11 B12

F21 B22

)
,
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and where in exact arithmetic we would haveλ(A11,B11) ⊆ D , λ(A22, B22)∩D =
∅, and E21 = F21 = 0. D can be the interior (or exterior) of the unit disk.
We assume that no eigenvalues of the pencil (A,B) are on the unit circle. On
return, the generally nonzero quantities‖E21‖1/‖A‖1 and ‖F21‖/‖B‖1 measure
the stability of the computed decomposition.

WhenB = I , QL = QR, so QH
L BQR = I need not be computed.

/* Part 1: Compute the right deflating subspace*/
1) Let A0 = A andB0 = B.
2) For j = 0, 1, 2, . . . . until convergence orj > maxit(

Bj

−Aj

)
=

(
Q11 Q12

Q21 Q22

)(
Rj

0

)
, (QR decomposition)

Aj +1 = QH
12Aj ;

Bj +1 = QH
22Bj ;

if ‖Rj − Rj−1‖1 ≤ τ‖Rj−1‖1, p = j + 1, exit;
End for

3) For the exterior of the unit disk, compute
(Ap + Bp)−1Ap = QRRRΠR, (rank revealing QR decomposition)

or for the interior of the unit disk, compute
(Ap + Bp)−1Bp = QRRRΠR, (rank revealing QR decomposition)

4) lR = rank(RR), (the number of eigenvalues in the selected region.)
5) If B = I , setQL = QR and go to step 11).

/* Part 2: Compute the left deflating subspace*/
6) Let A0 = AH andB0 = BH.
7) For A0 andB0 do the loop 2).
8) For the exterior of the unit disk, compute

AH
p (Ap + Bp)−H = QLRLΠL, (rank revealing QR decomposition)

or for the interior of the unit disk, compute
BH

p (Ap + Bp)−H = QLRLΠL, (rank revealing QR decomposition)
9) lL = rank(RL), (the number of eigenvalues in the selected region.)

10) If lR /= lL, signal an error and quit, otherwise letl = lR = lL;
/* Part 3: Divide the pencil.*/

11) ComputeQH
L AQR =

( l n − l

l A11 A12

n − l E21 A22

)
, QH

L BQR =

( l n − l

l B11 B12

n − l F21 B22

)
.

and‖E21‖1/‖A‖1 and‖F21‖/‖B‖1 (If B = I , only QH
L AQR should be com-

puted).

2.2. Implementation details and options

The main costs of Algorithm 1 are the matrix-matrix multiplications and the QR
decomposition in the inner loop, and the rank-revealing QR following the inner
loop. There is a large literature on parallel matrix-matrix multiplication and QR
decomposition. They are usually among the first algorithms to be implemented
quickly on a high performance architecture [26, 3].

Numerische Mathematik Electronic Edition
page 283 of Numer. Math. (1997) 76: 279–308



284 Z. Bai et al.

In step 2), we assume that the QR decomposition of

(
Bj

−Aj

)
is computed so

that the diagonal elements ofRj are all positive, so the matrixRj is uniquely de-
fined. This is needed for the stopping criterion “If‖Rj −Rj−1‖1 ≤ τ‖Rj−1‖1, p =
j + 1, exit” to function correctly.

‖E21‖1/‖A‖1 and ‖F21‖1/‖B‖1 are accurate measures of the backward sta-
bility of the algorithm because one proceeds by settingE21 andF21 to zero and
continuing to divide and conquer. This introduces a backward error of precisely
‖E21‖1/‖A‖1 in A and‖F21‖1/‖B‖1 in B.

We need to choose a stopping criterionτ in the inner loop of step 2), as well
as a limit maxit on the maximum number of iterations. So far we have used
τ ≈ nε (whereε is the machine precision) andmaxit = 60. In Sect. 10 we shall
discuss these issues again.

In finite precision arithmetic, it is possible that we might get two different
numberslR and lL of eigenvalues in regionD in steps 4) and 9). Therefore, we
need the test in step 10). In our numerical experiments,lR and lL have always
been equal. If they were not, we would handle it the same way we handle other
convergence failures: the spectral decomposition based onD is rejected, and a
new regionD must be selected (see Sect. 2.3).

Now we show how to computeQR in step 3) andQL in step 8) without
computing the explicit inverse (Ap + Bp)−1 and subsequent products. This yields
the ultimateinverse-freealgorithm. For simplicity, let us use column pivoting
to reveal rank, although more sophisticated rank-revealing schemes exist [20,
32, 37, 50]. Recall that for our purposes, we only need the unitary factorQ
and the rank ofC−1D (or DHC−H). It turns out that by using the generalized
QR (GQR) decomposition technique developed in [43, 4], we can get the desired
information without computingC−1 or C−H. In fact, in order to compute the QR
decomposition with pivoting ofC−1D , we first compute the QR decomposition
with pivoting of the matrixD :

D = Q1R1Π,(2.3)

and then we compute the RQ factorization of the matrixQH
1 C :

QH
1 C = R2Q2.(2.4)

From (2.3) and (2.4), we haveC−1D = QH
2 (R−1

2 R1)Π. The Q2 is the desired
unitary factor. The rank ofR1 is also the rank of the matrixC−1D . The rank
revealing QR decomposition ofDHC−H is computed analogously, starting from
the QL decomposition ofC .

Note that the above GQR decomposition will not necessarily always reveal
the numerical rank, even though it works much of the time. In particular, the
permutationΠ should really depend on bothC andD . Another way to compute a
rank-revealing GQR decompositionis to explicitly formC−1D , compute its rank
revealing QR, take the resulting permutationΠ, and use thisΠ in decomposition
(2.3). This costs quite a bit more, andΠ is still not guaranteed to be correct
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if C−1D is computed sufficient inaccurately. However, a more sophisticated
implementation of this later idea can indeed reveal the numerical rank ofC−1D .
Given the recently increasing speed of SVD implementations based on divide-
and-conquer [33], one may just want to use the SVD instead.

The GQR decomposition is always backward stable in the following sense.
The computedQ2 is nearly the exact orthogonal factor for matricesC + δC and
D + δD , where‖δC‖ = O(ε)‖C‖ and‖δD‖ = O(ε)‖D‖.

Finally, we note that in some applications, we may only want the eigenvalues
of the reduced matrixA11 or of the matrix pencil (A11,B11) or their subblocks. In
this case, we do not need to compute the blocksA12, A22, B12 or B22 in step 11)
of Algorithm 1, and so we can save some computations.

2.3. Other kinds of regions

Although Algorithm 1 only divides the spectrum along the unit circle, we can use
Möbius transformations of the input matrixA or matrix pair (A,B) to divide along
other curves (we treatA as the pair (A, I )). By transforming the eigenproblem
Az = λBz to

(αA + βB)z =
αλ + β

γλ + δ
(γA + δB)z

and applying Algorithm 1 toA0 = αA+βB andB0 = γA+δB, we see that we can
split along the curve where|λ̃| = |αλ+β

γλ+δ | = 1. This lets us divide the spectrum
along arbitrary circles and straight lines, since any circle or straight line is the
image of the unit circle under an appropriate Möbius transformation [1]. This is
a major attraction of Algorithm 1: it can handle an arbitrary line or circle just
by settingA0 andB0 to appropriate linear combinations ofA andB. In contrast,
using the matrix sign function to split the spectrum along an arbitrary line or
circle will generally require a matrix inversion. This also eliminates the need
for matrix exponentiation in Malyshev’s algorithm [42], which was used to split
along lines. We note that if the chosen circle is centered on the real axis, or if
the chosen line is vertical, then all arithmetic will be real ifA andB are real.

