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Summary. We discuss an inverse-free, highly parallel, spectral divide and con-
quer algorithm. It can compute either an invariant subspace of a nonsymmetric
matrix A, or a pair of left and right deflating subspaces of a regular matrix
pencil A — AB. This algorithm is based on earlier ones of Bulgakov, Godunov
and Malyshev, but improves on them in several ways. This algorithm only uses
easily parallelizable linear algebra building blocks: matrix multiplication and
QR decomposition, but not matrix inversion. Similar parallel algorithms for the
nonsymmetric eigenproblem use the matrix sign function, which requires matrix
inversion and is faster but can be less stable than the new algorithm.
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1. Introduction

We are concerned with the following two computational problems.

1. For a givenn x n nonsymmetric matrixA, we want to find an invariant
subspace7? (i.e. A2 C .#2) corresponding to the eigenvalues Afin a
specified regionZ of the complex plane. In other words, we want to find a
unitary matrixQ = (Q1, Q) with .22 = spa{Q:} such that
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(L) Q'aq= (A ).

and the eigenvalues d@f;; are the eigenvalues & in &. We shall call this
problem an(ordinary) spectral divide and conquer (SDC) problem

2. A regular matrix pencilA — AB is a square pencil such that d&tf \B) is
not identically zero. Given such anby n nonsymmetric pencil, we want to
find a pair of left and right deflating subspaceé and.72 (i.e. A% C %
andB.72 C %)) corresponding to the eigenvalues of the pai- AB in a
specified regionZ on complex plane. In other words, we want to find a
unitary matrixQ_ = (Qu1, Qu2) with £ = spa{Q.1}, and a unitary matrix
Qr = (QRl, QRZ) with .72 = Spar{QRl}, such that

H _( A A H _( Bu B2
12 Qfack= (f5 32 ) andareecs (B ).

and the eigenvalues @f; — AB;; are the eigenvalues &f— AB in the region
<. We shall call this problem @eneralized spectral divide and conquer
(SDC) problem

The regionZ in the above problems will initially just be the interior (or exterior)

of the unit disk. By employing Nbius transformationsyA+3B)(vA+6B)~* and
divide-and-conquerZ can be the union of intersections of arbitrary half planes
and (complemented) disks, and so a rather general region. We will assume that
the given matrixA or matrix pencilA — AB has no eigenvalues on the boundary

@ (in practice this means we might enlarge or shrimkslightly if we fail to
converge).

The nonsymmetric eigenproblem and its generalized counterpart are important
problems in numerical linear algebra, and have until recently resisted attempts
at effective parallelization. The standard serial algorithm for the spectral divide
and conquer problem is to use the QR algorithm (or the QZ algorithm in the
generalized case) to reduce the matrix (or pencil) to Schur form, and then to
reorder the eigenvalues on the diagonal of the Schur form to put the eigenvalues in
< in the upper left corner, as shown in (1.1) and (1.2) (see [8] and the references
therein). The approach is numerically stable, although in some extremely ill-
conditioned cases, the swapping process may. falthough some thought this
approach was too fine grain to parallelize easily [23], the QR iteration itself
was recently parallelized successfully [34]. While this parallelization scheme
works well for a modest number of processors, it may not scale as well to very
large numbers of processors as our approach. Also, it must compute all or most
eigenvalues even if only a few are desired. For these reasons, we will pursue the
divide and conquer approach.

There are two highly parallel algorithms for the spectral divide and conquer
problem, those based on thaatrix sign function(which we describe in Sect. 3),

1 Recently Bojanczyk and Van Dooren [13] have found a way to eliminate this possibility, although
the theoretical possibility of nonconvergence of the QR algorithm remains [11]
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and aninverse-free methotased on original algorithms of Bulgakov, Godunov
and Malyshev [30, 16, 40, 41, 42], which is the main topic of this paper. Both
kinds of algorithms are easy to parallelize because they require only large matrix
operations which have been successfully parallelized on most existing machines:
matrix-matrix multiplication, QR decomposition and (for the sign function) ma-
trix inversion. The price paid for the easy parallelization of these algorithms is
potential loss of stability compared to the QR or QZ algorithms; they can fail
to converge in a number of circumstances in which the QR and QZ algorithms
succeed. Fortunately, it is usually easy to detect and compensate for this loss of
stability, by choosing to divide and conquer the spectrum in a slightly different
location.

In brief, the difference between the sign-function and inverse-free methods
is as follows. The sign-function method is significantly faster than inverse-free
when it converges, but there are some very difficult problems where the inverse-
free algorithm gives a more accurate answer than the sign-function. This leads
us to propose the following 3-step algorithm [22, 25]:

1. Try to use the matrix sign-function to split the spectrum. If it succeeds, stop.

2. Otherwise, if the sign-function fails, try to split the spectrum using the
inverse-free algorithm. If it succeeds, stop.

3. Otherwise, if the inverse-free methods fails, use the QR (or QZ) algorithm.

This 3-step approach works by trying the fastest but least stable method first,
falling back to slower but more stable methods only if necessary.

This paper is primarily concerned with an algorithm based on the pioneering
work of Godunov, Bulgakov and Malyshev [30, 16, 40], in particular on the
work of Malyshev [41, 42]. We have made the following improvements on their
work:

— We have eliminated the need for matrix exponentials, thus making their algo-
rithm truly practical. By expressing the algorithms for computing the ordinary
and generalized spectral divide and conquer decompositions in a single frame-
work, we in fact show it is equally easy to divide the complex plane along
arbitrary circles and lines with the same amount of work.

— Our error analysis is simpler and tighter. In particular, our condition number
can be as small as the square root of the condition number in [41], and is
precisely the square of the reciprocal of the distance #for\B to a natural
set of ill-posed problems, those pencils which have an eigenvalue on the unit
circle.

— We have simplified their algorithm by eliminating all inversions and related
factorizations.

— We propose a realistic and inexpensive stopping criterion for the inner loop
iteration.

Many simplifications in these algorithms are possible in case the matrix
is symmetric. The PRISM project, with which this work is associated, is also
producing algorithms for the symmetric case; see [6, 12] for more details.
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The rest of this paper is organized as follows. In Sect.2 we present our
algorithm for the ordinary and generalized spectral divide and conquer problems,
discuss some implementation details and options, and show how to divide the
spectrum along arbitrary circles and lines in the complex plane. In Sect. 3, we
compare the cost of the new algorithm with the matrix sign function based
algorithms. In Sect. 4, we explain why the new algorithm works, using a simpler
explanation than in [41]. Section 5 derives a condition number, and Sect. 6 uses it
to analyze convergence of the new algorithm. Section 7 does error analysis, and
Sect. 8 contrasts our bounds to those of Malyshev [41]. Section 9 discusses the
stopping criterion of the new algorithm. Section 10 presents numerical examples,
Sect. 11 lists open problems, and Sect. 12 draws conclusions.

Throughout this paper we shall use the notational conventions in [31]: Matri-
ces are denoted by upper case italic and Greek letters, vectors by lower-case italic
letters, and scalars by lower-case Greek letters or lower-case italic if there is no
confusion. The matriAT is the transpose ok, andA" is the complex conjugate
transpose oA. || - ||, || - ||r, and|| - |1 are the spectral norm, Frobenius norm, and
1-norm of a vector or matrix, respectively. The condition numpglf - [|A=2||
will be denotedx(A). A(A) and A(A, B) denote the sets of eigenvalues of the
matrix A and the matrix penciA — AB, respectively. spgiX} is a subspace
spanned by the columns of the mat det@) is the determinant of matrix
A. The lower-case italic letter equalsy/—1 throughout. Machine precision is
denoted bye.

