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Abstract

In this paper, we present an algorithm for computing a partial sum of eigenvalues of a large
symmetric positive definite matrix pair. We show that this computational task is intimately
connected to compute a bilinear form u7 f(A)u for a properly defined matrix A4, a vector u and
a function f(-). Compared to existing techniques which compute individual eigenvalues and
then sum them up, the new algorithm is generally less accurate, but requires significantly less
memory and CPU time. In the application of electronic structure calculations in molecular
dynamics, the new algorithm has achieved a speedup factor of 2 for small size problems to
20 for large size problems. Relative accuracy within 0.1% to 2% is satisfactory. Previously
intractable large size problems have been solved.

Key words: partial eigenvalue sum, bilinear form, Gauss quadrature, Lanczos method, general-
ized eigenvalue problem, tight-binding molecular dynamics, Monte Carlo simulation
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1 Introduction

The central numerical computational problem studied in this paper is to compute the sum of all
eigenvalues less than a prescribed value p of the generalized eigenvalue problem

HY = \ST, (1)

where H and S are real n X n symmetric matrices with S positive definite. (H,S) is called a
symmetric positive definite matrix pair. A and ¥ are the eigenvalue and eigenvector, respectively.
Specifically, let the eigenvalues {\;} of the matrix pair (H,S) be ordered such that

>\1§>\2§"'SAm</L<>‘m+1§"'§>‘na
then one wants to compute the sum

Tu=A+A+ -+ An. (2)
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We are interested in the case where the matrices H and S are large and sparse or structured. The
number m of eigenvalues less than p is unknown, which generally could be very large, say about
n/2.

The motivation for studying this problem comes from solid state physics where computation
of the total energy of an electronic structure requires the evaluation of partial eigenvalue sum-
mations. Total energy calculations of solid state systems modeled by tight-binding methods are
important in simulating real materials of technological importance. In tight-binding methods, a
Hamiltonian matrix H is constructed from parameters that contain all electronic structure infor-
mation pertaining to the material of interest. In conventional tight-binding schemes, the partial
sum of eigenvalues obtained by solving the standard eigenvalue problem HW¥ = AW is used in
computing the total energy of the system. This approach, however, has been found to be inad-
equate in many cases when a higher accurate treatment is required. A generalized tight-binding
method [28] has been found to be useful. Here, the evaluation of the total energy involves a partial
eigenvalue sum of the generalized eigenvalue problem H¥ = ASW¥. The overlap matrix S contains
additional information pertaining to the system. Specifically, the summations are performed over
an ordered set of eigenvalues from the lowest upto a maximum value that is determined by the
electron occupancy of the system. We should note that the total energy for a given configuration
of electrons and ions, however, is not sufficient to determine the stability of the system which
requires that the total energy obtained must also be a minimum. Molecular dynamics simula-
tions, therefore, become necessary to obtain a stable configuration where all the forces acting on
individual atoms are zero. The forces can be obtained by either direct calculation from analytic
expressions or numerical differentiation of the total energy by making small displacements in the
configuration. An iteration process is then used to solve the equations of motion. In many cases,
however, realistic simulations require a large number of iterations (usually several hundreds of
time steps). Recent interest in properties of large atomic clusters necessitates obtaining partial
eigenvalue sums for very large matrices.

Let us now briefly review the existing classes of methods for computing the partial eigenvalue
sum 7,. The first class of methods can be summarized as dense and band methods for explicitly
computing all or some of the eigenvalues of a pair of dense or banded matrices. As presented
in LAPACK [1], one first computes the Cholesky factorization of S = LLT and then explicitly
transfers the generalized eigenvalue problem (1) to the standard eigenvalue problem A® = AQ®,
where A = L~'HL™T and & = LT¥. All the eigenvalues of A can be computed by the QR
algorithm followed by the summation of the desired eigenvalues. One could also use the bisection
method to compute only those eigenvalues less than p. The LAPACK routine DSYGV is an imple-
mentation of the QR algorithm (which is the fastest method for computing all eigenvalues), while
DSYGVX is the LAPACK implementation of the bisection method. The computational complexity
of dense methods is O(n®) with O(n?) storage requirement. When 7 is large, both computational
complexity and memory requirements forbid the use of these algorithms. An improvement of
these dense methods is to exploit band structures in the matrices H and .S by utilizing a proper
sparse matrix reordering scheme. The computational complexity is then reduced to O(n?b,) with
storage requirement O(nb,, + nb.), where b, = max(b,,b,), b, is the half-bandwidth of H and
bg is the half-bandwidth of S. The LAPACK routines DSBGV and DSBGVX are implementations
of the QR and bisection methods for banded matrix pairs. The sparse matrix reordering step
has to be implemented separately by the user. Parallel implementation of these methods can be
found in ScaLAPACK [6]. A novel parallel algorithm which uses high performance BLAS kernels
is developed in PRISM project [5].