3. Inverse-free iteration vs. the matrix sign function

In this section we compare the cost of a single iteration of the new algorithm
with the matrix sign function based algorithm. Numerical experiments will be
presented in Sect. 10.

We begin by reviewing the matrix sign function. The sign function sign(A)
of a matrixA with no eigenvalues on the imaginary axis can be defined via the
Jordan canonical form ofA: Let

A = X

(
J+ 0
0 J−

)
X−1
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be the Jordan canonical form ofA, where the eigenvalues ofJ+ are in the open
right half plane, and the eigenvalues ofJ− are in the open left half plane. Then
sign(A), as introduced by Roberts [45], is

sign(A) ≡ X

(
I 0
0 −I

)
X−1.

It is easy to show that the two matrices

P+ =
1
2

(I + sign(A)) and P− =
1
2

(I − sign(A))(3.5)

are the spectral projectors onto the invariant subspaces corresponding to the
eigenvalues ofA in the open right and open left half planes, respectively. Now
let therank revealing QR decompositionof the matrixP+ be P+ = QRΠ, so that
R is upper triangular,Q is unitary, andΠ is a permutation matrix chosen so that
the leading columns ofQ span the range space ofP+. ThenQ yields the desired
spectral decomposition [7]:

QHAQ =

(
A11 A12

0 A22

)
where the eigenvalues ofA11 are the eigenvalues ofA in open right half plane,
and the eigenvalues ofA22 are the eigenvalues ofA in the open left half plane.
By computing the sign function of M̈obius transformations ofA, the spectrum
can be divided along arbitrary lines and circles.

The simplest scheme for computing the matrix sign function is the Newton
iteration applied to (sign(A))2 = I :

Aj +1 =
1
2

(Aj + A−1
j ), j = 0, 1, 2, . . . with A0 = A.(3.6)

The iteration is globally and ultimately quadratically convergent with limj→∞ Aj =
sign(A) [45, 38]. The iteration could fail to converge ifA has pure imaginary
eigenvalues (or, in finite precision, ifA is “close” to having pure imaginary
eigenvalues.) There are many ways to improve the accuracy and convergence
rates of this basic iteration [18, 35, 39].

The matrix sign function may also be used in the generalized eigenproblem
A− λB by implicitly applying (3.6) toAB−1 [29]. We do not want to invertB
if it is ill-conditioned, which is why we want to apply the previous algorithm
implicitly. This leads to the following iteration:

Aj +1 =
1
2

(Aj + BA−1
j B), j = 0, 1, 2, . . . with A0 = A.(3.7)

Aj converges quadratically to a matrixC if B is nonsingular andA− λB has
no pure imaginary eigenvalues. In this caseCB−1 is the matrix sign function of
AB−1, and so following (3.5) we want to use the QR decomposition to calculate
the range space ofP± = 1

2(I ±CB−1), which has the same range space as 2P±B =
B ± C . Thus we can compute the invariant subspace ofAB−1 (left deflating
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subspace ofA− λB) without invertingB, by computing the rank revealing QR
decomposition ofB±C . The right deflating subspace ofA−λB can be obtained
by applying this algorithm toAH − λBH, since transposing swaps right and left
spaces.

Now we consider the convergence of (3.7) whenB is singular, andA− λB
has no pure imaginary eigenvalues. By considering the Weierstrass Canonical
Form of A− λB [28], it suffices to considerA0 = I and B a nilpotent Jordan
block. Then it is easy to show by induction that

Aj = 2−j I +
2j − 2−j

3
B2 + O(B4)

so thatAj diverges to infinity ifB is 3-by-3 or larger, and converges to 0 other-
wise. In the latter case, the range space ofB±Aj converges to the space spanned
by e1 = [1, 0, ..., 0]T, which is indeed a left deflating subspace. The situation is
more complicated in the former case.

By avoiding all explicit matrix inversions, and requiring only QR decompo-
sition and matrix-matrix multiplication instead, our new algorithm may eliminate
the possible instability associated with inverting ill-conditioned matrices. How-
ever, it does not avoid all accuracy or convergence difficulties associated with
eigenvalues very close to the unit circle. In addition, the generalized eigenprob-
lem has another possible source of difficulty: whenA−λB is close to a singular
pencil [28, 24]. We shall discuss this further in Sects. 5 and 7.

The advantage of the new approach is obtained at the cost of more storage
and more arithmetic. For example, when the matrixA is real andB = I , Al-
gorithm 1 needs 4n2 more storage space than standard Newton iteration (some
other iterations for the sign function which converge faster than Newton require
more storage). This will certainly limit the problem size we will be able to
solve. The one loop of the inverse-free iteration for the standard SDC problem
does about 6.7 times more arithmetic than the one loop of the Newton iteration.
For the generalized SDC problem, it is about 2.2 times more arithmetic (see
[10] for details). We expect that these extra expenses of the new approach will
be compensated by better numerical stability in some cases, especially for the
generalized eigenproblem; see Sect. 10.

4. Why the algorithm works

The simplest way we know to see why the algorithm works is as follows. We
believe this is much simpler than the explanation in [41], for example.

For simplicity we will assume that all matrices we want to invert are in-
vertible. Our later error analysis will not depend on this. It suffices to consider
the first half of Algorithm 1. We will exhibit a basis for the pencilA− λB in
which the transformations of the algorithm will be transparent. From step 2) of
Algorithm 1, we see that
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QH

11 QH
21

QH
12 QH

22

)(
Bj

−Aj

)
=

(
QH

11Bj −QH
21Aj

QH
12Bj −QH

22Aj

)
=

(
R
0

)
so QH

12Bj = QH
22Aj or Bj A

−1
j = Q−H

12 QH
22. Therefore

A−1
j +1Bj +1 = A−1

j Q−H
12 QH

22Bj = (A−1
j Bj )

2

so the algorithm is simply repeatedly squaring the eigenvalues, driving the ones
inside the unit disk to 0 and those outside to∞. Repeated squaring yields
quadratic convergence. This is analogous to the sign function iteration where
computing (A+A−1)/2 is equivalent to taking the Cayley transform (A−I )(A+I )−1

of A, squaring, and taking the inverse Cayley transform. Therefore, in step 3) of
Algorithm 1 we have

(Ap + Bp)−1Ap = (I + A−1
p Bp)−1 = (I + (A−1B)2p

)−1 .(4.8)

To see that this approaches a projector onto the right deflating subspace corre-
sponding to eigenvalues outside the unit circle as required by the algorithm, we
will use the the Weierstrass Canonical Form of the pencilA− λB [28]. Write

A− λB = P′L

(
J0 − λI

J∞ − λN

)
P−1

R

whereP′L and PR are nonsingular,J0 contains the Jordan blocks of eigenvalues
inside the unit circle,J∞ contains the Jordan blocks of eigenvalues outside the
unit circle, andN is block diagonal with identity blocks corresponding to blocks
of finite eigenvalues inJ∞, and nilpotent blocks corresponding to infinite eigen-
values (identity blocks inJ∞) [28]. In this notation, the projector first mentioned
in Sect. 2.2 is