2. Algorithm

Algorithm 1 below computes left and right deflating subspaces of a matrix pencil
A — AB corresponding to the eigenvalues inside (or outside) the unit disk. When
B =1, these left and right deflating subspaces are identical, both are equal to an
invariant subspace o4, and only the first half of Algorithm 1 is necessary to
compute this space. Since most of the results in this paper do not change when
B =1, we will describe the case of geneil and remark on any simplifications
whenB =1.

Algorithm 1 is similar to the matrix sign function based algorithm in that
it begins by computing orthogonal projectors onto the desired subspaces. Later,
we will show how to divide into more general regions. Algorithm 1 applies to
complex matriceA andB. But if A andB are real, then Algorithm 1 requires
only real arithmetic.

2.1. Algorithm for spectral division A, B)

Algorithm 1. Givenn x n matricesA and B, compute two unitary matriceQ_
and Qg, such that

A1 A Bi1 B

H — 11 12 H — 11 12

AQg = . Q"BOg = 7
QL QR < EZl A22 > QL QR < FZ]_ 822 )
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and where in exact arithmetic we would hav@,1, B11) C &, A(As, B2o))NZ =
0, andEy; = Fp; = 0. & can be the interior (or exterior) of the unit disk.
We assume that no eigenvalues of the pen&ijlB) are on the unit circle. On
return, the generally nonzero quantitiéSy1||1/[|Al|1 and ||F21||/||B||1 measure
the stability of the computed decomposition.

WhenB =1, Q. = Qg, SOQ['BQr = need not be computed.

/* Part 1: Compute the right deflating subspate
1) LetAg =A andBy = B.

2) Forj =0,1,2,.... until convergence of > maxit
< _E’; ) = ( 8; 8;2) < Ré)) (QR decomposition)
A1 = QA
Bj+l = QEsz ;
if IR —R-1fls < 7|R-1fls, p=j+1, exit
End for

3) For the exterior of the unit disk, compute
(A +By) A, = QrRrITr,  (rank revealing QR decomposition)
or for the interior of the unit disk, compute
(Ap +Bp) !By = QrR:IIr, (rank revealing QR decomposition)
4) Ir =rank®R), (the number of eigenvalues in the selected region.)
5 If B=1, setQ. = Qg and go to step 11).
/* Part 2: Compute the left deflating subspate
6) Let Ag = A" andB, = BH.
7) For Ay andBg do the loop 2).
8) For the exterior of the unit disk, compute
AJ(Ap +Bp) ™M =QLR.II, (rank revealing QR decomposition)
or for the interior of the unit disk, compute
BS'(Ap +Bp) " = QLRLII, (rank revealing QR decomposition)
9) I =rank®_), (the number of eigenvalues in the selected region.)
10) If Igr # 1, signal an error and quit, otherwise let Ig =1 ;
/* Part 3: Divide the pencil*/

| n—I | n—I
| A A ! Bu B
H — 11 12 H = 1 12
11) ComputeQFAQe= | | <E21 Aos ) QBXR=p (F21 B2 )

and ||Ez|1/[|All1 and ||F24||/||B|l2 (If B =1, only QI'AQg should be com-
puted).

2.2. Implementation details and options

The main costs of Algorithm 1 are the matrix-matrix multiplications and the QR
decomposition in the inner loop, and the rank-revealing QR following the inner
loop. There is a large literature on parallel matrix-matrix multiplication and QR
decomposition. They are usually among the first algorithms to be implemented
quickly on a high performance architecture [26, 3].
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B
| N AJ
that the diagonal elements Bf are all positive, so the matri is uniquely de-
fined. This is needed for the stopping criterion R —R _1||1 < 7[R ~1]l1, p =

j +1, exit” to function correctly.

IIE21/|1/||All2 and ||F21]|1/]|B]|1 are accurate measures of the backward sta-
bility of the algorithm because one proceeds by setBagand F,; to zero and
continuing to divide and conquer. This introduces a backward error of precisely
[E2a/l2/[|All2 in A and ||F2y]|1/[|Bl|1 in B.

We need to choose a stopping criterioin the inner loop of step 2), as well
as a limit maxit on the maximum number of iterations. So far we have used
7 =~ ne (Wheree is the machine precision) andaxit = 60. In Sect. 10 we shall
discuss these issues again.

In finite precision arithmetic, it is possible that we might get two different
numberdg andl_ of eigenvalues in regiot” in steps 4) and 9). Therefore, we
need the test in step 10). In our numerical experimdpat@ndl, have always
been equal. If they were not, we would handle it the same way we handle other
convergence failures: the spectral decomposition base® dn rejected, and a
new regionZ must be selected (see Sect. 2.3).

Now we show how to comput€g in step 3) andQ_ in step 8) without
computing the explicit inversed, + By)~* and subsequent products. This yields
the ultimateinverse-freealgorithm. For simplicity, let us use column pivoting
to reveal rank, although more sophisticated rank-revealing schemes exist [20,
32, 37, 50]. Recall that for our purposes, we only need the unitary f&gtor
and the rank ofC D (or DHC ). It turns out that by using the generalized
QR (GQR) decomposition technique developed in [43, 4], we can get the desired
information without computing —* or C . In fact, in order to compute the QR
decomposition with pivoting o€ ~'D, we first compute the QR decomposition
with pivoting of the matrixD:

In step 2), we assume that the QR decompositi06 of is computed so

(2.3) D =R 11,
and then we compute the RQ factorization of the ma@IkC:

(2.4) Q'C =RQ,.

From (2.3) and (2.4), we have ~'D = Q}(R,'Ry)I1. The Q;, is the desired
unitary factor. The rank oR; is also the rank of the matri€ ~*D. The rank
revealing QR decomposition @HC " is computed analogously, starting from
the QL decomposition ofC.

Note that the above GQR decomposition will not necessarily always reveal
the numerical rank, even though it works much of the time. In particular, the
permutation/I should really depend on bo@ andD. Another way to compute a
rank-revealing GQR decompositigto explicitly formC ~1D, compute its rank
revealing QR, take the resulting permutati@n and use thid7 in decomposition
(2.3). This costs quite a bit more, add is still not guaranteed to be correct
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if C~'D is computed sufficient inaccurately. However, a more sophisticated
implementation of this later idea can indeed reveal the numerical ra@k 6D .
Given the recently increasing speed of SVD implementations based on divide-
and-conquer [33], one may just want to use the SVD instead.

The GQR decomposition is always backward stable in the following sense.
The computed), is nearly the exact orthogonal factor for matrices 6C and
D + 6D, where||6C|| = O(¢)||C|| and ||6D|| = O(e)||D ||

Finally, we note that in some applications, we may only want the eigenvalues
of the reduced matri®;; or of the matrix pencil A1, B11) or their subblocks. In
this case, we do not need to compute the blogks Ay,, Bio or By in step 11)
of Algorithm 1, and so we can save some computations.