The second class of methods is based on sparse matriz techniques. For example, one can use the
Lanczos algorithm with shift-and-invert spectral transformation [12, 20]. This approach applies



the Lanczos algorithm to a sequence of selected shifts to successively compute a few eigenvalues
near the shift. However, for each shift v, a symmetric LDLT factorization of the shifted system
H — 1S has to be computed along with reorthogonalizing the new initial vector to the previously
converged eigenvectors. The storage required is O(£ + nm) where £ is the required storage for the
symmetric LDLT factorization and nm for storing converged eigenvectors. When n and m are
large, as well as &, memory and CPU time requirements prohibit the use of these methods.

The third class of methods is based upon a nonlinear optimization approach to directly com-
pute the partial eigenvalue sum. The following well-known result shows that the partial sum of
eigenvalues of a symmetric positive definite pair (H, S ) can be characterized by a trace minimiza-
tion problem:

A+ XA+ 4+ Ay = min tr(UTHU),
Uel

where U is the set of all » x m matrices U such that ULSU = I, [21, p.191]. A numerical
procedure for solving such a trace minimization problem is developed in [31, 11]. However, this
method suffers from the fact that a large subspace iteration may be required if one computes
a sum of a large number of eigenvalues, which again becomes intractable with large n and m.
Furthermore, the number of eigenvalues less than the prescribed value y is generally unknown in
our application.

In this paper, we present a new algorithm which directly computes the partial eigenvalue sum
7, and significantly reduces memory and arithemetic costs. We shall show that the computation
of the partial eigenvalue sum is related to the computation of the bilinear form qu(A)u for a
properly defined matrix A, a vector u, and a function f(-), which is defined on the eigenvalues
of A. In [16, 17, 2], an efficient algorithm is developed for computing the bilinear form. In this
algorithm, the matrix A is only referenced through matrix-vector multiplication and is therefore
suited for large sparse or structured problems. Comparing with the techniques reviewed earlier,
this new approach is generally less accurate, but requires much less memory and is faster. In
the aforementioned application in tight-binding molecular dynamics involving very large systems,
the accuracy is acceptable. The computational cost of the new method scales with the cost of
a matrix-vector multiplication. For instance, comparing with the QR and bisection methods,
speedup factors of 2 for small system sizes (n = 480) to 20 for large sizes (n = 4244) have been
achieved. In practice, we are able to tackle problem sizes previously intractable.

The organization of the rest of the paper is as follows: In Section 2, the electronic structure
calculation by tight-binding method is introduced in which one requires the calculation of the
partial eigenvalue sum. In Section 3, we describe how the problem of computing a partial eigen-
value sum is connected to that of computing a bilinear form. In Section 4, we review the basic
idea of the method for computing the bilinear form u” f(A)u. Section 5 describes a Monte Carlo
simulation technique. Section 6 presents the whole algorithm and discusses some computational
issues. The applications and performance of the new methods for computing the total energy in
condensed matter systems are presented in Section 7. Concluding remarks are in Section 8.

2 Electronic Structure Calculation by tight-binding methods

In this section we briefly review molecular dynamics methods involving electronic structure cal-
culation to which the present method for calculating the partial eigenvalue sum is applied.

We consider a system of N carbon atoms with each atom having a nucleus and six electrons.
When bonding with each other, only four electrons from each atom participate in the process and
are called valence electrons. In the non-interacting atoms, these valence electrons occupy the free



atom eigenstates called s and p orbitals because of their angular momentum. Furthermore, the
electronic eigenstates are characterized according to their spin quantum number (spin up and spin
down). The number of eigenstates determines the dimension of the matrices for our computational
problem while the partial eigenvalue sum is determined by the number of electrons in the system.

For the carbon system it is a good approximation to neglect the spin dependency of ground
state properties of the system. Then, spin up and spin down states are equally occupied and
energetically degenerate. This allows us to deal only with half of the possible electronic states
(spin up or spin down) and half of the available electrons to occupy them. Spin degeneracy
requires only to multiply quantities depending on the number of electrons by a factor of two.
Only one s and three p (ps, py, p,) valence orbitals on each atom have to be considered within
this approximation. The dimension of our problem reduces to 4N (=number of atomic orbitals)
with 2N electrons to occupy them. If the atoms are brought together closely enough to form
clusters or molecules, the interactions between the atoms results in the formation of new set of
states called the molecular orbitals. Within the tight-binding method, these molecular orbitals
are approximated by a linear combination of s and p atomic orbitals. In the molecular system
there are again a total of 4N molecular orbitals (eigenstates of the problem) and 2N valence
electrons.