PR,|z|>1 = PR

(
0

I

)
P−1

R

and the deflating subspace in question is spanned by the trailing columns ofPR.
SinceJ∞ is nonsingular, we may write

A− λB = P′L

(
I

J∞

)(
J0 − λI

I − λJ−1
∞ N

)
P−1

R

≡ PL

(
J0 − λI

I − λJ ′0

)
P−1

R ,(4.9)

whereJ ′0 = J−1
∞ N has all its eigenvalues either nonzero and inside the unit circle

(corresponding to finite eigenvalues ofJ∞) or at zero (corresponding to nilpotent
blocks ofN ). Thus

A−1B =

(
PL

(
J0

I

)
P−1

R

)−1(
PL

(
I

J ′0

)
P−1

R

)
= PR

(
J−1

0
J ′0

)
P−1

R

and
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(Ap + Bp)−1Ap = (I + (A−1B)2p

)−1

= PR

(
(I + J−2p

0 )−1

(I + J ′2
p

0 )−1

)
P−1

R .(4.10)

Since J−2p

0 → ∞ and J ′2
p

0 → 0 as p → ∞, the last displayed expression
converges toPR,|z|>1 as desired. The approximate projector (Ap + Bp)−1Bp onto
the other right deflating subspace is just

I − (Ap + Bp)−1Ap = (I + (A−1B)2p

)−1(A−1B)2p

= PR

(
(I + J 2p

0 )−1

(I + J ′−2p

0 )−1

)
P−1

R(4.11)

which converges to

PR,|z|<1 = I − PR,|z|>1 = PR

(
I

0

)
P−1

R .(4.12)

The projectors

PL,|z|>1 = PL

(
0

I

)
P−1

L and PL,|z|<1 = I − PL,|z|>1 = PL

(
I

0

)
P−1

L

onto left deflating subspaces are computed in Algorithm 1 by applying the same
procedure toAH−λBH, since taking the conjugate transpose swaps right and left
spaces.

We discuss the convergence rate of this iteration in the next section, after we
have introduced the condition number.

Here is an alternative approach to computing the left deflating space, which
saves about half cost of Algorithm 1, but requires the solution of a possibly
ill-conditioned linear system. Note that

PL,|z|>1 · (A,B) = (PL

(
0

I

)
P−1

R ,PL

(
0

J ′0

)
P−1

R )

= (A,B)

(
PR,|z|>1

PR,|z|>1

)
.

We can solve this forPL,|z|>1 by using the decomposition(
AH

BH

)
= Q

(
R
0

)
so

PL,|z|>1[RH, 0] = (APR,|z|>1,BPR,|z|>1)Q

and thus

PL,|z|>1 = (APR,|z|>1,BPR,|z|>1)Q

(
I
0

)
R−H .

The condition number ofR is the same as the condition number of then × 2n
matrix (A, B). If (A, B) is nearly singular, this means the pencilA − λB is
nearly singular, which means its eigenvalues are all very ill-conditioned, among
other things [24]. We discuss this further below.
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5. Perturbation theory

Algorithm 1 will work (in exact arithmetic) unless there is an eigenvalue on the
unit circle. This includes the case of singular pencils, since ifA−λB is a singular
pencil thenA− zB will be singular for anyz, including the unit circle. Thus the
set of matrices with an eigenvalue on the unit circle, or pencils such thatA− zB
is singular for somez on the unit circle, are the sets of “ill-posed problems” for
Algorithm 1.

Our goal is to show that the reciprocal of the distance to this set of ill-posed
problems is a natural condition number for this problem. This will rely on a
clever expression for the orthogonal projectors by Malyshev [41]. In contrast
to Malyshev’s work, however, our analysis will be much simpler and lead to a
potentially much smaller condition number.

We begin with a simple formula for the distance to the nearest ill-posed
problem. We define this distance as follows:

d(A,B) ≡ inf{‖E‖+‖F‖ : (A+E)−z(B+F ) is singular for somez where|z| = 1} .
(5.13)
This infimum is clearly attained for someE and F by compactness. Note also
that d(A,B) = d(B,A) = d(AH,BH) = d(BH,AH).

Lemma 1. d(A,B) = minθ σmin(A− eiθB).

Proof. Let σ = minθ σmin(A−eiθB). Then there is aθ and anE such that‖E‖ = σ
andA + E − eiθB is singular, implyingd(A,B) ≤ ‖E‖ = σ. To prove the opposite
inequality, the definition ofd(A,B) implies that there are aθ and matricesE and
F with ‖E‖+‖F‖ = d(A,B) such thatA+ E−eiθ(B + F ) = (A−eiθB) + (E−eiθF )
is singular. Thus

d(A,B) = ‖E‖ + ‖F‖ ≥ ‖E − eiθF‖ ≥ σmin(A− eiθB) ≥ σ

as desired. ut
As a remark, note that essentially the same proof shows that forany domain

D

min{‖E,F‖F : det((A + E)− z(B + F )) = 0 for somez ∈ D }
= min

s,c

z=s/c∈D

|s|2+|c|2=1

σmin(cA− sB) ,

which is the natural way to extend the notion of pseudospectrum to matrix pencils
[52]. An analogous formula appears in [19].

Now we turn to the perturbation theory of the approximate projector computed
in step 3) of Algorithm 1, (Ap + Bp)−1Bp, which is also given by the formula
in (4.11). Following Malyshev [41], we will express this approximate projector
as one block component of the solution of a particular linear system (our linear
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system differs slightly from his). Letm = 2p. All the subblocks in the following
mn-by-mn linear system aren-by-n. All subblocks not shown in the coefficient
matrix are zero.

Mm(A,B)

 Zm−1
...

Z0

 ≡


−A −B

B
...
...

...
B −A


 Zm−1

...
Z0



=


−B
0
...
0

 ≡ B̃m(5.14)

If B or A were nonsingular, we could easily confirm that the solution of (5.14)
would be 

Zm−1

Zm−2
...

Z0

 =


(B−1A)m−1(I + (B−1A)m)−1

(B−1A)m−2(I + (B−1A)m)−1

...
(I + (B−1A)m)−1



or


(A−1B)(I + (A−1B)m)−1

(A−1B)2(I + (A−1B)m)−1

...
(A−1B)m(I + (A−1B)m)−1

 .

Thus we see thatZ0 = (A−1B)m(I + (A−1B)m)−1 as in (4.11). Since this algebraic
formula, (Ap +Bp)−1Bp = Z0, is true on an open dense set of matrix pairs (A,B), it
is reasonable to suspect that it is true everywhere. We can prove this by using the
Weierstrass Canonical Form ofA− λB as in Sect. 4, assuming only thatA− λB
is nonsingular for all|λ| = 1 (see [10] for details).

The motivation for (5.14) in [41] is from a recurrence for the coefficients of
the Fourier expansion of (B − eiθA)−1, but that will not concern us here.