2.3. Other kinds of regions

Although Algorithm 1 only divides the spectrum along the unit circle, we can use
M0obius transformations of the input matéxor matrix pair @, B) to divide along
other curves (we treah as the pair A 1)). By transforming the eigenproblem
Az = )\Bz to

(aA+ BB)z = f‘yi :f (vA+5B)z

and applying Algorithm 1 téy = ¢ A+ B andBy = vA+6B, we see that we can
split along the curve wherg\| = [2}77| = 1. This lets us divide the spectrum
along arbitrary circles and straight lines, since any circle or straight line is the
image of the unit circle under an appropriat®ius transformation [1]. This is

a major attraction of Algorithm 1: it can handle an arbitrary line or circle just
by settingA; and By to appropriate linear combinations AfandB. In contrast,
using the matrix sign function to split the spectrum along an arbitrary line or
circle will generally require a matrix inversion. This also eliminates the need
for matrix exponentiation in Malyshev’s algorithm [42], which was used to split
along lines. We note that if the chosen circle is centered on the real axis, or if
the chosen line is vertical, then all arithmetic will be reahiind B are real.

3. Inverse-free iteration vs. the matrix sign function

In this section we compare the cost of a single iteration of the new algorithm
with the matrix sign function based algorithm. Numerical experiments will be
presented in Sect. 10.

We begin by reviewing the matrix sign function. The sign function sin(
of a matrix A with no eigenvalues on the imaginary axis can be defined via the
Jordan canonical form oA: Let

_ J. 0 -1
A_x(0 J_>x
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be the Jordan canonical form 8f where the eigenvalues df are in the open
right half plane, and the eigenvalues X f are in the open left half plane. Then
sign(d), as introduced by Roberts [45], is

sign@) = X < | 0 > X1
0 —I
It is easy to show that the two matrices

(3.5) P: = ;(I +sign@)) and P_ = ;(I — sign@d))

are the spectral projectors onto the invariant subspaces corresponding to the
eigenvalues oA in the open right and open left half planes, respectively. Now
let therank revealing QR decompositiaf the matrixP, be P, = QRII, so that

R is upper triangularQ is unitary, andlI is a permutation matrix chosen so that

the leading columns df span the range space Bf. ThenQ yields the desired
spectral decomposition [7]:

Ham — [ A1 A2
QAQ—( 0 A22>

where the eigenvalues @f;; are the eigenvalues & in open right half plane,
and the eigenvalues @&, are the eigenvalues & in the open left half plane.
By computing the sign function of Bbius transformations oA, the spectrum
can be divided along arbitrary lines and circles.

The simplest scheme for computing the matrix sign function is the Newton
iteration applied to (sigw{))? = I :

(3.6) A,-ﬂ:;(A,- +A™), j=0,1,2... with Ag=A

The iteration is globally and ultimately quadratically convergent with lim A; =
sign(d) [45, 38]. The iteration could fail to converge X has pure imaginary
eigenvalues (or, in finite precision, & is “close” to having pure imaginary
eigenvalues.) There are many ways to improve the accuracy and convergence
rates of this basic iteration [18, 35, 39].

The matrix sign function may also be used in the generalized eigenproblem
A — \B by implicitly applying (3.6) toAB~! [29]. We do not want to inverB
if it is ill-conditioned, which is why we want to apply the previous algorithm
implicitly. This leads to the following iteration:

(3.7) A= ;(Aj +BATB), j=0,12... with Aj=A

A, converges quadratically to a matr® if B is nonsingular andA — AB has

no pure imaginary eigenvalues. In this c&B ! is the matrix sign function of
AB~1, and so following (3.5) we want to use the QR decomposition to calculate
the range space &, = 5(I +CB~1), which has the same range spaceRsR =

B 4+ C. Thus we can compute the invariant subspace\Bf ! (left deflating
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subspace oA — AB) without invertingB, by computing the rank revealing QR
decomposition 0B 4+ C. The right deflating subspace Af~ AB can be obtained
by applying this algorithm taA" — ABH, since transposing swaps right and left
spaces.

Now we consider the convergence of (3.7) whgnms singular, andA — AB
has no pure imaginary eigenvalues. By considering the Weierstrass Canonical
Form of A — A\B [28], it suffices to conside®, = | andB a nilpotent Jordan
block. Then it is easy to show by induction that

i _ o
2 32 B2+ 0O(B%

A =271+
so thatA; diverges to infinity ifB is 3-by-3 or larger, and converges to 0 other-
wise. In the latter case, the range spac® &f A; converges to the space spanned
by e; = [1,0,...,0]", which is indeed a left deflating subspace. The situation is
more complicated in the former case.

By avoiding all explicit matrix inversions, and requiring only QR decompo-
sition and matrix-matrix multiplication instead, our new algorithm may eliminate
the possible instability associated with inverting ill-conditioned matrices. How-
ever, it does not avoid all accuracy or convergence difficulties associated with
eigenvalues very close to the unit circle. In addition, the generalized eigenprob-
lem has another possible source of difficulty: whea AB is close to a singular
pencil [28, 24]. We shall discuss this further in Sects.5 and 7.

The advantage of the new approach is obtained at the cost of more storage
and more arithmetic. For example, when the magixs real andB = |, Al-
gorithm 1 needs @ more storage space than standard Newton iteration (some
other iterations for the sign function which converge faster than Newton require
more storage). This will certainly limit the problem size we will be able to
solve. The one loop of the inverse-free iteration for the standard SDC problem
does about 6.7 times more arithmetic than the one loop of the Newton iteration.
For the generalized SDC problem, it is about 2.2 times more arithmetic (see
[10] for details). We expect that these extra expenses of the new approach will
be compensated by better numerical stability in some cases, especially for the
generalized eigenproblem; see Sect. 10.

4. Why the algorithm works

The simplest way we know to see why the algorithm works is as follows. We
believe this is much simpler than the explanation in [41], for example.

For simplicity we will assume that all matrices we want to invert are in-
vertible. Our later error analysis will not depend on this. It suffices to consider
the first half of Algorithm 1. We will exhibit a basis for the penéil— A\B in
which the transformations of the algorithm will be transparent. From step 2) of
Algorithm 1, we see that
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(Qﬂ Qﬂ) ( B ) = (QFlBi *leAi ) = (R>
QFZ Qg‘z —Ai QFzBi - QE‘zAi 0
so QB = Q5A or BIA = Q;;"Qf. Therefore

1B = ATIQIQEB = (A 1B)

so the algorithm is simply repeatedly squaring the eigenvalues, driving the ones
inside the unit disk to 0 and those outside do. Repeated squaring yields
guadratic convergence. This is analogous to the sign function iteration where
computing A+A~1)/2 is equivalent to taking the Cayley transforfa-( )(A+l )1

of A, squaring, and taking the inverse Cayley transform. Therefore, in step 3) of
Algorithm 1 we have

(4.8) (Ao +Bp) "Ay = (1 + A 1By) = (1 + (ATB))

To see that this approaches a projector onto the right deflating subspace corre-
sponding to eigenvalues outside the unit circle as required by the algorithm, we
will use the the Weierstrass Canonical Form of the pefcil \B [28]. Write

A—)\B:P[(JO)\I JOO_AN>PR1

whereP/ andPgr are nonsingularj, contains the Jordan blocks of eigenvalues
inside the unit circleJ,, contains the Jordan blocks of eigenvalues outside the
unit circle, andN is block diagonal with identity blocks corresponding to blocks
of finite eigenvalues id.,, and nilpotent blocks corresponding to infinite eigen-
values (identity blocks id,) [28]. In this notation, the projector first mentioned

in Sect. 2.2 is
0 _
Pr,jz|>1 = PR ( | ) Pt

and the deflating subspace in question is spanned by the trailing colunfias of
SinceJ., is honsingular, we may write

| Jo— Al _
A—AB:P(( Jm)(o IAJlN)PRl

Jo— Al 1
PL( I—)\J(;)PR ’

whereJ} = J_IN has all its eigenvalues either nonzero and inside the unit circle
(corresponding to finite eigenvalueshf) or at zero (corresponding to nilpotent
blocks ofN). Thus

-1 _
AB=(p (P )pst P (" 1) =pe( %o Pt
L | R L Jc; R R \]6 R

and

(4.9)
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(Ao +Bp) A, = (I +(A'B)?) !
| +J72)L _
(4.10) = PR<( o) X +J/g")1> Pt

Since JO‘2p — oo and J’gp — 0 asp — oo, the last displayed expression
converges tdPg ;-1 as desired. The approximate projectay ¢ Bp) !B, onto
the other right deflating subspace is just

| — (A +Bp) Ay = (I +(ATB)Y)H(AT'BY

_ (1 +3)" -

(411) - PR ( 0 (l +J’62p)_1 ) PR !
which converges to

| _
(4.12) Pr,zj<1 =1 = Prz>1 = Pr ( 0> Psl .