The quantum mechanical problem is modeled within a non-orthogonal tight-binding approxi-
mation. The electronic part can then be represented by a Hamiltonian matrix H and an overlap
matrix S, each of dimension 4N X 4N. Both H and S are functions of the atomic coordinates,
ie, H=H({R}) and S = S({R}), where {R} represents the set of all atomic positions and
satisfy the eigenvalue equation,

HTy, = S\ Ty, (3)

where Mg is the energy of a single particle state.
The total energy of the system is given by the sum [27]:

U= Uel + Urepa (4)

where Uy is the electronic contribution to the total energy, obtained by performing a partial sum
over the eigenvalues, i.e., sum over the eigen-energies of the occupied electronic states:

2N
Uel =2 Z >‘ka (5)
k=1

and Uy.p is given by a sum over pair potentials

N
Urep = Z Z d)(rlj)) (6)

where ¢ is a simple pair potential term with r;; being the distance between atoms %z and 7. While
the evaluation of the sum in equation (6) is straightforward, computing the sum in equation (5)
poses all the computational challenge.

We use molecular dynamics simulations to find the configuration {R} which minimizes the
total energy U, i.e. to find the equilibrium state of the system. For this purpose one follows
the paths of the atoms in configuaration space which are determined by the classical (coupled)
equations of motion. Therefore, one also needs to obtain the forces acting on each atom. They
can be derived by taking the partial derivatives of the total energy U with respect to the positions,
z € {R}, of each atom. If this is not feasible, numerical differentiation of U, becomes necessary



to obtain the forces. This can be accomplished by making small displacements éz in each of the
atomic positions and evaluating the expression

U(z + éz) — U(z)
5o : (7)

Molecular dynamics can now be performed by solving the equations of motion from Newton’s
second law,

d’z ou
MW =5, (8)
where M is the mass of the atom. A small damping term needs to be added to the above
equation to drive the system to equilibrium (minimum energy) configuration. The equation can
be numerically integrated using predictor-corrector methods [30, 14, 3, 4]. Thus, the molecular

dynamics simulations consist of the following steps:
1. Initialize coordinates z;
2. Predictor step;
3. Compute total energy U = U + Urep;
4. Compute the forces;
5. Corrector step.

Steps 2 through 5 are repeated (usually several hundred times) until all the forces are zero.

In this paper, we have applied the new method to systems of carbon atoms due to the current
interest in fullerenes and nanotubes. These two systems have, as constituents, carbon atoms
with three-fold coordination. The versatility of carbon atoms in forming materials with widely
differing properties provides an interesting challenge in formulating theoretical and numerical
methods capable of accurate structural determinations in various configurations. Figure 1 shows
some typical configurations for carbon systems: (a) Cgo fullerene, (b) carbon nanotorus and (c)
carbon nanotube.

3 Partial Eigenvalue Sum

Given a symmetric matrix A € R™*" and a scalar g, the crux of the new method for computing
the partial eigenvalue sum
Tu,A = Z As

Ai<lp

is to construct a function f such that the trace of f(A) approximates the sum 7, 4. Specifically,
one wants to construct a function f such that

N A, if A; < Ji
f(Az) o { 0, it A > My (9)

for ¢ = 1,2,...,n. Then, we have tr(f(4)) = A1 + ---+ Am. There are many choices of such
functions. The simplest choice is f(¢) = (h({), where h(() is a shifted step function:

1 if (<p
h(o_{o it (> p.



(c) Nanotube

Figure 1: Three configurations of carbon systems.



Figure 2: Graphs of ¢(¢) for different values of x where u = 0.

Alternatively, we choose f to be of the form

f(€) =¢g(¢) (10)
where )
9(¢) = W,

u and x are constants. This function, among other names, is known as the Fermi-Dirac distribution
function [23, p. 347]. In the context of a physical system, the usage of this distribution function
is motivated by thermodynamics. It directly represents thermal occupancy of electronic states.
k is proportional to the temperature of the system, and p is the chemical potential (the highest
energy for occupied states).