By using standard perturbation theory for the linear system (5.14), we will get
the perturbation theory for (Ap +Bp)−1Bp (or (Ap +Bp)−1Ap = I − (Ap +Bp)−1Bp)
that we want. We will use a slight variation on the usual normwise perturbation
theory, and take full account of the structure of the coefficient matrix. In fact,
we will see that we get the same condition number whether or not we take the
structure into account or not. LetIm be anm-by-m identity matrix, andJm be an
m-by-m matrix with 1 on the subdiagonal, and−1 in position (1,m). Then one
can easily confirm that the coefficient matrix in (5.14) can be written using the
Kronecker product⊗ as

Mm(A,B) = −Im ⊗ A + Jm ⊗ B .

Numerische Mathematik Electronic Edition
page 291 of Numer. Math. (1997) 76: 279–308



292 Z. Bai et al.

SinceJm is orthogonal, and hence normal, its eigendecomposition can be written
Jm = UΛU H, where U is a unitary matrix andΛ = diag(eiθ1, ..., eiθm) is the
diagonal matrix of eigenvalues, all of which must lie on the unit circle. In fact, one
can easily confirm that the characteristic polynomial ofJm is det(λI−Jm) = λm+1,
so the eigenvalues arem-th roots of−1. Then transformingMm(A,B) using the
unitary similarityU ⊗ In, we get

(U ⊗ In)HMm(A,B)(U ⊗ In) = −U HImU ⊗ A + UJmU H ⊗ B

= −Im ⊗ A +Λ⊗ B

= diag(−A + eiθ1B, ...,−A + eiθmB) .

Therefore, the smallest singular value ofMm(A,B) is min1≤j≤m σmin(−A+eiθj B).
As m grows, and the process converges, this smallest singular value decreases to
minθ σmin(−A + eiθB) = d(A,B). This shows thatd−1

(A,B) is a condition number for
(Ap + Bp)−1Bp, and in fact a lower bound bound for all finitem. We may also
bound ∥∥∥∥∥∥∥

 Zm−1
...

Z0


∥∥∥∥∥∥∥

2

≤ ‖B‖
d(A,B)

.(5.15)

6. Convergence analysis

Using equation (4.10), we will bound the error

‖(Ap + Bp)−1Ap − PR,|z|>1‖ = ‖(I + (A−1B)2p

)−1 − PR,|z|>1‖
after p steps of the algorithm. Our bound will be in terms of‖PR,|z|>1‖ and
d(A,B). It can be much tighter than the corresponding bound in Theorem 1.4 of
[41], for reasons discussed in Sect. 8.

Theorem 1. Let d(A,B) be defined as in (5.13). Then if

p ≥ log2
‖(A,B)‖ − d(A,B)

d(A,B)

we may bound

‖(Ap + Bp)−1Ap − PR,|z|>1‖
‖PR,|z|>1‖ ≤

2p+3(1− d(A,B)

‖(A,B)‖ )2p

max(0, 1− 2p+2(1− d(A,B)

‖(A,B)‖ )2p )
.(6.16)

Thus, we see that convergence is quadratic, and depends on the smallest
relative perturbation d(A,B)

‖(A,B)‖ that makesA− λB have an eigenvalue on the unit
circle; the smaller this perturbation, the slower the convergence.

We begin the proof with an estimate on the growth of matrix powers. Many
related bounds are in the literature [52, 36]; ours differs slightly because it in-
volves powers of the matrixY−1X.
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Lemma 2. Let X− λY have all its eigenvalues inside the unit circle. Then

‖(Y−1X)m‖ ≤
 em ·m ·

(
1− d(X,Y)

‖Y‖
)m

if m >
‖Y‖−d(X,Y)

d(X,Y)

‖Y‖
d(X,Y)

if m ≤ ‖Y‖−d(X,Y)

d(X,Y)

.

where e≤ em ≡ (1 + m−1)m+1 ≤ 4, and limm→∞ em = e. We may also bound
em ·m ≤ e · (m + 1).

Proof of Lemma 2.Let r satisfyρ(Y−1X) < r ≤ 1, whereρ(Y−1X) is the spectral
radius ofY−1X. Then

‖(Y−1X)m‖ =

∥∥∥∥ 1
2πi

∮
circle of radiusr

zm(zI − Y−1X)−1dz

∥∥∥∥
=

∥∥∥∥∥ 1
2πi

∫ 2π

0
(r eiθ)m(r eiθY − X)−1d(r eiθ)Y

∥∥∥∥∥
≤ r m+1‖Y‖

minθ σmin(r eiθY − X)
=

r m+1‖Y‖
minθ σmin(eiθY − X + Yeiθ(r − 1))

≤ r m+1‖Y‖
minθ σmin(eiθY − X)− ‖Y‖(1− r )

=
r m+1

d(X,Y)/‖Y‖ − 1 + r
≡ f (r ) .

We may easily show that ifm ≥ [‖Y‖−d(X,Y)]/d(X,Y), thenf (r ) has a minimum
at ρ(Y−1X) < r = m+1

m (1− d(X,Y)/‖Y‖) ≤ 1, and the value of this minimum is

m · (1 + m−1)m+1 · (1− d(X,Y)/‖Y‖)m ≡ m · em · (1− d(X,Y)/‖Y‖)m .

If m ≤ [‖Y‖ − d(X,Y)]/d(X,Y), then the upper bound is attained atr = 1. ut
Completely analogously, one may prove the following lemma, which is a

special case of a bound in [52].

Lemma 3. Let X have all its eigenvalues inside the unit circle. Let dX ≡
minθ σmin(eiθI − X); dX is the smallest perturbation of X that will make it have
an eigenvalue on the unit circle. Then

‖Xm‖ ≤
{

em ·m · (1− dX )m if m > 1−dX
dX

1
dX

if m ≤ 1−dX
dX

.

where em is as defined in Lemma 2.

Proof of Theorem 1.By a unitary change of basis, we may without loss of
generality assume that

A− λB =

(
A11 A12

0 A22

)
− λ

(
B11 B12

0 B22

)
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where the eigenvalues ofA11−λB11 are inside the unit circle, and the eigenvalues
of A22 − λB22 are outside the unit circle. LetL and R be the unique matrices
such that [24, 48](

A11 A12

0 A22

)
− λ

(
B11 B12

0 B22

)
=

(
I L
0 I

)(
A11− λB11 0

0 A22− λB22

)(
I R
0 I

)−1

.

Then, assuming for the moment thatA is invertible, we get

A−1B =

(
I R
0 I

)(
A−1

11 B11 0
0 A−1

22 B22

)(
I R
0 I

)−1

and

PR,|z|>1 =

(
I R
0 I

)(
0 0
0 I

)(
I R
0 I

)−1

=

(
0 R
0 I

)
.

Then we see thatEp ≡ (I + (A−1B)2p
)−1 − PR,|z|>1 may be written

Ep =

(
I R
0 I

)(
(I + (A−1

11 B11)2p
)−1 0

0 (I + (A−1
22 B22)2p

)−1 − I

)(
I R
0 I

)−1

=

(
(I + (B−1

11 A11)2p
)−1(B−1

11 A11)2p
0

0 0

)(
I −R
0 0

)
−
(

0 R
0 I

)(
0 0
0 (I + (A−1

22 B22)2p
)−1(A−1

22 B22)2p

)
.