The projectors

0 _ I _
PL,\Z\>1 =P ( | ) PL ! and PL,\Z\<1 =1 - PL,\Z|>1 =P ( 0) PL !

onto left deflating subspaces are computed in Algorithm 1 by applying the same
procedure tA" — AB", since taking the conjugate transpose swaps right and left
spaces.

We discuss the convergence rate of this iteration in the next section, after we
have introduced the condition number.

Here is an alternative approach to computing the left deflating space, which
saves about half cost of Algorithm 1, but requires the solution of a possibly
ill-conditioned linear system. Note that

0 _ 0 _
PLz>1-(AB) = (PL ( | )PR 1P ( Iy ) Pz 1)

Prjz/>1 )
- @B ®
*.B) ( PRr,jz|>1

We can solve this foP_ ;-1 by using the decomposition
A R
(&)=2(5)

PL jz/>1[R™, 0] = (APg z/>1, BPR |7/>1)Q

SO

and thus
| _
PL,jzj>1 = (APR |z>1, BPR |7)>1)Q ( O> RM.

The condition number oR is the same as the condition number of the 2n
matrix (A, B). If (A, B) is nearly singular, this means the pengil- AB is
nearly singular, which means its eigenvalues are all very ill-conditioned, among
other things [24]. We discuss this further below.
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5. Perturbation theory

Algorithm 1 will work (in exact arithmetic) unless there is an eigenvalue on the
unit circle. This includes the case of singular pencils, sinée-fAB is a singular
pencil thenA — zB will be singular for anyz, including the unit circle. Thus the
set of matrices with an eigenvalue on the unit circle, or pencils suchAthatB

is singular for some on the unit circle, are the sets of “ill-posed problems” for
Algorithm 1.

Our goal is to show that the reciprocal of the distance to this set of ill-posed
problems is a natural condition number for this problem. This will rely on a
clever expression for the orthogonal projectors by Malyshev [41]. In contrast
to Malyshev’s work, however, our analysis will be much simpler and lead to a
potentially much smaller condition number.

We begin with a simple formula for the distance to the nearest ill-posed
problem. We define this distance as follows:

diagy = Inf{||E||+||F || : (A+E)—2z(B+F) is singular for some where|z| = 1} .
(5.13)

This infimum is clearly attained for sonte and F by compactness. Note also
thatda gy = di.a) = d(AH’BH) = d(BHﬁAH).

Lemma 1. dia gy = Ming omin(A — €7B).

Proof. Let o = ming omin(A—€?B). Then there is & and anE such that|E| = o
andA+E — €YB is singular, implyingdag) < ||E|| = 0. To prove the opposite
inequality, the definition oflx gy implies that there are & and matrices€ and
F with ||E| +|F| = dag) such thatA+E —&9(B +F) = (A—€?B) + (E — €F)
is singular. Thus

das) = [E| +[F|| > |E — €°F| > omn(A—€°B) > o
as desired. O

As a remark, note that essentially the same proof shows thainfpdomain

min{||E,F||r : det(A+E) — z(B + F)) = 0 for somez € &'}
= min  omn(CA—SsB),
s,C
z=s/ceY

|s[?+[c|*=1

which is the natural way to extend the notion of pseudospectrum to matrix pencils
[52]. An analogous formula appears in [19].

Now we turn to the perturbation theory of the approximate projector computed
in step 3) of Algorithm 1, &, + B,) !B, which is also given by the formula
in (4.11). Following Malyshev [41], we will express this approximate projector
as one block component of the solution of a particular linear system (our linear
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system differs slightly from his). Len = 2°. All the subblocks in the following
mn-by-mn linear system ar@-by-n. All subblocks not shown in the coefficient
matrix are zero.

—-A —-B
Zm—l B . Zm—l
Mn(A, B) : = .
Zy R Zy
B —-A
-B
0 .
(5.14) = . | =8B
0

If B or A were nonsingular, we could easily confirm that the solution of (5.14)
would be

Zns (B-1A™1( + (B-1A))!
Znz | | BT +E AT
Z (1 +@B A

(AB)(I + (A~1B)™) !
(AB)*(1 + (A~'B)M) !

(A-1B)"(1 + (A~1B)m)L

Thus we see thay = (A"1B)™(I +(A~'B)™)~! as in (4.11). Since this algebraic
formula, Ap+Bp) "B, = Zy, is true on an open dense set of matrix paksg), it
is reasonable to suspect that it is true everywhere. We can prove this by using the
Weierstrass Canonical Form 8f— AB as in Sect. 4, assuming only that- AB
is nonsingular for allA\| = 1 (see [10] for details).

The motivation for (5.14) in [41] is from a recurrence for the coefficients of
the Fourier expansion oB(— €?A)~1, but that will not concern us here.

By using standard perturbation theory for the linear system (5.14), we will get
the perturbation theory for¥, +Bp) =B, (or (A, +Bp) 1A, =1 — (A, +Bp) ~1Bp)
that we want. We will use a slight variation on the usual hormwise perturbation
theory, and take full account of the structure of the coefficient matrix. In fact,
we will see that we get the same condition number whether or not we take the
structure into account or not. L& be anm-by-m identity matrix, andJ,, be an
m-by-m matrix with 1 on the subdiagonal, an€l in position (1 m). Then one
can easily confirm that the coefficient matrix in (5.14) can be written using the
Kronecker producty as

Mm(AB) = —Im @ A+Jn @B .
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SinceJy, is orthogonal, and hence normal, its eigendecomposition can be written
Jn = UAUM, whereU is a unitary matrix andd = diag(é’, ..., €%) is the
diagonal matrix of eigenvalues, all of which must lie on the unit circle. In fact, one
can easily confirm that the characteristic polynomialgfs det(l —Jy) = A™+1,

so the eigenvalues are-th roots of—1. Then transforming,(A, B) using the
unitary similarityU ® 1,, we get

~UMaU @A+UIUN 2B
—“Im®@A+ARB
diagA+€%B, .., —A+€"B) .

(U @ 1n)"Mm(A, B)(U @)

Therefore, the smallest singular valueNf, (A, B) is min<j<m omin(—A+€% B).

