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Abstract

In this paper� we present an algorithm for computing a partial sum of eigenvalues of a large
symmetric positive de�nite matrix pair� We show that this computational task is intimately
connected to compute a bilinear form uTf�A�u for a properly de�ned matrixA� a vector u and
a function f���� Compared to existing techniques which compute individual eigenvalues and
then sum them up� the new algorithm is generally less accurate� but requires signi�cantly less
memory and CPU time� In the application of electronic structure calculations in molecular
dynamics� the new algorithm has achieved a speedup factor of � for small size problems to
�� for large size problems� Relative accuracy within ��	
 to �
 is satisfactory� Previously
intractable large size problems have been solved�
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� Introduction

The central numerical computational problem studied in this paper is to compute the sum of all
eigenvalues less than a prescribed value � of the generalized eigenvalue problem

H	 
 �S	� ���

where H and S are real n � n symmetric matrices with S positive denite� �H�S � is called a
symmetric positive denite matrix pair� � and 	 are the eigenvalue and eigenvector� respectively�
Specically� let the eigenvalues f�ig of the matrix pair �H�S � be ordered such that

�� � �� � � � � � �m � � � �m�� � � � � � �n�

then one wants to compute the sum

�� 
 �� � �� � � � �� �m� ���
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We are interested in the case where the matrices H and S are large and sparse or structured� The
number m of eigenvalues less than � is unknown� which generally could be very large� say about
n���

The motivation for studying this problem comes from solid state physics where computation
of the total energy of an electronic structure requires the evaluation of partial eigenvalue sum�
mations� Total energy calculations of solid state systems modeled by tight�binding methods are
important in simulating real materials of technological importance� In tight�binding methods� a
Hamiltonian matrix H is constructed from parameters that contain all electronic structure infor�
mation pertaining to the material of interest� In conventional tight�binding schemes� the partial
sum of eigenvalues obtained by solving the standard eigenvalue problem H	 
 �	 is used in
computing the total energy of the system� This approach� however� has been found to be inad�
equate in many cases when a higher accurate treatment is required� A generalized tight�binding
method ���� has been found to be useful� Here� the evaluation of the total energy involves a partial
eigenvalue sum of the generalized eigenvalue problem H	 
 �S	� The overlap matrix S contains
additional information pertaining to the system� Specically� the summations are performed over
an ordered set of eigenvalues from the lowest upto a maximum value that is determined by the
electron occupancy of the system� We should note that the total energy for a given conguration
of electrons and ions� however� is not su�cient to determine the stability of the system which
requires that the total energy obtained must also be a minimum� Molecular dynamics simula�
tions� therefore� become necessary to obtain a stable conguration where all the forces acting on
individual atoms are zero� The forces can be obtained by either direct calculation from analytic
expressions or numerical di�erentiation of the total energy by making small displacements in the
conguration� An iteration process is then used to solve the equations of motion� In many cases�
however� realistic simulations require a large number of iterations �usually several hundreds of
time steps�� Recent interest in properties of large atomic clusters necessitates obtaining partial
eigenvalue sums for very large matrices�

Let us now brie�y review the existing classes of methods for computing the partial eigenvalue
sum ��� The rst class of methods can be summarized as dense and band methods for explicitly
computing all or some of the eigenvalues of a pair of dense or banded matrices� As presented
in LAPACK ���� one rst computes the Cholesky factorization of S 
 LLT and then explicitly
transfers the generalized eigenvalue problem ��� to the standard eigenvalue problem A� 
 ���
where A 
 L��HL�T � and � 
 LT	� All the eigenvalues of A can be computed by the QR
algorithm followed by the summation of the desired eigenvalues� One could also use the bisection
method to compute only those eigenvalues less than �� The LAPACK routine DSYGV is an imple�
mentation of the QR algorithm �which is the fastest method for computing all eigenvalues�� while
DSYGVX is the LAPACK implementation of the bisection method� The computational complexity
of dense methods is O�n�� with O�n�� storage requirement� When n is large� both computational
complexity and memory requirements forbid the use of these algorithms� An improvement of
these dense methods is to exploit band structures in the matrices H and S by utilizing a proper
sparse matrix reordering scheme� The computational complexity is then reduced to O�n�b�� with
storage requirement O�nb

H
� nb

S
�� where b� 
 max�b

H
� b

S
�� b

H
is the half�bandwidth of H and

b
S
is the half�bandwidth of S� The LAPACK routines DSBGV and DSBGVX are implementations

of the QR and bisection methods for banded matrix pairs� The sparse matrix reordering step
has to be implemented separately by the user� Parallel implementation of these methods can be
found in ScaLAPACK ���� A novel parallel algorithm which uses high performance BLAS kernels
is developed in PRISM project ����

The second class of methods is based on sparse matrix techniques� For example� one can use the
Lanczos algorithm with shift�and�invert spectral transformation ���� ���� This approach applies
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the Lanczos algorithm to a sequence of selected shifts to successively compute a few eigenvalues
near the shift� However� for each shift �� a symmetric LDLT factorization of the shifted system
H � �S has to be computed along with reorthogonalizing the new initial vector to the previously
converged eigenvectors� The storage required is O�	�nm� where 	 is the required storage for the
symmetric LDLT factorization and nm for storing converged eigenvectors� When n and m are
large� as well as 	� memory and CPU time requirements prohibit the use of these methods�

The third class of methods is based upon a nonlinear optimization approach to directly com�
pute the partial eigenvalue sum� The following well�known result shows that the partial sum of
eigenvalues of a symmetric positive denite pair �H�S � can be characterized by a trace minimiza�
tion problem�

�� � �� � � � �� �m 
 min
U � U

tr�UTHU��

where U is the set of all n � m matrices U such that UTSU 
 Im ���� p������ A numerical
procedure for solving such a trace minimization problem is developed in ���� ���� However� this
method su�ers from the fact that a large subspace iteration may be required if one computes
a sum of a large number of eigenvalues� which again becomes intractable with large n and m�
Furthermore� the number of eigenvalues less than the prescribed value � is generally unknown in
our application�

In this paper� we present a new algorithm which directly computes the partial eigenvalue sum
�� and signicantly reduces memory and arithemetic costs� We shall show that the computation
of the partial eigenvalue sum is related to the computation of the bilinear form uT f�A�u for a
properly dened matrix A� a vector u� and a function f���� which is dened on the eigenvalues
of A� In ���� ��� ��� an e�cient algorithm is developed for computing the bilinear form� In this
algorithm� the matrix A is only referenced through matrix�vector multiplication and is therefore
suited for large sparse or structured problems� Comparing with the techniques reviewed earlier�
this new approach is generally less accurate� but requires much less memory and is faster� In
the aforementioned application in tight�binding molecular dynamics involving very large systems�
the accuracy is acceptable� The computational cost of the new method scales with the cost of
a matrix�vector multiplication� For instance� comparing with the QR and bisection methods�
speedup factors of � for small system sizes �n 
 ���� to �� for large sizes �n 
 ����� have been
achieved� In practice� we are able to tackle problem sizes previously intractable�

The organization of the rest of the paper is as follows� In Section �� the electronic structure
calculation by tight�binding method is introduced in which one requires the calculation of the
partial eigenvalue sum� In Section �� we describe how the problem of computing a partial eigen�
value sum is connected to that of computing a bilinear form� In Section �� we review the basic
idea of the method for computing the bilinear form uTf�A�u� Section � describes a Monte Carlo
simulation technique� Section � presents the whole algorithm and discusses some computational
issues� The applications and performance of the new methods for computing the total energy in
condensed matter systems are presented in Section �� Concluding remarks are in Section ��

� Electronic Structure Calculation by tight�binding methods

In this section we brie�y review molecular dynamics methods involving electronic structure cal�
culation to which the present method for calculating the partial eigenvalue sum is applied�

We consider a system of N carbon atoms with each atom having a nucleus and six electrons�
When bonding with each other� only four electrons from each atom participate in the process and
are called valence electrons� In the non�interacting atoms� these valence electrons occupy the free
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atom eigenstates called s and p orbitals because of their angular momentum� Furthermore� the
electronic eigenstates are characterized according to their spin quantum number �spin up and spin
down�� The number of eigenstates determines the dimension of the matrices for our computational
problem while the partial eigenvalue sum is determined by the number of electrons in the system�

For the carbon system it is a good approximation to neglect the spin dependency of ground
state properties of the system� Then� spin up and spin down states are equally occupied and
energetically degenerate� This allows us to deal only with half of the possible electronic states
�spin up or spin down� and half of the available electrons to occupy them� Spin degeneracy
requires only to multiply quantities depending on the number of electrons by a factor of two�
Only one s and three p �px� py � pz� valence orbitals on each atom have to be considered within
this approximation� The dimension of our problem reduces to �N �
number of atomic orbitals�
with �N electrons to occupy them� If the atoms are brought together closely enough to form
clusters or molecules� the interactions between the atoms results in the formation of new set of
states called the molecular orbitals� Within the tight�binding method� these molecular orbitals
are approximated by a linear combination of s and p atomic orbitals� In the molecular system
there are again a total of �N molecular orbitals �eigenstates of the problem� and �N valence
electrons�

The quantum mechanical problem is modeled within a non�orthogonal tight�binding approxi�
mation� The electronic part can then be represented by a Hamiltonian matrix H and an overlap
matrix S� each of dimension �N � �N � Both H and S are functions of the atomic coordinates�
i�e�� H 
 H�fRg� and S 
 S�fRg�� where fRg represents the set of all atomic positions and
satisfy the eigenvalue equation�

H	k 
 S�k	k � ���

where �k is the energy of a single particle state�
The total energy of the system is given by the sum �����

U 
 Uel � Urep� ���

where Uel is the electronic contribution to the total energy� obtained by performing a partial sum
over the eigenvalues� i�e�� sum over the eigen�energies of the occupied electronic states�

Uel 
 �
�NX
k��

�k� ���

and Urep is given by a sum over pair potentials

Urep 

NX
i��

X
j�i


�rij�� ���

where 
 is a simple pair potential term with rij being the distance between atoms i and j� While
the evaluation of the sum in equation ��� is straightforward� computing the sum in equation ���
poses all the computational challenge�

We use molecular dynamics simulations to nd the conguration fRg which minimizes the
total energy U � i�e� to nd the equilibrium state of the system� For this purpose one follows
the paths of the atoms in conguaration space which are determined by the classical �coupled�
equations of motion� Therefore� one also needs to obtain the forces acting on each atom� They
can be derived by taking the partial derivatives of the total energy U with respect to the positions�
x � fRg� of each atom� If this is not feasible� numerical di�erentiation of Uel becomes necessary
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to obtain the forces� This can be accomplished by making small displacements �x in each of the
atomic positions and evaluating the expression

U�x� �x�� U�x�

�x
� ���

Molecular dynamics can now be performed by solving the equations of motion from Newton�s
second law�

M
d�x

dt�

 �

�U

�x
� ���

where M is the mass of the atom� A small damping term needs to be added to the above
equation to drive the system to equilibrium �minimum energy� conguration� The equation can
be numerically integrated using predictor�corrector methods ���� ��� �� ��� Thus� the molecular
dynamics simulations consist of the following steps�

�� Initialize coordinates x�

�� Predictor step�

�� Compute total energy U 
 Uel � Urep�

�� Compute the forces�

�� Corrector step�

Steps � through � are repeated �usually several hundred times� until all the forces are zero�
In this paper� we have applied the new method to systems of carbon atoms due to the current

interest in fullerenes and nanotubes� These two systems have� as constituents� carbon atoms
with three�fold coordination� The versatility of carbon atoms in forming materials with widely
di�ering properties provides an interesting challenge in formulating theoretical and numerical
methods capable of accurate structural determinations in various congurations� Figure � shows
some typical congurations for carbon systems� �a� C�� fullerene� �b� carbon nanotorus and �c�
carbon nanotube�

� Partial Eigenvalue Sum

Given a symmetric matrix A � IRn�n and a scalar �� the crux of the new method for computing
the partial eigenvalue sum

���A 

X
�i��

�i

is to construct a function f such that the trace of f�A� approximates the sum ���A� Specically�
one wants to construct a function f such that

f��i� 


�
�i� if �i � �
�� if �i  ��

���

for i 
 �� �� � � � � n� Then� we have tr�f�A�� 
 �� � � � � � �m� There are many choices of such
functions� The simplest choice is f��� 
 �h���� where h��� is a shifted step function�

h��� 


�
� if � � �

� if �  ��
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(a) C60 Fullerene (b) Nanotorus

(c) Nanotube

Figure �� Three congurations of carbon systems�
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Figure �� Graphs of g��� for di�erent values of � where � 
 ��

Alternatively� we choose f to be of the form

f��� 
 �g��� ����

where

g��� 

�

� � exp
�
���
�

� �
� and � are constants� This function� among other names� is known as the Fermi�Dirac distribution
function ���� p� ����� In the context of a physical system� the usage of this distribution function
is motivated by thermodynamics� It directly represents thermal occupancy of electronic states�
� is proportional to the temperature of the system� and � is the chemical potential �the highest
energy for occupied states��

It is easily seen that � � g��� � � for all � with horizontal asymptotes � and �� ��� �
�
� is the

in�ection point of g and the sign of � determines whether g is decreasing ��  �� or increasing
�� � ��� For our application� we want the sum of all eigenvalues less than �� so we use �  ��
The magnitude of � determines how �close� the function g maps � � � to � and �  � to �� As
�� ��� the function g��� converges to the step function h���� The graphs of the function g��� for
� 
 � and di�erent values of the parameter � are plotted in Figure �� Numerically� for example
with � 
 ���� we have g���� 
 ������� ����� g������ 
 ������� ����� g����� 
 ������� ����

and g��� 
 ������� �����
With this choice of f���� we have

���A 

X
�i��

�i � tr�f�A�� 

nX
i��

eTi f�A�ei�

where ei is the i�th column of the n� n identity matrix�
To this end� the problem of computing the partial eigenvalue sum is recast as computing the

summation of n bilinear forms eTi f�A�ei for i 
 �� � � � � n�

� Computing the Bilinear Linear Form uTf�A�u

In this section� we review the scheme presented in ��� ��� ��� �� for computing the bilinear form
uT f�A�u� This scheme serves as a basic computational tool for computing the partial eigenvalue
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sum� Numerous matrix computation problems can be represented as the problem of computing
a bilinear form uT f�A�v� For example� computing an error bound for an approximate solution
of a linear systems of equations ���� bounding an element of A�� ���� ���� minimizing a quadratic
functional with constraints ���� ���� estimating the parameter in the generalized cross�validation
technique ���� and computing det�A� ��� all can be recast as the problem of computing a bilinear
form uT f�A�v�

The main idea of computing the bilinear form uTf�A�u is to rst transform it to a Riemann�
Stieltjes integral and then use Gaussian quadrature� This in turn uses orthogonal polynomials
and the underlying Lanczos process for the construction of orthogonal polynomials� The idea
was originally proposed in ��� and further developed in ���� ���� In the following� we outline this
approach�

Let A 
 Q�QT be the eigendecomposition of A� where Q is an orthogonal matrix and � is
a diagonal matrix with increasingly ordered eigenvalues �� � �� � � � � � �n� The bilinear form
uT f�A�u can be written as the following�

uT f�A�u 
 uTQf���QTu 
  uTf��� u 

nX
i��

f��i� u
�
i � ����

where  u 
 QTu� Furthermore� the sum can be rewritten as a Riemann�Stieltjes integral

uT f�A�u 

Z b

a
f���dw���� ����

where the measure function w��� is a piecewise constant function dened by

w��� 


�����
�� if a � � � ��Pi

j��  u
�
j � if �i � � � �i��Pn

j��  u
�
j � if �n � � � b�

����

A standard numerical method to compute a Riemann�Stieltjes integral is Gaussian quadrature�
For an introduction to Gaussian quadrature� see the references ��� ���� The Gaussian quadrature
formula has the form Z b

a
f���dw��� 


kX
j��

�jf��j� � ��f �� ����

where the weights f�jg and the nodes f�jg are unknown and to be determined� ��f � is the
integration error �remainder��

Let us recall how the weights and nodes in the quadrature formula are obtained� First� we
know that a sequence of polynomials fpi���g

�
i�� can be dened such that they are orthonormal

with respect to w���� i�e�� Z b

a
pi���pj��� dw��� 


�
� if i 
 j�

� otherwise�

where it is assumed that
Z
dw��� 
 �� This sequence of orthonormal polynomials satises a

three�term recurrence
�jpj��� 
 ��� �j�pj������ �j��pj����� ����

for j 
 �� �� ���� k with p����� � � and p���� � �� Writing the recurrence in matrix form� we have

�p��� 
 Tkp��� � �kpk���ek� ����



�

where
p���T 
 � p���� p���� � � � pk����� �� eTk 
 � � � � � � � � ��

and

Tk 


	BBBBBB

�� ��
�� �� ��

� � �
� � �

� � �

�k�� �k�� �k��
�k�� �k

�CCCCCCA �

Then in the Gaussian quadrature rule� the eigenvalues of Tk �which equal to the zeros of pk����
are the nodes f�jg� The weights f�jg are the squares of the rst elements of the normalized
eigenvectors of Tk ����

Note that the Lanczos procedure is a natural and elegant way to compute the orthonormal
polynomials fpj���g ���� ���� We shall discuss this further in Section �� A similar approach can
be derived ��� ��� ��� for computing a general bilinear form uT f�A�v�

� Trace of f�A� and Monte Carlo Simulation

If we choose u 
 ei in the bilinear form uT f�A�u and use Gaussian quadrature to compute an
estimate �i for eTi f�A�ei� then the sum

Pn
i�� �i is an approximation of

Pn
i�� e

T
i f�A�ei� This

provides us with a method of estimating tr�f�A�� since
Pn

i�� e
T
i f�A�ei 
 tr�f�A��� However� this

approach would require computing n estimates �i� If estimating each �i costs on the order of
n�� then the total cost would still end up on the order of n�� the same cost as a dense matrix
approach�

To reduce the computational costs� we can use a Monte Carlo simulation technique for esti�
mating tr�f�A�� ���� This technique is based on the following proposition ���� ���

Proposition ��� Let H be an n � n symmetric matrix with tr�H� 	
 �� Let Z be the discrete
random variable which takes the values � and �� each with probability ��� and let z be a vector
of n independent samples from Z� Then zTHz is an unbiased estimator of tr�H�� i�e��

E�zTHz� 
 tr�H�

and
var�zTHz� 
 �

X
i��j

h�ij �

where E��� denotes expected value �of a random variable� and var��� denotes variance �of a random
variable��

Proof� Since zTHz 

P

i�j zihijzj � it immediately follows that E�zTHz� 
 tr�H�� Using the

symmetry of H � we have var�zTHz� 
 E��zTHz���� �E�zTHz��� 
 �
P

i��j h
�
ij �

An unbiased estimate of tr�f�A�� can be obtained based Proposition ���� To do this� we rst
generate p sample vectors zk and then apply the approach discussed in Section � to estimate the
bilinear forms zTk f�A�zk for k 
 �� � � � � p� This yields p estimates �k of zTk f�A�zk of which we
compute the mean giving an unbiased estimate of tr�f�A��� i�e��

tr�f�A�� �
�

p

pX
k��

�k �

Note that probabilistic error bounds can be derived for the estimated value ����
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	 The PES Algorithm

In this section� we shall combine the tools established in earlier sections to present an algorithm for
estimating the partial eigenvalue sum of a symmetric positive denite pair �H�S �� We refer to this
as the PES algorithm which simply stands for the Partial Eigenvalue Sum� Given the Cholesky
factorization of S� S 
 LLT � the generalized eigenvalue problem H	 
 �S	 is equivalent to the
standard eigenvalue problem

�L��HL�T ��LT	� 
 ��LT	��

Hence� computing the partial eigenvalue sum of the matrix pair �H�S � is equivalent to computing
the partial eigenvalue sum of the matrix A 
 L��HL�T �

The Lanczos process is a simple yet rened method for computing the orthonormal polynomials
as discussed in Section �� The symmetric Lanczos process satises a three�term recurrence

�jqj 
 �A� �j�qj�� � �j��qj��

for j 
 �� � � � � k� where the initial vector q� has unit norm and �� � �� It is known ���� that the
generated Lanczos vectors qj are orthogonal and are related to the orthogonal polynomials pj in
Section � by

qj 
 pj�L
��HL�T �q��

Thus� with initial vector q� 
 u�kuk� k steps Lanczos process generates a tridiagonal matrix Tk�
The eigenvalues and squares of the rst elements of the normalized eigenvectors of Tk are the
nodes and weights in the Gaussian quadrature rule� respectively�

To apply the standard symmetric Lanczos algorithm to the implicitly dened matrix A 

L��HL�T � a matrix�vector product routine must be supplied that incorporates L along with H �
but the actual Lanczos process need not be modied at all� It is noteworthy that it is possible
to use the Lanczos process on S��H � again dened implicitly� This option is valuable when S

cannot be factored conveniently ����� In our current application� the matrix S can be reordered to
have narrow half�bandwidth� and the usage of an implicitly dened matrix A is very satisfactory�

The following is a pseudo�code of the PES algorithm which computes an unbiased estimate of
the trace of f�L��HL�T �� This� in turn� is an unbiased estimate of the sum of the eigenvalues of
�H�S � less than a prescribed value ��

PES Algorithm� Suppose �H�S � is a real n � n symmetric positive denite pair
with the Cholesky factor of S� S 
 LLT � Given scalars � and �  �� the function
f dened by ����� and the number of sample vectors p� This algorithm produces an
estimate  � of the partial eigenvalue sum �� dened in ����


 For k 
 �� �� � � � � p

�� Generate n�vector zk with elements uniformly distributed on ���� ��

�� zk �
 sign�zk�

�� Compute estimate  �k for zTk f�L
��HL�T �zk

�a� Let r� 
 zk � q� 
 � and �� 

q
rT� r�

�b� For j 
 �� �� ���� until convergence

�� qj 
 rj����j��

�� rj 
 L��HL�T qj � qj���j��

�� �j 
 qTj rj



��

�� rj 
 rj � qj�j

�� �j 

q
rTj rj

�� Compute eigenvalues f�ig and rst elements f�ig of the eigenvectors
of Tj

�� Compute �j 

Pj

i�� �
�
i f��i�

�c� Endfor

�d�  �k 
 ����j


 Endfor


  � 
 �
p

Pp
k��  �k

A couple of remarks are in order� First� steps ���b��� to ���b��� comprise one iteration of
the standard symmetric Lanczos process on the matrix A 
 L��HL�T � It is important to note
that the matrix�vector multiplication in step ���b��� is implicitly implemented� i�e�� the matrix A

is never formed explicitly� Instead three separate steps are done to compute the matrix�vector
multiply� a triangular solve with LT � a matrix�vector multiply with H and another triangular
solve with L�

Second� although the function f is a composite function that involves an exponential� it is
evaluated only at the node points used in Gaussian quadrature in Step ���b���� Computing the
exponential of a matrix is not required� Thus� the cost of function evaluations is minimal�

��� Some computational issues

The following are some additional computational issues encountered with the PES algorithm�


 We have used the Reverse�Cuthill McKee �RCM� reordering scheme from SPARSPAK ����
to reorder the matrix S such that bS 
 PTSP is banded� where P is a permutation matrix�
Basically� the RCM reordering is a reversal of the best ordering obtained by a breadth�rst
search of a graph of a matrix �����


 We use the band Cholesky decomposition routine DPBTRF from LAPACK to compute the
Cholesky decomposition of bS� bS 
 bLT bL� Correspondingly� the matrix�vector multiplica�
tion at the step ���b��� becomes bL��PTHP bL�Tqj � The band triangular system solvers
�with coe�cient matrices bL�T and bL��� are available from BLAS �Basic Linear Algebra
Subprograms��


 Currently� the coordinate sparse matrix storage format is used for matrices H and S and the
RCM reordering routine� In order to use LAPACK�s band Cholesky decomposition routine
DPBTRF� we convert the coordinate format to LAPACK symmetric band format� That is�
we convert the storage of bS from the coordinate format to a two�dimensional array with
b
S
� � rows and n columns� where b

S
is the half�bandwidth of bS� Columns of the matrix bS

are stored in corresponding columns of the array� and diagonals of the matrix are stored in
rows of the array� In summary� our current implementation of the PES algorithm requires
��

H
���

S
�n integer storage and �

H
� �

S
� �b

S
���n real storage� where �

H
is the number

of nonzeros in the upper triangular part of H and �
S
is the number of nonzeros in the upper

triangular part of S�



��


 The computational complexity of the PES algorithm is approximately

n�b�
S
� �b

S
�� z �

band Chol�fact�

�p

�
�n�z�

initialization

� ���nb
S
� ��

H
� �n�� z �

Lanczos proc�

� ����� � ��� z �
e�values of T

�

where � is the average number of Lanczos iterations for convergence and p is the number of
randonm sample vectors used in the Monte Carlo simulation� In general� p is chosen about
�� to ��� The number of Lanczos iterations is about �� to ��� Therefore� the computational
complexity can be simplied to O�nb�

S
� �p��nb

S
� �

H
��� Note that the half�bandwidth b

S

of bS plays a key role in the performance�


 The following stopping criteria is currently used�

j�j � �j��j � �j�j j

where � is a user specied tolerance value� This criteria tells us that

j� � �j j � j� � �j��j� �j�j j�

Therefore� the iteration stops if the error is no longer decreasing or decreasing too slowly�
An alternative stopping criterion is to estimate the error term ��f � in the quadrature rule�
This is subject to further study� In addition� it is good practice for any iterative method to
have a parameter maxit to limit the maximum number of iterations �i�e�� j � maxit��


 Numerical Examples and Discussion

All numerical experiments for computing the partial eigenvalue sum and its applications in tight�
binding molecular dynamics were carried out on a Convex Exemplar SPP����� system at the
University of Kentucky� The algorithm was implemented in Fortran �� and compiled with the
command fc �O�� fc is the Convex Fortran ��� compiler� Program attributes were set by
mpa �m �noparallel �n a�out� The mpa facility modies attributes of program execution� and
here we set it so the programs ran in serial fashion� Also� during compilation� the programs
were linked to the ConvexMLIB�LAPACK and ConvexMLIB�VECLIB libraries� ConvexMLIB�
LAPACK is derived from the public�domain version of LAPACK and has been specialized for
CONVEX computers� ConvexMLIB�VECLIB is a collection of Fortran subprograms optimized
for use on the CONVEX family of supercomputers� It contains Level � BLAS for vector�vector
operations� Level � BLAS for matrix�vector operations and Level � �Extended� BLAS for matrix�
matrix operations� The tolerance value � for the stopping criteria of the algorithm is set to
���� ���	�

We have performed total energy calculations on large carbon systems that include fullerenes�
nanotubes� �knee� clusters and network clusters �building blocks for bulk diamond structure��
These structures are now routinely produced by experimentalists� Their structure determina�
tion constitutes an important task for theoretical investigations� The generalized tight�binding
method is found to be very accurate for treating these systems ����� The Hamiltonian and overlap
matrices H and S are constructed using parameters for pure carbon� In this model� each atom
is characterized by ��orbitals� As a general rule� for a system containing N atoms� one needs to
construct �N � �N matrices for both H and S that are very sparse� Due to the dependence of S
on H in the model� H and S have the same sparsity pattern�



��

Figure �� Carbon cluster that forms part of a �knee� structure connecting nanotubes of di�erent
diameters�

In the following� we present numerical results for two carbon systems� The rst systems is a
carbon cluster that forms part of a �knee� structure� The second systems is a carbon network
cluster that forms part of a bulk diamond structure� For these systems� we have investigated
the distribution of eigenvalues� the RCM reordering scheme and comparisons of the PES method
to the QR and bisection methods available in LAPACK� In addition� the PES method is also
compared to band methods and sparse eigensolver methods�

Knee Cluster� Consider a carbon cluster which forms part of a �knee� structure� connect�
ing nanotubes of di�erent diameters ����� Carbon nanotubes are known to exhibit metallic or
semiconducting properties depending on their diameters� These �knee� junctions provide an in�
teresting microscopic metal�semiconductor contact and are of considerable technological interest�
The �knee� structure shown in Figure � was used to construct several test pairs of various sizes�
Figure � shows the eigenvalue distribution for the cluster containing ��� ��� and ��� atoms�
Accordingly� the matrix sizes are ���� ��� and ���� respectively� There is a clear gap between
eigenvalues that corresponds to the highest occupied and lowest unoccupied states�

Application of the RCM reordering algorithm on the matrix S produced half�bandwidths
approximately equal to b

S

 n��� For example� with system size n 
 ���� the reordered matrixbS has a half�bandwidth of ����

Table � lists performance statistics of the QR method� the bisection method� and the PES al�
gorithm using p 
 �� sample vectors� The rst column of the table shows the order n of the
matrix pair �H�S �� The second column shows the number m of eigenvalues to the left of the gap
at the origin� i�e�� m is the number of eigenvalues to be summed� We see that approximately ��!
of the total eigenvalues are required for the sum� The third column is the partial eigenvalue sum
obtained either by using the QR method or the bisection �BI� method �the quantities computed
by two methods agree up to �� decimal digits�� The fourth and fth columns are the CPU times
�in seconds� of the QR and bisection methods� The sixth and seventh columns are the estimated
partial eigenvalue sum and the CPU time of the PES method� respectively� The nal column
shows the percentage of the relative error in the approximation�

From the table� we see that the approximated partial sums are within a range of ����! to ���!
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Figure �� Distribution of eigenvalues in the torus carbon structure for several system sizes� Notice
the gap around � between the eigenvalues�

Table �� Performance of PES method vs� dense methods on Convex Exemplar SPP������ Here�
�� Monte Carlo samples were used to obtain estimates for each systems size�

Dense methods PES � Relative
n m Partial Sum QR Time BI Time Estimate Time Error

��� �� ������� ��� ��� ������� ��� ����
��� ��� ������� ���� ���� ������� ���� ���
���� ��� ����� ���� ���� �������� ���� ���
���� ��� ������ ���� ����� �������� ���� ���
���� ���� �������� ���� ���� �������� ���� ���
���� ���� �������� ����� ���� ������� ���� ���
���� ���� �������� ������ ����� ������� ����� ���
��� ���� ������� ������ ������ �������� ���� ���
��� ���� ������� ����� ����� ����� ����� ���
���� ���� ������� ����� ���� ������ ���� ���
���� ���� �������� ������ ������ ������� ��� ���
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Figure �� Speed of nding the partial eigenvalue sum relative to PES based on data in Table ��
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Figure �� Monte Carlo simulation of PES method for p 
 �� sample vectors�

relative error to the �exact� value computed by the QR or bisection method� This approximation
is acceptable in practice� Figure � shows the speed of computing the partial eigenvalue sum
relative to the PES algorithm� The horizontal axis is matrix dimension� and the vertical axis is a
method�s CPU time divided by the time for PES � Therefore the PES curve is a horizontal line at
�� and the other curves measure how many times slower the QR and bisection methods are than
PES � From the gure� we see that PES method is more than a factor of � times faster than QR
and bisection methods for small problems� For larger problems� the PES method is about �� times
faster than the bisection method and �� times faster than the QR method� The total savings in
CPU time is signicant since the partial eigenvalue sum is required to be repeatly computed as
many as a hundred times in our application�

We note that the RCM reordering procedure takes a signicant portion of the total CPU time
in the PES algorithm� It consumes approximately ��! of the CPU time for n  ����� Even if
we were to increase the number of samples to p 
 �� to improve the estimate in Monte Carlo
simulation� then the RCM reordering procedure still takes approximately ��! of the total CPU
time�

Figure � shows typical stochastic behavior we observed with matrix order n 
 ���� and p 
 ��
samples� As with any stochastic technique� a large number of samples usually result in better
approximations� Using additional sample vectors only increases computational time linearly� The
RCM reordering and Cholesky factorization costs are incurred only once�
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Figure �� Carbon network cluster of ���� atoms that forms part of a bulk diamond structure

Bulk Diamond Cluster� We have applied the PES method to the �����atom carbon network
cluster shown in Figure �� This cluster forms part of a bulk diamond structure� one of the most
stable forms of carbon� The carbon atoms in the interior of this cluster are arranged so that each
has four neighbors� The system has a relatively large gap in the eigenvalue spectrum�

For the bulk diamond structure of size n 
 ����� the matrices H and S have ������� nonzero
entries� The RCM reordered matrix bS has a half�bandwidth of b

S

 ����� approximately one�

third the order of the matrix� For this example� the number of eigenvalues to the left of the
gap was m 
 ����� or ��! of all eigenvalues� Using the QR method to compute all of the
eigenvalues� it took �� CPU minutes� The computed partial eigenvalue sum was �� 
 ���������
The PES method with p 
 �� samples produced an estimate of �������� with relative error ���!
in �� CPU minutes� The RCM reordering procedure took �� minutes of the total �� minutes�
With p 
 �� samples� PES produced an estimate of �������� in �� minutes� The relative error
is less than ���!�

We should note that the speedup of the PES method was not as signicant for the bulk
diamond structure as it was for the �knee� structure� We observe that for the bulk diamond
structure� the half�bandwidth b

S
of the reordered matrix bS is much larger than in the �knee�

structure� It is about one third of the matrix dimension� As we discussed in section �� this is one
of the key factors responsible for the performance of the PES method� An e�cient reordering
scheme to reduce the bandwidth is certainly highly desired�

Finally� let us brie�y report the performance of two other approches we have investigated� The
rst approach explored band structure in both matrices H and S� The method has four steps�

�� Use the RCM reordering algorithm so that bS 
 PTSP is banded� Since H has the same
sparsity structure in our application� then bH 
 PTHP has the same half�bandwidth�



��

�� Compute the band Cholesky decomposition of bS� bS 
 LLT �

�� Form the banded matrix A 
 ZTL�� bHL�TZ� where Z is chosen to preserve the band
structure of bH �

�� Use the band QR algorithm to compute all the eigenvalues of A or the bisection method to
compute only the desired eigenvalues of A�

The implementation of this method is easily done with LAPACK� A performance prole for the
�knee� cluster showed that step � took more than ��! of the total CPU time of this approach�
This step is even signicantly slower than the direct dense transformation without exploiting band
structure although a dense transformation takes signicantly more �ops� As a result� this band
method can be from ��� times to � times slower than the dense QR or bisection methods� for
matrix sizes as small as ���� This in turns is � to �� times slower than the PES method�

The second approach we have investigated is to use a sparse eigensolver� For example� we
used ARPACK ���� to nd a few of the algebraically smallest eigenvalues� then used de�ation
to nd the next few eigenvalues� and repeated until all desired eigenvalues are found� We have
observed that for computing just the � algebraically smallest eigenvalues with tol 
 ���� with
the matrix size n 
 ��� in the �knee� cluster� ARPACK takes about �"� of the total CPU time
of the PES method� Since we need to nd about half of eigenvalues� we expect that this approach
would not be competitive in terms of speed and memory�

� Concluding Remarks

A new method for computing a partial eigenvalue sum of a symmetric denite pair of matrices is
presented in this paper� We have shown that the PES method is signicantly faster than those
methods which directly compute individual eigenvalues and then sum them up� However� this new
approach is generally less accurate� But for our application of electronic structure calculations in
molecular dynamics� the achieved accuracy is acceptable� This method could easily be modied
to estimate a partial eigenvalue sum over a specied interval ��� ��� The estimates in Monte Carlo
simulation can be improved by using a better sampling technique� It deserves further study�
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