It is easily seen that 0 < g(¢) < 1 for all ¢ with horizontal asymptotes 0 and 1. (g, %) is the
inflection point of ¢ and the sign of x determines whether g is decreasing (x > 0) or increasing
(k < 0). For our application, we want the sum of all eigenvalues less than u, so we use K > 0.
The magnitude of x determines how “close” the function g maps ( < g to 1l and ¢ > p to 0. As
k — 07, the function g(({) converges to the step function A(¢). The graphs of the function g(¢) for
¢ = 0 and different values of the parameter x are plotted in Figure 2. Numerically, for example
with k = 0.1, we have g(—1) = 9.9995 x 1071, ¢(-0.5) = 9.9331 x 10~!, ¢(0.5) = 6.6929 x 103
and g(1) = 4.5398 x 1075.

With this choice of f((), we have

Tua= > Aimtr(f(A) = el f(A)e,.
A <p =1

where e; is the ¢-th column of the n X n identity matrix.
To this end, the problem of computing the partial eigenvalue sum is recast as computing the
summation of n bilinear forms e f(A)e, fori=1,...,n.

4 Computing the Bilinear Linear Form uT f(A)u

In this section, we review the scheme presented in [7, 16, 17, 2] for computing the bilinear form
uT f(A)u. This scheme serves as a basic computational tool for computing the partial eigenvalue



sum. Numerous matrix computation problems can be represented as the problem of computing
a bilinear form qu(A)v. For example, computing an error bound for an approximate solution
of a linear systems of equations [7], bounding an element of A~! [16, 17], minimizing a quadratic
functional with constraints [18, 17], estimating the parameter in the generalized cross-validation
technique [19] and computing det(A) [2] all can be recast as the problem of computing a bilinear
form uT f(A)v.

The main idea of computing the bilinear form u% f(A)u is to first transform it to a Riemann-
Stieltjes integral and then use Gaussian quadrature. This in turn uses orthogonal polynomials
and the underlying Lanczos process for the construction of orthogonal polynomials. The idea
was originally proposed in [7] and further developed in [16, 17]. In the following, we outline this
approach.

Let A = QAQT be the eigendecomposition of A, where Q is an orthogonal matrix and A is
a diagonal matrix with increasingly ordered eigenvalues A1 < Ay < --- < A,. The bilinear form
uT f(A)u can be written as the following:

n

W F(Au =T QF(M)QTu =aT f(A)i = f(X)E, (11)

=1
where % = QT u. Furthermore, the sum can be rewritten as a Riemann-Stieltjes integral

b

o f(A)u= [ fN)dw(d), (12)
where the measure function w(\) is a piecewise constant function defined by
0, ' if a<A< X
wX) =1 Yim1 @, i A <A< A (13)

YR a2, i An < A<

A standard numerical method to compute a Riemann-Stieltjes integral is Gaussian quadrature.
For an introduction to Gaussian quadrature, see the references [8, 13]. The Gaussian quadrature
formula has the form

k
[ soawn = > w3 (05) + ol (14)

where the weights {w;} and the nodes {6,} are unknown and to be determined. p[f] is the
integration error (remainder).

Let us recall how the weights and nodes in the quadrature formula are obtained. First, we
know that a sequence of polynomials {p;(A)}2, can be defined such that they are orthonormal
with respect to w(A), i.e.,

1 ife=y,
0 otherwise,

[ 2 dat - {

where it is assumed that /dw()\) = 1. This sequence of orthonormal polynomials satisfies a

three-term recurrence
Bipi(A) = (A — a;)pj-1(A) = Bj-1pj-2(A) (15)
for j =1,2,...,k with p_1(A) = 0 and po(A) = 1. Writing the recurrence in matrix form, we have

AP(A) = Tkp(A) + Brpr(Nek, (16)



where

and

Br—2 k-1 PBr-1
Br-1 ok
Then in the Gaussian quadrature rule, the eigenvalues of T} (which equal to the zeros of pg(}))
are the nodes {#;}. The weights {w,} are the squares of the first elements of the normalized
eigenvectors of T} [8].
Note that the Lanczos procedure is a natural and elegant way to compute the orthonormal
polynomials {p;(A)} [16, 24]. We shall discuss this further in Section 6. A similar approach can
be derived [2, 16, 17] for computing a general bilinear form u? f(A)v.

5 Trace of f(A) and Monte Carlo Simulation

If we choose u = e; in the bilinear form qu(A)u and use Gaussian quadrature to compute an
estimate o; for el f(A)e;, then the sum Y 7, o; is an approximation of 3% el f(A)e;,. This
provides us with a method of estimating tr(f(A)) since Y7 el f(A)e; = tr(f(A)). However, this
approach would require computing n estimates o;. If estimating each o, costs on the order of
n?, then the total cost would still end up on the order of n3, the same cost as a dense matrix
approach.