As m grows, and the process converges, this smallest singular value decreases to
Ming omin(—A + €B) = dia,g). This shows thad(,}}B) is a condition number for

(A, + Bp) 1By, and in fact a lower bound bound for all finita. We may also

_ Bl

Zm_1
5.15 : .
(5.15) . ~ diap)
2/,

6. Convergence analysis

Using equation (4.10), we will bound the error

[(Ap +Bp) *Ap — Przjsa]l = |1 + (A7*B)*) ™% — Pr g 54l

after p steps of the algorithm. Our bound will be in terms |(®g ;-1 and
dea ). It can be much tighter than the corresponding bound in Theorem 1.4 of
[41], for reasons discussed in Sect. 8.

Theorem 1. Let da g) be defined as in (5.13). Then if

I(AB)I| — diae)
>lo ’
p - gZ d(A’B)
we may bound
+ dea, p
6.16) |4+ Bo) A~ Prpznall _ 2= ey’
PR, jz>1ll ~ max(Q1— 2P*2(1 — H?XT‘BBM )?)

Thus, we see that convergence is quadratic, and depends on the smallest
relative perturbatior‘“?};}g’;H that makesA — A\B have an eigenvalue on the unit
circle; the smaller this perturbation, the slower the convergence.

We begin the proof with an estimate on the growth of matrix powers. Many
related bounds are in the literature [52, 36]; ours differs slightly because it in-

volves powers of the matri¥ ~1X.
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Lemma 2. Let X — AY have all its eigenvalues inside the unit circle. Then

e, -m- (1_ d(X,Y))m if m> [1Y [ —dx,v)

—1y\m Y1l dx,v)
<

12" < 9 vy it m < IYI=decn)

de.v) = dx,y)

where e< e, = (1 +m~1)™?! < 4, andlimy,_.. en = e. We may also bound
en-m<e-(m+1)

Proof of Lemma 2Letr satisfyp(Y ~1X) < r < 1, wherep(Y ~1X) is the spectral
radius ofY ~1X. Then

1
Y =2)m| = . zZ"(zl - Y~1X)tdz
2
Tl Jeircle of radiusr
1 [ . .
/ (réfHMrd?y — X)~td(re?y
27T| 0
rmY | _ rmY |
= ming omin(re?Y —X)  ming omin(€Y — X +YE(r — 1))
m+1 Y
g
~ ming omin(€9Y — X) — Y |2 —r)
rm+1

= =f(r) .
docry/ Y] — 141 = )

We may easily show that i > [||Y || — dx vyl /dix.v), thenf (r) has a minimum
at p(Y ~1X) <r = ™1 —dx.y)/||Y]) < 1, and the value of this minimum is

m-(L+m™ )™ (L= doyy/[YIDT =m-en- (1= docyy/[YID™ -

If m <[[|Y| —dx,y)]/dx,y), then the upper bound is attainedrat 1. O

Completely analogously, one may prove the following lemma, which is a
special case of a bound in [52].

Lemma 3.‘Let X have all its eigenvalues inside the unit circle. Let e
ming omin(€°1 — X); dx is the smallest perturbation of X that will make it have
an eigenvalue on the unit circle. Then

€n-m-(1—dy)™ if m> =%
xmi<{ e e
dx - dX

where g, is as defined in Lemma 2.

Proof of Theorem 1By a unitary change of basis, we may without loss of
generality assume that

_ Aj_]_ A12 . Bll BlZ
A_AB‘( 0 A22> A( 0 Bzz)
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where the eigenvalues 8f; — \B;; are inside the unit circle, and the eigenvalues
of Ay, — ABy, are outside the unit circle. Ldt and R be the unique matrices
such that [24, 48]

A11 A12 _ Bll BlZ
0 A22 0 B22

/1 L\ [/ As- B 0 I R\ !
“\loi 0  Apw—)Bxp)lol '

Then, assuming for the moment thats invertible, we get

2o (6T ) (1)
o= (1) () (5F) = (3F)

Then we see the, = (I + (A7B)*)~! — Pg ;j>1 may be written

e oo (VR (O +AB) 0 I R\ '
P - <0|>< 0 (|+(A221822)2p)1—|)<0'>

_ (0 +BFAY) (Bt AT 0 (1 -R
- 0 0 00

and

~(OR 0 0
01 0 (I + (A5 B2)?) L(A1B2)”
The derivation of this formula used the fact tiatand soA;;, were nonsingular,
but the final formula does not require this. Thus

IEpll < [IPryjz>2/I(/[(1 "‘(BﬂlAll)zp)_l(BﬂlAn)zp||
(1 + (A B22)®) M (A B22)” |)

P B2 A | (A5 B22)” |
H Ra|Z|>l|| -1 o» + -1 o
1- [ Ba'Aw? | 1= [1(A%'B2)? |

IN

provided the denominators are positive. From Lemma 2, we may bound

2P
|BtAw? ] <42 <1 - d<Au,Bu>)
[[Buall

2P

and |(Az;'B20)” | < 4-2° (1 - d(AzaBzz))
[[Azz|l

for p sufficiently large. Since

d(Aus,Buy) dag) ng oo diag)
[Bull — [I(AB)] A2l ~ [I(A,B)]|
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this yields the desired boundO

A weakness in Lemmas 2 and 3 comes from using the single nudybey
(or dp) to characterize a matrix. For example,

.5 1000 O a 00
A= 0 5 1000] andA,=| 0 a O ,
0 O 5 00«

wherea ~ 1 — 1.25- 107 have the same value af, namely about 25 -
1077, ||A3]| clearly never increases, let alone tgdi ~ 8 - 1P as predicted by
Lemma 3; in contrastA}|| gets as large as3- 1. For largen, ||A}| decreases
precisely as (}da)" ~ .999999878, as predicted by Lemma 3; in contrgigt?||
decreases much faster, .&8. To see that both parts of the bound can be attained
simultaneously, consider dialy(, A2). Despite the potential overestimation, we
will use diagy in all our analyses in the paper, both because it gives tighter
bounds than those previously published, and in the inevitable tradeoff between
accuracy and simplicity of bounds of this sort, we have chosen simplicity.

One can use the bound in Lemma 3 to bound the normA"ofomputed in
floating point [36]; this work will appear elsewhere.

7. Error analysis

Following Malyshev [41], the analysis depends on the observation that step 2) of
Algorithm 1 is just computing the QR decompositionMf,(A, B), in a manner
analogous to block cyclic reduction [17]. Malyshev works hard to derive a rig-
orousa priori bound on the total roundoff error, yielding an expression which is
complicated and possibly much too large. It can be too large because it depends
on his condition numbev (see Sect. 8) instead of our smaltl?Z}B), and because
worst case roundoff analysis is often pessimistic. In algorithmic practice, we will
use ara posterioribound max|(Ezi|, ||F21||), which will be a precise measure of
the backward error in one spectral decomposition, rather thaa phieri bounds
presented here.