The derivation of this formula used the fact thatA, and soA11, were nonsingular,
but the final formula does not require this. Thus

‖Ep‖ ≤ ‖PR,|z|>1‖(‖(I + (B−1
11 A11)2p

)−1(B−1
11 A11)2p‖

+‖(I + (A−1
22 B22)2p

)−1(A−1
22 B22)2p‖)

≤ ‖PR,|z|>1‖
(

‖(B−1
11 A11)2p‖

1− ‖(B−1
11 A11)2p‖ +

‖(A−1
22 B22)2p‖

1− ‖(A−1
22 B22)2p‖

)
provided the denominators are positive. From Lemma 2, we may bound

‖(B−1
11 A11)2p‖ ≤ 4 · 2p ·

(
1− d(A11,B11)

‖B11‖
)2p

and ‖(A−1
22 B22)2p‖ ≤ 4 · 2p ·

(
1− d(A22,B22)

‖A22‖
)2p

for p sufficiently large. Since

d(A11,B11)

‖B11‖ ≥ d(A,B)

‖(A,B)‖ and
d(A22,B22)

‖A22‖ ≥ d(A,B)

‖(A,B)‖
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this yields the desired bound.ut
A weakness in Lemmas 2 and 3 comes from using the single numberd(A,B)

(or dA) to characterize a matrix. For example,

A1 =

 .5 1000 0
0 .5 1000
0 0 .5

 and A2 =

 α 0 0
0 α 0
0 0 α

 ,

whereα ≈ 1 − 1.25 · 10−7 have the same value ofdA, namely about 1.25 ·
10−7. ‖An

2‖ clearly never increases, let alone to 1/dA ≈ 8 · 106 as predicted by
Lemma 3; in contrast‖An

1‖ gets as large as 1.5·106. For largen, ‖An
2‖ decreases

precisely as (1−dA)n ≈ .999999875n, as predicted by Lemma 3; in contrast‖An
1‖

decreases much faster, as.5n. To see that both parts of the bound can be attained
simultaneously, consider diag(A1,A2). Despite the potential overestimation, we
will use d(A,B) in all our analyses in the paper, both because it gives tighter
bounds than those previously published, and in the inevitable tradeoff between
accuracy and simplicity of bounds of this sort, we have chosen simplicity.

One can use the bound in Lemma 3 to bound the norm ofAn computed in
floating point [36]; this work will appear elsewhere.

7. Error analysis

Following Malyshev [41], the analysis depends on the observation that step 2) of
Algorithm 1 is just computing the QR decomposition ofMm(A,B), in a manner
analogous to block cyclic reduction [17]. Malyshev works hard to derive a rig-
orousa priori bound on the total roundoff error, yielding an expression which is
complicated and possibly much too large. It can be too large because it depends
on his condition numberω (see Sect. 8) instead of our smallerd−1

(A,B), and because
worst case roundoff analysis is often pessimistic. In algorithmic practice, we will
use ana posterioribound max(‖E21‖, ‖F21‖), which will be a precise measure of
the backward error in one spectral decomposition, rather than thea priori bounds
presented here.

We begin by illustrating why step 2 of Algorithm 1 is equivalent to solving
(5.14) using QR decomposition. We takep = 3, which meansm = 23 = 8. Let(

Q(j )
11 Q(j )

12

Q(j )
21 Q(j )

22

)

be the orthogonal matrix computed in thej th iteration of step 2), and let

Q̃(j ) =

(
Q(j )

21 Q(j )
22

Q(j )
11 Q(j )

12

)
.

Then we see that step 2) of algorithm 2 is equivalent to the identity
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Q̃(j )H

( −Aj 0 Bj

Bj Aj 0

)
=

(
Rj ? ?
0 Aj +1 Bj +1

)
(7.17)

where the?s are entries which do not interest us. Multiplying block rows 1 and
2, 3 and 4, 5 and 6, and 7 and 8 in (5.14) byQ̃(0)H and using (7.17) yields

R1 ? ?
0 −A1 −B1

? R1 ?
B1 0 −A1

? R1 ?
B1 0 −A1

? R1 ?
B1 0 −A1





Z7

Z6

Z5

Z4

Z3

Z2

Z1

Z0


=



?
−B1

0
0
0
0
0
0


.

Reordering the odd-numbered blocks before the even ones results in

R1 ? ?
R1 ? ?

R1 ? ?
R1 ? ?

−A1 −B1

B1 −A1

B1 −A1

B1 −A1


·



Z7

Z5

Z3

Z1

Z6

Z4

Z2

Z0


=



?
0
0
0
−B1

0
0
0


.(7.18)

Repeating this withQ̃(1)H on the lower right corner of (7.18), and similarly
reordering blocks, we get

R1 ? ?
R1 ? ?

R1 ? ?
R1 ? ?

R2 ? ?
R2 ? ?

−A2 −B2

B2 −A2





Z7

Z5

Z3

Z1

Z6

Z2

Z4

Z0


=



?
0
0
0
?
0
−B2

0


.(7.19)

One more step with̃Q(2)H on the lower right corner of (7.19) yields

R1 ? ?
R1 ? ?

R1 ? ?
R1 ? ?

R2 ? ?
R2 ? ?

R3 ?
−A3 − B3





Z7

Z5

Z3

Z1

Z6

Z2

Z4

Z0


=



?
0
0
0
?
0
?

−B3


.(7.20)
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Thus, we see again thatZ0 = (A3 + B3)−1B3 as desired. It is clear from this
development that the process is backward stable in the following sense: the
computedA3 + B3 (or more generallyAm + Bm) in the transformed coefficient
matrix, andB3 (or Bm) in the transformed right hand side, are the exact results
corresponding to a slightly perturbedM2m(A,B)+δM2m and initial right hand side
B̃2m + δB̃2m, where‖δM2m‖ = O(ε)‖(A,B)‖ and‖δB̃2m‖ = O(ε)‖B‖.

Next we must analyze the computation ofQR in step 3) of Algorithm 1. As
described in Sect. 2.2, if we use the GQR decomposition to computeQR without
inverses, thenQR is nearly the exact orthogonal factor of (Am+Bm+E)−1(Bm+F )
where‖E‖ = O(ε)‖Am + Bm‖ = O(ε)‖(A,B)‖, and‖F‖ = O(ε)‖Bm‖ = O(ε)‖B‖.
We can take theseE andF and “push them back” intoδM andδB̃m, respectively,
since the mapping fromM2m(A,B)+δM2m to Am +Bm is an orthogonal projection,
as is the map from̃B2m to Bm. So altogether, combining the analysis of steps 1)
and 2), we can say thatQR is nearly the exact answer forM2m(A,B) + δM ′

2m and
B̃2m + δB̃′2m where‖δM ′

2m‖ = O(ε)‖(A,B)‖ and ‖δB̃′2m‖ = O(ε)‖B‖. Since the
condition number of the linear system (5.14) is (no larger than)d−1

(A,B), and the
norm of the solution is bounded by (5.15), the absolute error in the computedZ0

of which QR is nearly the true factor is bounded by2 O(ε) · ‖B‖ ·‖(A,B)‖d−2
(A,B) ≤

O(ε) · ‖(A,B)‖2d−2
(A,B).