To reduce the computational costs, we can use a Monte Carlo simulation technique for esti-

mating tr(f(A4)) [2]. This technique is based on the following proposition [22, 9].

Proposition 5.1 Let H be an n X n symmetric matriz with tr(H) # 0. Let Z be the discrete
random variable which takes the values 1 and —1 each with probability 0.5 and let z be a vector
of n independent samples from Z. Then zT Hz is an unbiased estimator of tr(H), i.e.,

E(zTHz) = tr(H)

and

var(zT Hz) = 2 Z h?j,
i#i
where E(-) denotes expected value (of a random variable) and var(-) denotes variance (of a random
variable).

ProOF. Since zTHz = Y, ; z;hs;2;, it immediately follows that E(zTHz) = tr(H). Using the
symmetry of H, we have var(zT Hz) = E[(2THz2)?] — [E(zTH2)]> = 2 it hi;.

An unbiased estimate of tr(f(A)) can be obtained based Proposition 5.1. To do this, we first
generate p sample vectors z; and then apply the approach discussed in Section 4 to estimate the
bilinear forms 2z f(A)z, for k = 1,...,p. This yields p estimates o} of z{ f(A)z, of which we
compute the mean giving an unbiased estimate of tr(f(4)), i.e.,

tr(f(4)) = % Z k.
k=1

Note that probabilistic error bounds can be derived for the estimated value [2].
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6 The PES Algorithm

In this section, we shall combine the tools established in earlier sections to present an algorithm for
estimating the partial eigenvalue sum of a symmetric positive definite pair (H, S ). We refer to this
as the PES algorithm which simply stands for the Partial Eigenvalue Sum. Given the Cholesky
factorization of S: S = LLT, the generalized eigenvalue problem H¥ = ASV¥ is equivalent to the
standard eigenvalue problem

(L'HLTY(LT®) = A(LT ).

Hence, computing the partial eigenvalue sum of the matrix pair (H, S ) is equivalent to computing
the partial eigenvalue sum of the matrix A = L~'HLT.

The Lanczos process is a simple yet refined method for computing the orthonormal polynomials
as discussed in Section 4. The symmetric Lanczos process satisfies a three-term recurrence

Biq; = (A —a;)q;-1 — B5-195-2

for j = 1,...,k, where the initial vector gy has unit norm and Sy = 0. It is known [16] that the
generated Lanczos vectors g; are orthogonal and are related to the orthogonal polynomials p; in
Section 4 by

¢ = pi(LT HL ™ )qo.

Thus, with initial vector go = u/||u||, k steps Lanczos process generates a tridiagonal matrix T}.
The eigenvalues and squares of the first elements of the normalized eigenvectors of Ty are the
nodes and weights in the Gaussian quadrature rule, respectively.

To apply the standard symmetric Lanczos algorithm to the implicitly defined matrix A =
L~'HL™T a matrix-vector product routine must be supplied that incorporates L along with H,
but the actual Lanczos process need not be modified at all. It is noteworthy that it is possible
to use the Lanczos process on S™'H, again defined implicitly. This option is valuable when S
cannot be factored conveniently [29]. In our current application, the matrix S can be reordered to
have narrow half-bandwidth, and the usage of an implicitly defined matrix A is very satisfactory.

The following is a pseudo-code of the PES algorithm which computes an unbiased estimate of
the trace of f(L"'HL~T). This, in turn, is an unbiased estimate of the sum of the eigenvalues of
(H, S ) less than a prescribed value p.

PES Algorithm: Suppose (H,S) is a real n x n symmetric positive definite pair
with the Cholesky factor of S: S = LLT. Given scalars x and x > 0, the function
f defined by (10), and the number of sample vectors p. This algorithm produces an
estimate & of the partial eigenvalue sum 7, defined in (2).

e Fork=1,2,...,p
1. Generate n-vector z; with elements uniformly distributed on (—1,1)
2. 2 = sign(zk)
3. Compute estimate &y, for zf f(L~HL™T)z,
(a) Let rog = 2z, go = 0 and Fy = m
(b) For 7 = 1,2, ..., until convergence

L. g5 =rj-1/Bj-1
2. r; = L_1HL_qu - qj_lﬂj_l

— ol
3. 05=¢q;r;
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4. r; =r; — q;05

5. B; = ,/r T;

6. Compute eigenvalues {6;} and first elements {w;} of the eigenvectors

of T;
7. Compute o; = 3>7_, w?f(6,)
(c) Endfor
(d) &% = B3,
Endfor

,.._l o] ~
.O'—p kzla'k

A couple of remarks are in order. First, steps 3.(b).1 to 3.(b).5 comprise one iteration of
the standard symmetric Lanczos process on the matrix A = L™'HL~T. It is important to note
that the matrix-vector multiplication in step 3.(b).2 is implicitly implemented, i.e., the matrix A
is never formed explicitly. Instead three separate steps are done to compute the matrix-vector
multiply: a triangular solve with LT, a matrix-vector multiply with H and another triangular
solve with L.