We begin by illustrating why step 2 of Algorithm 1 is equivalent to solving
(5.14) using QR decomposition. We tage= 3, which meansn = 2 = 8. Let

T
Q21 Q22

be the orthogonal matrix computed in thth iteration of step 2), and let

) ol
Q= (o o
Qll 12

Then we see that step 2) of algorithm 2 is equivalent to the identity
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(7.17) ' ) - (Fg A:ﬂ B,-*ﬂ)

where thexs are entries which do not interest us. Multiplying block rows 1 and
2,3 and 4, 5 and 6, and 7 and 8 in (5.14) @ and using (7.17) yields

R * Z7 *

0 —A —-B; Zs —B:
* Ry * Zs 0
B 0 —A Zy | _ 0
* R x Zs | 0
Bi 0 —A Z 0
* R]_ * Zl 0
B 0 —A Zy 0

Reordering the odd-numbered blocks before the even ones results in

Ry * * Z7 *

R]_ * * Z5 0

Ry * * Z3 0

Ry * * Z | _ 0

(7.18) A B, Ze B,
B —A1 Zy 0

B —A1 Z 0

B —A1 Zy 0

Repeating this withQMH on the lower right corner
reordering blocks, we get

Ry
Ry

(7.19)

Ry

*
*

Ry

*
*
* *
* *
* *
-A, —B,
B, —A

of (7.18), and similarly

|
Ogo* oo o*

One more step witl)@H on the lower right corner of (7.19) yields

Ry * *
Ry * ok
Ry * ok
Rl * *
(7.20) R, N N
R, *
R3 *
—Az — B3
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Thus, we see again thdy = (As + B3s) !Bz as desired. It is clear from this
development that the process is backward stable in the following sense: the
computedAs + B3 (or more generallyA, + By) in the transformed coefficient
matrix, andBz (or By) in the transformed right hand side, are the exact results
corresponding to a slightly perturb&tbn (A, B) +éMn and initial right hand side

Bom + 6Bom, Where||6Mon|| = O(e)||(A, B)|| and ||6Bon|| = O(e)|B]-

Next we must analyze the computation@# in step 3) of Algorithm 1. As
described in Sect. 2.2, if we use the GQR decomposition to confpuigithout
inverses, the®g is nearly the exact orthogonal factor @(+By,+E)~1(Byn+F)
where|[E|| = O(c)/An +Bu|| = O()[(A,B)|, and||F || = O()|[Bm|| = O()||B].

We can take theseé andF and “push them back” int6M andéBy,, respectively,
since the mapping frorivl,m (A, B) +6Mom to Ay + By, is an orthogonal projection,
as is the map fron8,m to Bn. So altogether, combining the analysis of steps 1)
and 2), we can say th&r is nearly the exact answer ffion (A, B) + 6MJ, and

Bon + 6B4n where |[6M4n|| = O(e)||(A, B)|| and ||6B4|| = O(e)||B||. Since the
condition number of the linear system (5.14) is (no larger t%), and the
norm of the solution is bounded by (5.15), the absolute error in the comgyted
of which Qg is nearly the true factor is bounded®®(c) - ||B]| - ||(A, B)Hd(;fB) <
0@ - [I(A B)|2d%).

To bound the error in the space spanned by the leading columi§dz of
which is our approximate deflating subspace, we need to know how much a
right singular subspace of a matify, i.e. the space spanned by the right singular
vectors corresponding to a subsét of the singular values, is perturbed whén
is perturbed by a matrix of norm. If Z, were the exact projector in (4.12)
would consist of all the nonzero singular values. In practice, of course, this is a
guestion of rank determination. No matter wii#t is, the space spanned by the
corresponding singular vectors is perturbed by at nasf)/gap,- [44, 51, 48],
where gap, is the shortest distance from any singular valugito any singular
value not in.:

gap, = min |o—oa] .
o€y
og.s

so we need to estimate gapn order to compute an error bound. We will do this
for Zy equal to its limitPg 71 in (4.12). There is always a unitary change of
)
00
is diagonal withoy > --- > oy, > 0. From this it is easy to compute the singular
values of the projector{,/1 +a§,...,\/1 +o2,1,---,1,0,...,0}, where the
number of ones in the set of singular values is equal to niax{z, 0). Since
.,V:{\/1+U%7...,\/1+0|2R,1,-~-,1}, we get

basis in which a projector is of the fon(u , WhereX' = diag@s, - . ., 01g)

2 This bound is true even if we compute the inversedgf+ Bm explicitly
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P
gap, = \/1+0|R |.f2IR§n
1 if 2l > n

Thus, we get that in the limit as — oo, the erroréQg in Qg is bounded by

0E) - IAB)P

(7.21) |6Qr]| =
d(?’-\,B) -gapy,

A similar bound holds fot|6Q_|| in Algorithm 1. Thus

A

B2 < [I(Qu+6Qu)"AQR +6Qr) — QI'AQR||
[6Q7AQR + Q'ASQR|| + O(c?)
< (l6Qe| + [I6QrINIIA] + O(E?)

N

with a similar bound forl|F4]|.

So altogether, in the limit asn — oo, we expect the following bound on
backward stability:

) 2
max(llEzlll’FnII) < 0(6)_ (A, B)]|
Al " [IB] d(A,B)‘m'n(gaP,ﬁ,gaP%)
O(e) - [|(A, B2

(7.22)
dae)

)

where gap, refers to the gap in the singular valuesRyf |, <1, and gap, refers
to the gap in the singular values Bf |, 1,

For simplicity, consider Algorithm 1 wheB =1, wherePg |;j<1 = P |z/<1.
An interesting feature of the error bound is that it may be smalletgf< n
than otherwise. This is borne out by numerical experiments, where it can be more
accurate to make the choice in step 3) of Algorithm 1 which lead&,; tdbeing
smaller tham,,. Also, when 25 < n, the error bound is a decreasing function of
o1, ON the other hand, I, is large, this means; and so||Pg 7<1|| = \/1+0?
are large, and this in turn means the eigenvalues inside the unit circle are ill-
conditioned [24]. This should mean the eigenvalues tarler to divide, not
easier. Of course as they become more ill-conditiortgdg) decreases at the
same time, which counterbalances the increasag,in

In practice, we will use the posteriori bounds||Ey;|| and ||F2;| anyway,
since if we block upper-triangulariz®(A — A\B)Qr by setting the (21) blocks
to zero, ||Ez1|| and ||F,,| are precisely the backward errors we commit. If the
next section, we will compare our error bound with those in [41].

3 In fact this bound holds for sufficiently larga as well
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8. Remark on Malyshev’s condition number

We have just shown thai(AB is a natural condition number for this problem.
In this subsection, we will show that Malyshev’s condition number can be much
larger [41]. Malyshev’s condition number is

27
w = 21 (B — €?A)~HAAT + BBM)(B — €?A)Md¢ H
T
(8.23) = ;T (B’ d?A) LB/ — é?A)Mdg H

whereA’ = (AAH + BBH)~1/2A andB’ = (AA" + BBH)~1/2B: this meansV A’ +
B’B’" = 1. Malyshev begins his version of the algorithm by replachby A’
andB by B’, which we could too if we wanted to.
Malyshev’s absolute error bound on the compufgds essentiallyO(g)w?,
whereas ours i©(c)d .5, assuming|(A, B)|| ~ 1. We will show thatd, ) can
be as small as the square rootuaf
Since
omin(AAT + BBH) < dae) < omadAAT + BBM)
(A,B)
it is sufficient to compares and d(*A,lB) when AA™ + BBH is well-conditioned.
Malyshev shows that, in our notatiod,'s, < 5rw, showing thatd,'g., is
never much larger tham. Malyshev shows thad(;}B) andw can be close when
B =1 andA is real symmetric. By taking norms inside the integral in (8.23),
one gets the other boungw < d(,]lB), showing thatd(;lB) can be as small as
the square root ofv. To see thatj(A g) can indeed be this small, consider the
following example. LetA=1 andB =D — N, whereD is diagonal with entries
equally spaced along any arc of the circle centered at the origin with radius
0 < d < 1 and angular extent/8, andN has ones on the superdiagonal and
zeros elsewhere. Whehis close to 1 and the dimension Afis at least about 20,
one can computationally confirm thd(t,g}B) is close toy/w. This example works
because when'eis in the same sector as the eigenvalue8p(B — €’A)~ is
as large as it can get, and its largest entry is in position){1