To bound the error in the space spanned by the leading columns ofQR,
which is our approximate deflating subspace, we need to know how much a
right singular subspace of a matrixZ0, i.e. the space spanned by the right singular
vectors corresponding to a subsetS of the singular values, is perturbed whenZ0

is perturbed by a matrix of normη. If Z0 were the exact projector in (4.12),S
would consist of all the nonzero singular values. In practice, of course, this is a
question of rank determination. No matter whatS is, the space spanned by the
corresponding singular vectors is perturbed by at mostO(η)/gapS [44, 51, 48],
where gapS is the shortest distance from any singular value inS to any singular
value not inS :

gapS ≡ min
σ ∈ S
σ̄ 6∈ S

|σ − σ̄| .

so we need to estimate gapS in order to compute an error bound. We will do this
for Z0 equal to its limitPR,|z|<1 in (4.12). There is always a unitary change of

basis in which a projector is of the form

(
I Σ
0 0

)
, whereΣ = diag(σ1, . . . , σlR)

is diagonal withσ1 ≥ · · · ≥ σlR ≥ 0. From this it is easy to compute the singular

values of the projector:{
√

1 +σ2
1, . . . ,

√
1 +σ2

lR
, 1, · · · , 1, 0, . . . , 0}, where the

number of ones in the set of singular values is equal to max(2lR − n, 0). Since

S = {
√

1 +σ2
1, . . . ,

√
1 +σ2

lR
, 1, · · · , 1}, we get

2 This bound is true even if we compute the inverse ofAm + Bm explicitly
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gapS =

{ √
1 +σ2

lR
if 2lR ≤ n

1 if 2lR > n
.

Thus, we get that in the limit asm →∞, the errorδQR in QR is bounded by

‖δQR‖ =
O(ε) · ‖(A,B)‖2

d2
(A,B) · gapS

.(7.21)

A similar bound holds for‖δQL‖ in Algorithm 1. Thus

‖E21‖ ≤ ‖(QL + δQL)HA(QR + δQR)−QH
L AQR‖

= ‖δQH
L AQR + QH

L AδQR‖ + O(ε2)

≤ (‖δQL‖ + ‖δQR‖)‖A‖ + O(ε2)

with a similar bound for‖F21‖.
So altogether, in the limit asm → ∞, we expect the following bound on

backward stability3:

max

(‖E21‖
‖A‖ ,

‖F21‖
‖B‖

)
≤ O(ε) · ‖(A,B)‖2

d2
(A,B) ·min(gapSR

, gapSL
)

≤ O(ε) · ‖(A,B)‖2

d2
(A,B)

,(7.22)

where gapSR
refers to the gap in the singular values ofPR,|z|<1, and gapSL

refers
to the gap in the singular values ofPL,|z|<1,

For simplicity, consider Algorithm 1 whenB = I , wherePR,|z|<1 = PL,|z|<1.
An interesting feature of the error bound is that it may be smaller if 2lR ≤ n
than otherwise. This is borne out by numerical experiments, where it can be more
accurate to make the choice in step 3) of Algorithm 1 which leads toA11 being
smaller thanA22. Also, when 2lR ≤ n, the error bound is a decreasing function of
σlR. On the other hand, IfσlR is large, this meansσ1 and so‖PR,|z|<1‖ =

√
1 +σ2

1
are large, and this in turn means the eigenvalues inside the unit circle are ill-
conditioned [24]. This should mean the eigenvalues areharder to divide, not
easier. Of course as they become more ill-conditioned,d(A,B) decreases at the
same time, which counterbalances the increase inσlR.

In practice, we will use thea posteriori bounds‖E21‖ and ‖F21‖ anyway,
since if we block upper-triangularizeQH

L (A− λB)QR by setting the (2, 1) blocks
to zero,‖E21‖ and ‖F21‖ are precisely the backward errors we commit. If the
next section, we will compare our error bound with those in [41].

3 In fact this bound holds for sufficiently largem as well
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8. Remark on Malyshev’s condition number

We have just shown thatd−1
(A,B) is a natural condition number for this problem.

In this subsection, we will show that Malyshev’s condition number can be much
larger [41]. Malyshev’s condition number is

ω ≡
∥∥∥∥∥ 1

2π

∫ 2π

0
(B − eiφA)−1(AAH + BBH)(B − eiφA)−Hdφ

∥∥∥∥∥
=

∥∥∥∥∥ 1
2π

∫ 2π

0
(B′ − eiφA′)−1(B′ − eiφA′)−Hdφ

∥∥∥∥∥(8.23)

whereA′ = (AAH + BBH)−1/2A andB′ = (AAH + BBH)−1/2B; this meansA′A′H +
B′B′H = I . Malyshev begins his version of the algorithm by replacingA by A′

andB by B′, which we could too if we wanted to.
Malyshev’s absolute error bound on the computedZ0 is essentiallyO(ε)ω2,

whereas ours isO(ε)d−2
(A,B), assuming‖(A,B)‖ ≈ 1. We will show thatd−1

(A,B) can
be as small as the square root ofω.

Since

σmin(AAH + BBH) ≤ d(A,B)

d(A′,B′)
≤ σmax(AAH + BBH)

it is sufficient to compareω and d−1
(A,B) when AAH + BBH is well-conditioned.

Malyshev shows that, in our notation,d−1
(A′,B′) < 5πω, showing thatd−1

(A′,B′) is

never much larger thanω. Malyshev shows thatd−1
(A,B) andω can be close when

B = I and A is real symmetric. By taking norms inside the integral in (8.23),
one gets the other bound

√
ω ≤ d−1

(A,B), showing thatd−1
(A,B) can be as small as

the square root ofω. To see thatd−1
(A,B) can indeed be this small, consider the

following example. LetA = I andB = D −N , whereD is diagonal with entries
equally spaced along any arc of the circle centered at the origin with radius
0 < d < 1 and angular extentπ/8, andN has ones on the superdiagonal and
zeros elsewhere. Whend is close to 1 and the dimension ofA is at least about 20,
one can computationally confirm thatd−1

(A,B) is close to
√
ω. This example works

because when eiθ is in the same sector as the eigenvalues ofB, (B − eiθA)−1 is
as large as it can get, and its largest entry is in position (1, n):

1∏n
k=1(Bkk − eiθ)

Thus the integral forω is bounded above by a modest multiple of the integral
of the square of the magnitude of the quantity just displayed (timesσmax(AAH +
BBH)), which is near its maximum valued−2

(A,B) for a range ofθ close to [0, π/8],

so the integral is within a constant ofd−2
(A,B).
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9. Stopping criterion

In this section we justify the stopping criterion used in Algorithm 1 by showing
that Rj converges quadratically. From step 2) of Algorithm 1, we see that

Bj +1 = QH
22Bj = QH

22Q11Rj and Aj +1 = QH
12Aj = −QH

12Q21Rj .

For two symmetric non-negative definite matricesP1 and P2, we use the
relation P1 ≤ P2 to mean thatP2 − P1 is non-negative definite. The above
relations imply

RH
j +1Rj +1 = BH

j +1Bj +1 + AH
j +1Aj +1

= RH
j

(
QH

11Q22QH
22Q11 + QH

21Q12QH
12Q21

)
Rj

≤ RH
j

(
QH

11Q11 + QH
21Q21

)
Rj

= RH
j Rj .

SinceRH
j Rj ≥ 0 for all j , the above relation implies that the sequence{RH

j Rj }
converges. On the other hand, sinceRj can be viewed as a diagonal block in the
upper triangular matrix of the cyclic QR decomposition of the coefficient matrix
in (5.14), we haveσmin(Rj ) ≥ d(A,B). Hence the sequence{RH

j Rj } converges to
a symmetric positive definite matrix. Let this limit matrix beRHR, whereR is
upper triangular with positive diagonal elements. It follows that the sequence
{Rj } converges toR.