Second, although the function f is a composite function that involves an exponential, it is
evaluated only at the node points used in Gaussian quadrature in Step 3.(b).7. Computing the
exponential of a matrix is not required. Thus, the cost of function evaluations is minimal.

6.1 Some computational issues

The following are some additional computational issues encountered with the PES algorithm.

e We have used the Reverse-Cuthill McKee (RCM) reordering scheme from SPARSPAK [15]
to reorder the matrix S such that S = PTSP is banded, where P is a permutation matrix.
Basically, the RCM reordering is a reversal of the best ordering obtained by a breadth-first
search of a graph of a matrix [26].

e We use the band Cholesky decomposmon routine DPBTRF from LAPACK to compute the
Cholesky decomposition of S. §=1ITL. Correspondlngly, the matrix-vector multiplica-
tion at the step 3.(b).4 becomes L- 1PTHPL g;- The band triangular system solvers
(with coefficient matrices L7T and L~ 1) are available from BLAS (Basic Linear Algebra
Subprograms).

e Currently, the coordinate sparse matrix storage format is used for matrices H and S and the
RCM reordering routine. In order to use LAPACK’s band Cholesky decomposition routine
DPBTRF, we convert the Coordinate format to LAPACK symmetric band format. That is,
we convert the storage of S from the coordinate format to a two-dimensional array with
b, + 1 rows and n columns, where b is the half-bandwidth of S. Columns of the matrix S
are stored in corresponding Columns of the array, and diagonals of the matrix are stored in
rows of the array. In summary, our current implementation of the PES algorithm requires
2n, + 21, + n integer storage and 7, + 1, + (b + 5)n real storage, where 7, is the number
of nonzeros in the upper triangular part of H and 7, is the number of nonzeros in the upper
triangular part of S.
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e The computational complexity of the PES algorithm is approximately

n(b2 + 3b,) —I—p[ 3, +L(4nbg + 4ny +8n) + 16(42 + )
———

band Chol.fact. initialization Lanczos proc. e-values of T

where £ is the average number of Lanczos iterations for convergence and p is the number of
randonm sample vectors used in the Monte Carlo simulation. In general, p is chosen about
10 to 20. The number of Lanczos iterations is about 15 to 25. Therefore, the computational
complexity can be simplified to O(nb% + 4pl(nbs + 7,)). Note that the half-bandwidth b

of § plays a key role in the performance.

e The following stopping criteria is currently used:
|0 — 05-1] < €loy
where € is a user specified tolerance value. This criteria tells us that
o — 05| < |lo = 0j_1] + €]yl

Therefore, the iteration stops if the error is no longer decreasing or decreasing too slowly.
An alternative stopping criterion is to estimate the error term p[f] in the quadrature rule.
This is subject to further study. In addition, it is good practice for any iterative method to
have a parameter mazit to limit the maximum number of iterations (i.e., j < mawit).

7 Numerical Examples and Discussion

All numerical experiments for computing the partial eigenvalue sum and its applications in tight-
binding molecular dynamics were carried out on a Convex Exemplar SPP-1200 system at the
University of Kentucky. The algorithm was implemented in Fortran 77 and compiled with the
command fc -02. fc is the Convex Fortran 9.3 compiler. Program attributes were set by
mpa -m -noparallel -n a.out. The mpa facility modifies attributes of program execution, and
here we set it so the programs ran in serial fashion. Also, during compilation, the programs
were linked to the ConvexMLIB-LAPACK and ConvexMLIB-VECLIB libraries. ConvexMLIB-
LAPACK is derived from the public-domain version of LAPACK and has been specialized for
CONVEX computers. ConvexMLIB-VECLIB is a collection of Fortran subprograms optimized
for use on the CONVEX family of supercomputers. It contains Level 1 BLAS for vector-vector
operations, Level 2 BLAS for matrix-vector operations and Level 3 (Extended) BLAS for matrix-
matrix operations. The tolerance value ¢ for the stopping criteria of the algorithm is set to
5.0 x 1074

We have performed total energy calculations on large carbon systems that include fullerenes,
nanotubes, “knee” clusters and network clusters (building blocks for bulk diamond structure).
These structures are now routinely produced by experimentalists. Their structure determina-
tion constitutes an important task for theoretical investigations. The generalized tight-binding
method is found to be very accurate for treating these systems [27]. The Hamiltonian and overlap
matrices H and S are constructed using parameters for pure carbon. In this model, each atom
is characterized by 4-orbitals. As a general rule, for a system containing N atoms, one needs to
construct 4N X 4N matrices for both H and S that are very sparse. Due to the dependence of .S
on H in the model, H and .S have the same sparsity pattern.
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Figure 3: Carbon cluster that forms part of a “knee” structure connecting nanotubes of different
diameters.