1
[Tk=1(Buc — €°)

Thus the integral forw is bounded above by a modest multiple of the integral
of the square of the magnitude of the quantity just displayed (timagAAT +
BB")), which is near its maximum valud;,fB) for a range of) close to [Q7 /8],

so the integral is within a constant dg;?B).
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9. Stopping criterion

In this section we justify the stopping criterion used in Algorithm 1 by showing
that R, converges quadratically. From step 2) of Algorithm 1, we see that

Bj+1= Q3B = QRQuR  and A = QA = —QpQxR -

For two symmetric non-negative definite matrides and P,, we use the
relation P; < P, to mean thatP, — P; is non-negative definite. The above
relations imply

leilRﬁl = Bj':'rlBj+1"'Aj'_|+1'°\j+1
R (QI1Q22Q55Q11 + Q51Q12Q15Q21) Ry
RjH (Q{'lQll + QZQZI) R;

= RjHR,- i
SinceRjHRj > 0 for all j, the above relation implies that the sequenﬁ%'Rj}
converges. On the other hand, sirfigecan be viewed as a diagonal block in the
upper triangular matrix of the cyclic QR decomposition of the coefficient matrix
in (5.14), we havermin(R) > diag). Hence the sequen({eRjHRj} converges to
a symmetric positive definite matrix. Let this limit matrix R'R, whereR is
upper triangular with positive diagonal elements. It follows that the sequence
{R } converges taR.

Now we sketch a proof of quadratic convergence{Bf}. For details see
[10]. Note that

RﬁrlRJ +1

IN

R,-H (Q11Q22Q8Qu1 + Q41Q12Q15Q21) R

R0 -S5"-5"S)R

where§ = QI Q1. It then follows that§ converges to the zero matrix. If we
defineg by R+1 = (I + )R, thenE is upper triangular and satisfies

(I +E)"0 +E)=1-55"-5"s.

In other words, (+E;)"(I +E;) is the Cholesky factorization dof—§§" —S"'S.
Hencel|g || = OIS |*) and

IR+ = RII <[5 IRl = OIS I*IRI) -

Finally, by next proving the identit§y = —R~"'B" AR™*, we can complete our
set of recurrences fd®, E and§ with the formula

(9.24) Se=—(1+5) "1 +E)* .

This establishes the quadratic convergencéSf to 0 and hencgR; } to R. We
point out that this implies that the sequer{chA,—} also converges quadratically
to 0.
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10. Numerical experiments

In this section, we present results of our numerical experiments with Algorithm 1
and compare them with the matrix sign function based algorithm. In all experi-
ments we split the spectrum along the imaginary axis. WBenl , this means
we apply Algorithm 1 toAs = | —AandBy = | +A. For generaB, this means that
we apply Algorithm 1 taA; = B — A andBp = B + A. We focus primarily on the
ordinary SDC problemR = |). The algorithm was implemented in MATLAB
version 4.0a on a SUN workstation 1+ using IEEE standard double precision
arithmetic with machine precision~ 2.2 x 1016

The Newton iteration (3.6) for computing the matrix sign function of a matrix
A is terminated if

[Aj+1 = Ajlla < 10ne][Aj[|a.

The inner loop iteration in Algorithm 1 for computing the desired projector is
terminated if

IR —R-1ll1 < 10ne[|[R _1]|1.

We set the maximal number of iteratiomaxit=60 for both the Newton iteration
and the inverse-free iteration.

Algorithm 1 and the matrix sign function based algorithm work well for
the numerous random matrices we tested. In a typical example for the standard
SDC problem B = 1), we letA be a 100 by 100 random matrix with entries
independent and normally distributed with mean 0 and varianAéas condition
number about 10 Algorithm 1 took 13 inverse-free iterations to converge and
returned with||Ez1||1/]|A21]|1 ~ 5.44 x 10~15. The matrix sign function took 12
Newton iterations to converge and returned Wi, ||1/||Ax |1 ~ 2.12x 10714,

Both algorithms determined 48 eigenvalues in the open left half plane, all of
which agreed with the eigenvalues computed by the QR algorithm to 12 decimal
digits.

In a typical example for the generalized SDC problem (genBjalwe let
A andB be 50 by 50 random matrices with entries distributed as above. Algo-
rithm 1 took 10 inverse-free iterations to compute the right deflating subspace,
and 10 inverse-free iterations for the left deflating subspace, and returned with
||E21H1/||A21||1 ~ 3.31x 10~ and ||F21||1/||821H1 ~ 2.64 x 10715, USing the
QZ algorithm, we found that the closest distance of the eigenvalues of the pencil
A — \B to the imaginary axis was about 19

We now present three examples, where test matrices are constructed so that
they are ill-conditioned for inversion, have eigenvalues close to the imaginary
axis, and/or have large norm of the spectral projector corresponding to the eigen-
values we want to split. Thus, they should be difficult cases for our algorithm.

In the following tables, we use rcorfl)(to denote the estimate of the recip-
rocal condition number of matriXA computed by MATLAB functionrcond .

A(A) = miny cxa [Rj| is the distance of the nearest eigenvalue to the imag-
inary axis. sep = sepf1,Az2) = omin(l ® Ag1 — A}Z ® 1) is the separation of
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matricesAy; and A, [48], and |P|| = \/1+|R|2 is the norm of the spec-
:) I?) corresponding the eigenvalues Af;; R satisfies
A11R — RAy; = —Ago. A number 10 in parenthesis next to an iteration number
iter in the following tables indicates that the convergence of the Newton iteration
or the inverse-free iteration was stationary at about tdm theiter'" iteration
forward, and failed to satisfy the stopping criterion even after 60 iterations.

All random matrices used below have entries independent and normally dis-
tributed with mean 0 and variance 1.

tral projectorP =

Example 1.This example is taken from [5, 2]. Let

-1 00 1

-1 - 00O -1 1

B= 0 0 4 1| G=R= 1 (1111)
0 0 -1nq 1

and A:QT<2 FéT)Q,

where Q is an orthogonal matrix generated from the QR decomposition of a
random matrix. Asp — 0, two pairs of complex conjugate eigenvalues/fof
approach the imaginary axis, one pair at abeuf + i and the other pair at
aboutn? £ i.

Table 1 lists the results computed by Algorithm 1 and the matrix sign function
based algorithm. From Table 1, we see that if a matrix is not ill-conditioned to
invert, the Newton iteration performs as well as the inverse-free iteration. When
there are eigenvalues close to the boundary of our selected region (the imaginary
axis), the inverse-free iteration suffers the same slow convergence and the large
backward error as the Newton iteration. These eigenvalues are simply too close
to separate. Note that the Newton iteration takes about 6 to 7 times less work
than the inverse-free iteration.