Now we sketch a proof of quadratic convergence of{Rj }. For details see
[10]. Note that

RH
j +1Rj +1 = RH

j

(
QH

11Q22QH
22Q11 + QH

21Q12QH
12Q21

)
Rj

= RH
j (I − Sj S

H
j − SH

j Sj )Rj

whereSj = QH
11Q21. It then follows thatSj converges to the zero matrix. If we

defineEj by Rj +1 = (I + Ej )Rj , thenEj is upper triangular and satisfies

(I + Ej )
H(I + Ej ) = I − Sj S

H
j − SH

j Sj .

In other words, (I +Ej )H(I +Ej ) is the Cholesky factorization ofI −Sj SH
j −SH

j Sj .
Hence‖Ej ‖ = O(‖Sj ‖2) and

‖Rj +1 − Rj ‖ ≤ ‖Ej ‖ ‖Rj ‖ = O(‖Sj ‖2‖Rj ‖) .

Finally, by next proving the identitySj = −R−H
j BH

j Aj R
−1
j , we can complete our

set of recurrences forRj , Ej andSj with the formula

Sj +1 = −(I + Ej )
−HS2

j (I + Ej )
−1 .(9.24)

This establishes the quadratic convergence of{Sj } to 0 and hence{Rj } to R. We
point out that this implies that the sequence{BH

j Aj } also converges quadratically
to 0.

Numerische Mathematik Electronic Edition
page 300 of Numer. Math. (1997) 76: 279–308



Inverse free parallel spectral divide and conquer algorithm 301

10. Numerical experiments

In this section, we present results of our numerical experiments with Algorithm 1
and compare them with the matrix sign function based algorithm. In all experi-
ments we split the spectrum along the imaginary axis. WhenB = I , this means
we apply Algorithm 1 toA0 = I −A andB0 = I +A. For generalB, this means that
we apply Algorithm 1 toA0 = B −A andB0 = B + A. We focus primarily on the
ordinary SDC problem (B = I ). The algorithm was implemented in MATLAB
version 4.0a on a SUN workstation 1+ using IEEE standard double precision
arithmetic with machine precisionε ≈ 2.2× 10−16.

The Newton iteration (3.6) for computing the matrix sign function of a matrix
A is terminated if

‖Aj +1 − Aj ‖1 ≤ 10nε‖Aj ‖1.

The inner loop iteration in Algorithm 1 for computing the desired projector is
terminated if

‖Rj − Rj−1‖1 ≤ 10nε‖Rj−1‖1.

We set the maximal number of iterationsmaxit=60 for both the Newton iteration
and the inverse-free iteration.

Algorithm 1 and the matrix sign function based algorithm work well for
the numerous random matrices we tested. In a typical example for the standard
SDC problem (B = I ), we let A be a 100 by 100 random matrix with entries
independent and normally distributed with mean 0 and variance 1;A has condition
number about 104. Algorithm 1 took 13 inverse-free iterations to converge and
returned with‖E21‖1/‖A21‖1 ≈ 5.44× 10−15. The matrix sign function took 12
Newton iterations to converge and returned with‖E21‖1/‖A21‖1 ≈ 2.12×10−14.
Both algorithms determined 48 eigenvalues in the open left half plane, all of
which agreed with the eigenvalues computed by the QR algorithm to 12 decimal
digits.

In a typical example for the generalized SDC problem (generalB), we let
A and B be 50 by 50 random matrices with entries distributed as above. Algo-
rithm 1 took 10 inverse-free iterations to compute the right deflating subspace,
and 10 inverse-free iterations for the left deflating subspace, and returned with
‖E21‖1/‖A21‖1 ≈ 3.31× 10−15 and ‖F21‖1/‖B21‖1 ≈ 2.64× 10−15. Using the
QZ algorithm, we found that the closest distance of the eigenvalues of the pencil
A− λB to the imaginary axis was about 10−3.

We now present three examples, where test matrices are constructed so that
they are ill-conditioned for inversion, have eigenvalues close to the imaginary
axis, and/or have large norm of the spectral projector corresponding to the eigen-
values we want to split. Thus, they should be difficult cases for our algorithm.

In the following tables, we use rcond(A) to denote the estimate of the recip-
rocal condition number of matrixA computed by MATLAB functionrcond .
∆(A) = minλj∈λ(A) |<λj | is the distance of the nearest eigenvalue to the imag-
inary axis. sep = sep(A11,A22) = σmin(I ⊗ A11 − AT

22 ⊗ I ) is the separation of
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matricesA11 and A22 [48], and ‖P‖ =
√

1 +‖R‖2 is the norm of the spec-

tral projectorP =

(
I R
0 0

)
corresponding the eigenvalues ofA11; R satisfies

A11R− RA22 = −A12. A number 10α in parenthesis next to an iteration number
iter in the following tables indicates that the convergence of the Newton iteration
or the inverse-free iteration was stationary at about 10α from the iter th iteration
forward, and failed to satisfy the stopping criterion even after 60 iterations.

All random matrices used below have entries independent and normally dis-
tributed with mean 0 and variance 1.

Example 1.This example is taken from [5, 2]. Let

B =


−η 1 0 0
−1 −η 0 0
0 0 η 1
0 0 −1 η

 , G = R =


1
1
1
1

( 1 1 1 1
)

and A = QT

(
B R
G −BT

)
Q ,

where Q is an orthogonal matrix generated from the QR decomposition of a
random matrix. Asη → 0, two pairs of complex conjugate eigenvalues ofA
approach the imaginary axis, one pair at about−η2 ± i and the other pair at
aboutη2 ± i.

Table 1 lists the results computed by Algorithm 1 and the matrix sign function
based algorithm. From Table 1, we see that if a matrix is not ill-conditioned to
invert, the Newton iteration performs as well as the inverse-free iteration. When
there are eigenvalues close to the boundary of our selected region (the imaginary
axis), the inverse-free iteration suffers the same slow convergence and the large
backward error as the Newton iteration. These eigenvalues are simply too close
to separate. Note that the Newton iteration takes about 6 to 7 times less work
than the inverse-free iteration.

Table 1. Numerical results for Example 1

Newton iteration Inverse-free iteration

∆(A) ≈ η2 rcond(A) iter ‖E21‖1
‖A‖1

iter ‖E21‖1
‖A‖1

1 6.83e− 2 7 2.19e− 16 7 3.14e− 16
10−2 3.18e− 2 14 1.26e− 15 14 1.75e− 15
10−6 3.12e− 2 27 2.21e− 11 27 1.94e− 11
10−10 4.28e− 2 41 3.65e− 07 40 1.56e− 07

For this example, we also compared the observed numerical convergence rate
of Algorithm 1 with the theoretical prediction of the convergence rate given in
Theorem 1. To compute the theoretical prediction, we need to estimated(A,B).
Algorithms for computingdA and related problems are given in [15, 14, 19].
Since our examples are quite small, and we needed little accuracy, we used
“intelligent brute force” to estimated(A,B).
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Fig. 1. Convergence History of Example 1,η = 0.1

Figure 1 plots the observed convergence rate of Algorithm 1 and the theoret-
ical convergence rate, which is the upper bound in (6.16), for the matrixA with
η = 0.1. We estimatedd(A0,B0) ≈ 9.72× 10−3, and‖(A0,B0)‖ ≈ 6.16. Although
the theoretical convergence rate is an overestimate, it does reproduce the basic
convergence behavior of the algorithm, in particular the ultimate quadratic con-
vergence. Regarding the analysis of the backward accuracy as given in (7.22),
for this example, we have

‖E21‖
‖A‖ ≈ 7.87× 10−15 <

ε ‖(A0,B0)‖2

d2
(A0,B0)

≈ 8.89× 10−11.