In the following, we present numerical results for two carbon systems. The first systems is a
carbon cluster that forms part of a “knee” structure. The second systems is a carbon network
cluster that forms part of a bulk diamond structure. For these systems, we have investigated
the distribution of eigenvalues, the RCM reordering scheme and comparisons of the PES method
to the QR and bisection methods available in LAPACK. In addition, the PES method is also
compared to band methods and sparse eigensolver methods.

Knee Cluster: Consider a carbon cluster which forms part of a “knee” structure, connect-
ing nanotubes of different diameters [10]. Carbon nanotubes are known to exhibit metallic or
semiconducting properties depending on their diameters. These “knee” junctions provide an in-
teresting microscopic metal-semiconductor contact and are of considerable technological interest.
The “knee” structure shown in Figure 3 was used to construct several test pairs of various sizes.
Figure 4 shows the eigenvalue distribution for the cluster containing 60, 120 and 240 atoms.
Accordingly, the matrix sizes are 240, 480 and 960, respectively. There is a clear gap between
eigenvalues that corresponds to the highest occupied and lowest unoccupied states.

Application of the RCM reordering algorithm on the matrix S produced half-bandwidths
approximately equal to b, = n/9. For example, with system size n = 960, the reordered matrix
S has a half-bandwidth of 110.

Table 1 lists performance statistics of the QR method, the bisection method, and the PES al-
gorithm using p = 10 sample vectors. The first column of the table shows the order n of the
matrix pair (H,S ). The second column shows the number m of eigenvalues to the left of the gap
at the origin; i.e., m is the number of eigenvalues to be summed. We see that approximately 65%
of the total eigenvalues are required for the sum. The third column is the partial eigenvalue sum
obtained either by using the QR method or the bisection (BI) method (the quantities computed
by two methods agree up to 12 decimal digits). The fourth and fifth columns are the CPU times
(in seconds) of the QR and bisection methods. The sixth and seventh columns are the estimated
partial eigenvalue sum and the CPU time of the PES method, respectively. The final column
shows the percentage of the relative error in the approximation.

From the table, we see that the approximated partial sums are within a range of 0.01% to 2.2%
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Table 1: Performance of PES method vs. dense methods on Convex Exemplar SPP-1200. Here,
10 Monte Carlo samples were used to obtain estimates for each systems size.

Dense methods PES % Relative
n m || Partial Sum QR Time BI Time || Estimate Time Error
480 349 -4849.8 7.4 7.6 -4850.2 2.8 0.01
960 648 -9497.6 61.9 51.8 -9569.6 18.5 0.7
1000 675 -9893.3 80.1 58.6 | -10114.1 22.4 2.2
1500 987 -14733.1 253.6 185.6 -14791.8 46.4 0.4
1920 | 1249 -18798.5 548.3 387.7 || -19070.8 72.6 1.4
2000 | 1299 -19572.9 616.9 431.8 -19434.7 78.5 0.7
2500 | 1660 -24607.6 1182.2 844.6 -24739.6  117.2 0.5
3000 | 1976 -29471.3 1966.4 1499.7 || -29750.9 1435 0.9
3500 | 2276 -34259.5 3205.9 2317.4 -33738.5 294.0 1.5
4000 | 2571 -39028.9 4944.3 3553.2 -39318.0  306.0 0.7
4244 | 2701 -41299.2 5915.4 4188.0 -41389.8 339.8 0.2
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Figure 6: Monte Carlo simulation of PES method for p = 50 sample vectors.

relative error to the “exact” value computed by the QR or bisection method. This approximation
is acceptable in practice. Figure 5 shows the speed of computing the partial eigenvalue sum
relative to the PES algorithm. The horizontal axis is matrix dimension, and the vertical axis is a
method’s CPU time divided by the time for PES . Therefore the PES curve is a horizontal line at
1, and the other curves measure how many times slower the QR and bisection methods are than
PES . From the figure, we see that PES method is more than a factor of 2 times faster than QR
and bisection methods for small problems. For larger problems, the PES method is about 12 times
faster than the bisection method and 17 times faster than the QR method. The total savings in
CPU time is significant since the partial eigenvalue sum is required to be repeatly computed as
many as a hundred times in our application.