Table 1. Numerical results for Example 1

Newton iteration  Inverse-free iteration

~ 12 ; IE21ll1 i IIE21ll2

AA) = n rcond(A) iter Al iter Al
1 683%—-2 7 21%-16 7 3.14e — 16
102 318 -2 14 126e—-15 14 1.75% — 15

1076 312 -2 27 22le—11 27 1.94e — 11
1010 428 —2 41 365e—07 40 1.56e — 07

For this example, we also compared the observed numerical convergence rate
of Algorithm 1 with the theoretical prediction of the convergence rate given in
Theorem 1. To compute the theoretical prediction, we need to estitags.
Algorithms for computingd, and related problems are given in [15, 14, 19].
Since our examples are quite small, and we needed little accuracy, we used
“intelligent brute force” to estimatéa g).
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5 The Convergence History of Algorithm 1 - Example 1

4/+,+«+>+’+’+’*~*
— . ~
10 + theoretical convergence rate *

observed convergence rate

relative errors
=
(=]

. . . . . .
0 2 4 6 8 10 12
value of j

Fig. 1. Convergence History of Example #,= 0.1

Figure 1 plots the observed convergence rate of Algorithm 1 and the theoret-
ical convergence rate, which is the upper bound in (6.16), for the matwiith
n = 0.1. We estimatedix, g, ~ 9.72 x 103, and (Ao, Bo)|| ~ 6.16. Although
the theoretical convergence rate is an overestimate, it does reproduce the basic
convergence behavior of the algorithm, in particular the ultimate quadratic con-

vergence. Regarding the analysis of the backward accuracy as given in (7.22),
for this example, we have

HE””z787x104?<smk”%mzzssgxloﬂ%

A diao 80

As we have observed in many experiments, the bound in (7.22) is often pes-
simistic, and so the algorithm works much better than we can prove. More study
is needed.

Example 2In this exampleA is a parameterized matrix of the forf= QTAQ,

where Q is an orthogonal matrix generated from the QR decomposition of a
random matrix,

k k oY «a
= K (A1 A a l-a
A k( 0 A22>7 All_ )
a 11—«

Ay = —A];, 0<a<05

andA;, is a random matrix. Note that the eigenvalue\gf lie on a circle with
center 1- o and radiusoe and those ofA,, lie on a circle with center-1 + «
and radiusx. The closest distance of the eigenvaluef\db the imaginary axis
is A(A) = 1— 2a. As a — 0.5, two eigenvalues of simultaneously approach

the imaginary axis from the right and left. Figure 2 is the eigenvalue distribution
whenk = 20 anda = .45.
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Eigenvalue Distribution of A

imaginary part
o
+
+
+
+

real part

Fig. 2. Eigenvalue distribution of 40 by 40 matr& with k = 20, o = 0.45

Table 2 reports the computed results for different values ofith k = 10.
From this data, we see that when the eigenvalues afe adequately separated
from the imaginary axisA(A) > /), the results computed by the inverse-free
iteration are superior to the ones from Newton iteration, especially when the
matrix is ill-conditioned with respect to inversion. This is what we expect from
the theoretical analysis of the algorithms. The following example further confirms
this observation.

Table 2. Numerical results for Example 2

Newton iteration Inverse-free iteration

: [IE2all1 : [IE21ll1
A(A)  rcond(A) sep [IP]] iter 1Al iter 1Al
1071 819% —-04 200e—1 6.42+0 9 8.15e — 16 9 2.4% — 16

1073 1.6le—07 200e—3 207e+2 15(10°13) 4.23e—12 15 1.1% — 15
10°° 412 —12 200e—5 8.06e+4 21(10°%) 3.27e—07 22 8.46e — 15
1077 138 —15 200e—7 22%+6 28(10°%) 2.0% —04 28(10°13) 2.44e—13

Example 3.The test matrices in this example are specially constructed random
matrices of the form

_ A1 A
(10.25) A=QT ( 0 A ) Q,

where Q is an orthogonal matrix generated from the QR decomposition of a
random matrix. Submatrice&;; and Ay, are first set to be X 5 random up-
per triangular matrices, and then their diagonal elements replacedapy and
—dJa; |, respectively, wherg; (1 < i < n) are other random numbers adds
a positive parameted;, is another 5< 5 random matrix. A-d gets small, all
the eigenvalues get close to the origin and become ill-conditioned. This is the
hardest kind of spectrum to divide.

The numerical results are reported in Table 3. All eigenvalues are fairly
distant from the imaginary axis/{(A) ~ O(10-3)), but the conditioning of the
generated matrices with respect to inversion can be quite large. The separation of
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A1 andAy; can also become small, afig?|| large, indicating that the eigenvalues
are hard to separate. Table 3 gives resultsdfan the set{1,0.5,0.3,0.2,0.1}.
Again, Newton iteration is inferior to inverse-free iteration for the ill-conditioned
problems. In particular, in the case @f= 0.1, we observed that from the fourth
Newton iteration onward rcondg) was aboutO(10~8), and that Newton failed

to converge. However, the inverse-free iteration is still fairly accurate, although
the convergence rate and the backward accuracy do deteriorate.

Table 3. Numerical results for Example 3

Newton iteration Inverse-free iteration
f [IE21ll1 ; [IE21ll2
d rcond(A) sep [[P]] iter Al iter 1Al

1.0 40% —06 136e—03 7.3%+1 9(10°1%) 456 —14 10 7.08 — 16
0.5 12% —06 237e—04 432%+2 11(10°1%) 1.9% —12 10 1.66e — 15
0.3 343 —10 47le—06 276e+5 14(10°%) 4.55% —09 15 1.64e — 15
0.2 682 —11 394e—07 548 +4 16(10°%) 2.76e—08 12 143 — 13
0.1 812 —14 154e—10 7.48+8 - (fail) 15(1071%) 3.66e — 11

11. Open problems

Here we propose some open problems about the spectral divide and conquer
algorithm.

1. In Algorithm 1 with generaB, we test whethel, is equal tolg, wherel_ is
the number of eigenvalues in the specified region determined from computing
the left deflating space, ard is the number of eigenvalues in the specified
region determined from computing the right deflating space. Normally, we
expect them to be the same, however, what does it mean Whenlg?
Perhaps this is an indicator that the pencil is nearly singular.

2. lterative refinement, based either on nonsymmetric Jacobi iteration [23, 27,
49, 47, 46] or refining invariant subspaces ([21] and the references therein)
could be used to maki;; (andF,;) smaller if they are unacceptably large.

12. Conclusions and future work

In this paper, we have further developed the algorithm proposed by Godunov,
Bulgakov and Malyshev for doing spectral divide and conquer. With reason-
able storage and arithmetic cost, the new algorithm applies equally well to the
standard and generalized eigenproblem, and avoids all matrix inversions in the
inner loop, instead requiring QR decompositions and matrix multiplication. It
forms an alternative to the matrix sign function for the parallel solution of the
nonsymmetric eigenproblem.

Although the new approach eliminates the possible instability associated with
inverting ill-conditioned matrices, it does not eliminate the problem of slow or
misconvergence when eigenvalues lie too close to the boundary of the selected
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region. Numerical experiments indicate that the distance of the eigenvalues to
the boundary affects the speed of convergence of the new approach as it does
to the matrix sign function based algorithm, but the new approach can yield an
accurate solution even when the sign function fails. The backward error bounds
given in Sect. 7 are often pessimistic. The new algorithm performs much better
than our error analysis can justify. We believe that in dealing with the standard
spectral divide and conquer problem, the matrix sign function based algorithm
is still generally superior.

Future work includes building a “rank-revealing” generalized QR decompo-
sition, devising an inexpensive condition estimator, incorporating iterative re-
finement, and understanding how to deal with (nearly) singular pencils. The
applications of the inverse-free iteration for solving algebraic Riccati equations
deserves closer study too.

The performance evaluation of the new algorithms on massively parallel
machines, such as the Intel Delta and Thinking Machines CM-5, will appear in

[9].
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