As we have observed in many experiments, the bound in (7.22) is often pes-
simistic, and so the algorithm works much better than we can prove. More study
is needed.
Example 2.In this example,A is a parameterized matrix of the formA = QTÃQ,
where Q is an orthogonal matrix generated from the QR decomposition of a
random matrix,

Ã =

( k k

k A11 A12

k 0 A22

)
, A11 =


1− α α
α 1− α

...
...
α 1− α

 ,

A22 = −AT
11, 0≤ α ≤ 0.5,

andA12 is a random matrix. Note that the eigenvalues ofA11 lie on a circle with
center 1− α and radiusα and those ofA22 lie on a circle with center−1 +α
and radiusα. The closest distance of the eigenvalues ofA to the imaginary axis
is ∆(A) = 1− 2α. As α → 0.5, two eigenvalues ofA simultaneously approach
the imaginary axis from the right and left. Figure 2 is the eigenvalue distribution
whenk = 20 andα = .45.
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Fig. 2. Eigenvalue distribution of 40 by 40 matrixA with k = 20,α = 0.45

Table 2 reports the computed results for different values ofα with k = 10.
From this data, we see that when the eigenvalues ofA are adequately separated
from the imaginary axis (∆(A) ≥ √

ε), the results computed by the inverse-free
iteration are superior to the ones from Newton iteration, especially when the
matrix is ill-conditioned with respect to inversion. This is what we expect from
the theoretical analysis of the algorithms. The following example further confirms
this observation.

Table 2. Numerical results for Example 2

Newton iteration Inverse-free iteration

∆(A) rcond(A) sep ‖P‖ iter ‖E21‖1
‖A‖1

iter ‖E21‖1
‖A‖1

10−1 8.19e− 04 2.00e− 1 6.42e + 0 9 8.15e− 16 9 2.49e− 16
10−3 1.61e− 07 2.00e− 3 2.07e + 2 15(10−13) 4.23e− 12 15 1.19e− 15
10−5 4.12e− 12 2.00e− 5 8.06e + 4 21(10−09) 3.27e− 07 22 8.46e− 15
10−7 1.38e− 15 2.00e− 7 2.29e + 6 28(10−05) 2.09e− 04 28(10−13) 2.44e− 13

Example 3.The test matrices in this example are specially constructed random
matrices of the form

A = QT

(
A11 A12

0 A22

)
Q,(10.25)

where Q is an orthogonal matrix generated from the QR decomposition of a
random matrix. SubmatricesA11 and A22 are first set to be 5× 5 random up-
per triangular matrices, and then their diagonal elements replaced byd|aii | and
−d|aii |, respectively, whereaii (1 ≤ i ≤ n) are other random numbers andd is
a positive parameter.A12 is another 5× 5 random matrix. Asd gets small, all
the eigenvalues get close to the origin and become ill-conditioned. This is the
hardest kind of spectrum to divide.

The numerical results are reported in Table 3. All eigenvalues are fairly
distant from the imaginary axis (∆(A) ≈ O(10−3)), but the conditioning of the
generated matrices with respect to inversion can be quite large. The separation of
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A11 andA22 can also become small, and‖P‖ large, indicating that the eigenvalues
are hard to separate. Table 3 gives results ford in the set{1, 0.5, 0.3, 0.2, 0.1}.
Again, Newton iteration is inferior to inverse-free iteration for the ill-conditioned
problems. In particular, in the case ofd = 0.1, we observed that from the fourth
Newton iteration onward rcond(A4) was aboutO(10−18), and that Newton failed
to converge. However, the inverse-free iteration is still fairly accurate, although
the convergence rate and the backward accuracy do deteriorate.

Table 3. Numerical results for Example 3

Newton iteration Inverse-free iteration

d rcond(A) sep ‖P‖ iter ‖E21‖1
‖A‖1

iter ‖E21‖1
‖A‖1

1.0 4.09e− 06 1.36e− 03 7.39e + 1 9(10−13) 4.56e− 14 10 7.08e− 16
0.5 1.29e− 06 2.37e− 04 4.32e + 2 11(10−12) 1.99e− 12 10 1.66e− 15
0.3 3.43e− 10 4.71e− 06 2.76e + 5 14(10−07) 4.55e− 09 15 1.64e− 15
0.2 6.82e− 11 3.94e− 07 5.48e + 4 16(10−07) 2.76e− 08 12 1.43e− 13
0.1 8.12e− 14 1.54e− 10 7.48e + 8 – (fail) 15(10−13) 3.66e− 11

11. Open problems

Here we propose some open problems about the spectral divide and conquer
algorithm.

1. In Algorithm 1 with generalB, we test whetherlL is equal tolR, wherelL is
the number of eigenvalues in the specified region determined from computing
the left deflating space, andlR is the number of eigenvalues in the specified
region determined from computing the right deflating space. Normally, we
expect them to be the same, however, what does it mean whenlL /= lR?
Perhaps this is an indicator that the pencil is nearly singular.

2. Iterative refinement, based either on nonsymmetric Jacobi iteration [23, 27,
49, 47, 46] or refining invariant subspaces ([21] and the references therein)
could be used to makeE21 (andF21) smaller if they are unacceptably large.

12. Conclusions and future work

In this paper, we have further developed the algorithm proposed by Godunov,
Bulgakov and Malyshev for doing spectral divide and conquer. With reason-
able storage and arithmetic cost, the new algorithm applies equally well to the
standard and generalized eigenproblem, and avoids all matrix inversions in the
inner loop, instead requiring QR decompositions and matrix multiplication. It
forms an alternative to the matrix sign function for the parallel solution of the
nonsymmetric eigenproblem.

Although the new approach eliminates the possible instability associated with
inverting ill-conditioned matrices, it does not eliminate the problem of slow or
misconvergence when eigenvalues lie too close to the boundary of the selected
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region. Numerical experiments indicate that the distance of the eigenvalues to
the boundary affects the speed of convergence of the new approach as it does
to the matrix sign function based algorithm, but the new approach can yield an
accurate solution even when the sign function fails. The backward error bounds
given in Sect. 7 are often pessimistic. The new algorithm performs much better
than our error analysis can justify. We believe that in dealing with the standard
spectral divide and conquer problem, the matrix sign function based algorithm
is still generally superior.

Future work includes building a “rank-revealing” generalized QR decompo-
sition, devising an inexpensive condition estimator, incorporating iterative re-
finement, and understanding how to deal with (nearly) singular pencils. The
applications of the inverse-free iteration for solving algebraic Riccati equations
deserves closer study too.

The performance evaluation of the new algorithms on massively parallel
machines, such as the Intel Delta and Thinking Machines CM-5, will appear in
[9].
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