We note that the RCM reordering procedure takes a significant portion of the total CPU time
in the PES algorithm. It consumes approximately 66% of the CPU time for n > 2500. Even if
we were to increase the number of samples to p = 20 to improve the estimate in Monte Carlo
simulation, then the RCM reordering procedure still takes approximately 50% of the total CPU
time.

Figure 6 shows typical stochastic behavior we observed with matrix order » = 1920 and p = 50
samples. As with any stochastic technique, a large number of samples usually result in better
approximations. Using additional sample vectors only increases computational time linearly. The
RCM reordering and Cholesky factorization costs are incurred only once.
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Figure 7: Carbon network cluster of 1156 atoms that forms part of a bulk diamond structure

Bulk Diamond Cluster: We have applied the PES method to the 1156-atom carbon network
cluster shown in Figure 7. This cluster forms part of a bulk diamond structure, one of the most
stable forms of carbon. The carbon atoms in the interior of this cluster are arranged so that each
has four neighbors. The system has a relatively large gap in the eigenvalue spectrum.

For the bulk diamond structure of size n = 4624, the matrices H and S have 437,184 nonzero
entries. The RCM reordered matrix S has a half-bandwidth of b, = 1468, approximately one-
third the order of the matrix. For this example, the number of eigenvalues to the left of the
gap was m = 2587, or 56% of all eigenvalues. Using the QR method to compute all of the
eigenvalues, it took 87 CPU minutes. The computed partial eigenvalue sum was 7, = —43967.3.
The PES method with p = 10 samples produced an estimate of —43843.6 with relative error 0.2%
in 17 CPU minutes. The RCM reordering procedure took 11 minutes of the total 17 minutes.
With p = 20 samples, PES produced an estimate of —43951.7 in 21 minutes. The relative error
is less than 0.1%.

We should note that the speedup of the PES method was not as significant for the bulk
diamond structure as it was for the “knee” structure. We observe that for the bulk diamond
structure, the half-bandwidth b, of the reordered matrix S is much larger than in the “knee”
structure. It is about one third of the matrix dimension. As we discussed in section 6, this is one
of the key factors responsible for the performance of the PES method. An efficient reordering
scheme to reduce the bandwidth is certainly highly desired.

Finally, let us briefly report the performance of two other approches we have investigated. The

first approach explored band structure in both matrices H and 5. The method has four steps:

1. Use the RCM reordering algorithm so that S = PTSP is banded. Since H has the same
sparsity structure in our application, then H = PTHP has the same half-bandwidth.
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2. Compute the band Cholesky decomposition of S: S=1rLL7.

3. Form the banded matrix A = ZTL_lﬁL_TZ, where Z is chosen to preserve the band
structure of H.

4. Use the band QR algorithm to compute all the eigenvalues of A or the bisection method to
compute only the desired eigenvalues of A.

The implementation of this method is easily done with LAPACK. A performance profile for the
“knee” cluster showed that step 3 took more than 60% of the total CPU time of this approach.
This step is even significantly slower than the direct dense transformation without exploiting band
structure although a dense transformation takes significantly more flops. As a result, this band
method can be from 1.5 times to 2 times slower than the dense QR or bisection methods, for
matrix sizes as small as 480. This in turns is 3 to 30 times slower than the PES method.

The second approach we have investigated is to use a sparse eigensolver. For example, we
used ARPACK [25] to find a few of the algebraically smallest eigenvalues, then used deflation
to find the next few eigenvalues, and repeated until all desired eigenvalues are found. We have
observed that for computing just the 6 algebraically smallest eigenvalues with tol = 1073 with
the matrix size n = 960 in the “knee” cluster, ARPACK takes about 1/3 of the total CPU time
of the PES method. Since we need to find about half of eigenvalues, we expect that this approach
would not be competitive in terms of speed and memory.

8 Concluding Remarks

A new method for computing a partial eigenvalue sum of a symmetric definite pair of matrices is
presented in this paper. We have shown that the PES method is significantly faster than those
methods which directly compute individual eigenvalues and then sum them up. However, this new
approach is generally less accurate. But for our application of electronic structure calculations in
molecular dynamics, the achieved accuracy is acceptable. This method could easily be modified
to estimate a partial eigenvalue sum over a specified interval [e, 5]. The estimates in Monte Carlo
simulation can be improved by using a better sampling technique. It deserves further study.
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