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Abstract| This paper demonstrates that, in general, im-
plementations of circuit reduction methods can produce un-

stable and non-passive models even when such outcomes
are theoretically proven to be impossible. The reason for
this apparent contradiction is the numeric roundo� inher-
ent in any �nite-precision computer implementation. This
paper introduces a new variant of the symmetric, multi-

port, Pad�e via Lanczos algorithm (SyMPVL) that, even in
practice, is guaranteed to produce stable and passive models
for all the circuits characterized by pairs of symmetric, pos-
itive semide�nite matrices. The algorithm is based by a new
band Lanczos process with coupled recurrences. A number
of circuit examples are used to illustrate the results.

Introduction

In recent years, model reduction for extracted RC(L)
circuits has become an important part of the VLSI design
methodology. Parasitic extraction programs typically pro-
duce large lumped RC (or even RLC) circuits as models of
the structures that link the various functional blocks (the
so-called interconnect). The storage and the analysis of the
interconnect model data for an entire VLSI chip, which may
contain millions of interconnect structures, will surpass the
capabilities of even the most powerful computers.

The method of choice for solving the interconnect-data
storage and analysis problems is the reduced-order mod-
eling of the interconnect RC(L) circuits. The powerful
model-reduction techniques introduced in the last few years
(see, e.g., [1], [2], [3], [4], [5], [6]) achieve typical compres-
sions of several orders of magnitude in the quantity of in-
terconnect data needed to perform all analyses of interest,
with no practical loss of accuracy. The reduced-order mod-
els are a compact form of representing interconnect model
data and, moreover, can be used in time-domain simula-
tions as substitutes of the full-blown interconnect circuits.
Such time-domain simulations are performed to verify tim-
ing correctness and signal integrity of VLSI designs. The
original full-blown interconnect circuit is always stable and
passive, being composed solely of passive components. It
is desirable that the reduced-order models preserve these
properties to ensure that the time-domain simulations re-
main always stable.

A number of recent papers (such as [7], [4], [5]) have em-
phasized the importance of producing stable and passive
reduced-order models and proposed model reduction algo-
rithms that \guarantee" the preservation of stability and
passivity for RC circuits [8], [2] or, with certain accuracy
compromises, even for RLC circuits [5], [6].

In this paper we demonstrate that theoretical proofs of
stability and passivity are insu�cient for practical appli-

cations. When implemented on a real-life, �nite-precision
computer, it is necessary to show that the model-reduction
algorithm maintains the stability and passivity properties
even in the presence of the inherent numerical roundo�.
We illustrate this point, through the SyMPVL algo-

rithm applied to RC circuits. In [2], [9], this algorithm
was proven, at least in theory, to produce only stable and
passive models. We brie
y review the algorithm, and the
proofs of its stability and passivity in the following sec-
tion. We show that a straightforward implementation may
occasionally produce unstable reduced-order models. The
apparent contradiction is explained by the e�ects of nu-
meric roundo�. We then introduce a new variant of the
algorithm that guarantees the stability and passivity of the
results even in the presence of roundo�. Finally, we illus-
trate the di�erence between the two variants of SyMPVL
on a number of examples.

The SyMPVL Algorithm

The m �m, m-port impedance matrix of an RC circuit
has the expression

Z(s) = BT(G+ sC)�1B; (1)

where C and G are real N � N matrices that represent
capacitor and resistor contributions, respectively. For RC
circuits, both matrices are symmetric and positive semidef-
inite. The N �m matrix B de�nes the m ports.
Let s0 � 0 be any real expansion point such that the ma-

trix G+ s0C is positive de�nite, and let G+ s0C =MMT

be its Cholesky factorization (M is a lower triangular ma-
trix). The matrix Z(s) can then be recast as follows:

Z(s) = BT (G+ s0C + (s � s0)C)
�1
B

= BT
�
MMT + (s � s0)C

��1
B

= LT (I+ (s � s0)A)
�1
L:

(2)

Here A =M�1CM�T, and L =M�1B. The matrix A is
symmetric and positive semide�nite.
The m-port impedance matrix Z(s) is a matrix-valued

rational expression of order N , the number of circuit nodes,
which can be very high. In [1], [2], we showed that a low
order matrix-Pad�e approximation of Z(s) can capture the
input-output behavior of the multi-port in the frequency
range of interest with practically no loss of accuracy.
The SyMPVL algorithm computes e�ciently and ro-

bustly such a matrix-Pad�e approximation by means of a
variant of the symmetric band Lanczos algorithm [10],
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[9]. The band Lanczos process is a generalization of the
standard Lanczos process [11] to multiple starting vectors.
Speci�cally, let AT = A 2 RN�N and let

eV1 :=
�
~v1; ~v2; � � � ; ~vm

�
2 RN�m:

be a matrix withm starting vectors. The after n iterations,
the band Lanczos process has generated a sequence of so-
called Lanczos vectors, namely the columns of the matrix

Vn =
�
v1 v2 � � � vn

�
:

The Lanczos vectors build a basis of the subspace spanned
by the �rst n linearly independent columns of the Krylov
matrix

K(A; eV1) :=
h eV1 A eV1 � � � AN�1 eV1

i
:

This subspace is the so-called block Krylov subspace.
The band Lanczos process generates the Lanczos vectors

by means of (2m + 1)-term recurrences that can be sum-
marized compactly in matrix form as follows:

AVn = VnTn +
�
0 � � � 0 v̂n+1 � � � v̂n+mc

�
: (3)

Here Tn is a banded symmetric n�n matrix of bandwidth
2m+1, and mc = mc(n) is an index that keeps track of so-
called \de
ation". Initially, mc = m and then mc is reset
to be mc � 1 every time de
ation occurs. De
ation means
that the algorithm encounters a linearly dependent column
of the Krylov matrix K(A; eV1) that has to be deleted.
The Lanczos vectors are constructed to be orthonormal:

VT
nVn = In: (4)

Moreover, the \auxiliary vectors", fv̂n+jg
mc

j=1, in (3) are
orthogonal to the Lanczos vectors:

VT
n

�
v̂n+1 � � � v̂n+mc

�
= 0: (5)

We note that, in general, the auxiliary vectors are not or-
thonormal among themselves, and they even do not need

to be linearly independent. Possibly linear dependence of
the auxiliary vectors is detected and corrected by the de-

ation scheme that is built into the algorithm. From (3)
to (5), it follows that

Tn = VT
nAVn: (6)

In [1], [12], we showed how to obtain an n-th matrix-
Pad�e approximant [13] Zn to Z from the quantities Tn

and �n generated by the band Lanczos process. Here �n is
an upper-triangular matrix given by �n = VT

nL. The n-th
matrix-Pad�e approximant is then de�ned as follows:

Zn(s) = �
T
n (In + (s � s0)Tn)

�1
�n: (7)

Stability and Passivity

Since the original RC circuit is stable, all the poles of the
impedance matrix Z(s) are non-positive. By (2), the poles
of Z(s) are given by

pA = s0 �
1

�
; � 2 �(A): (8)

Here, �(A) denotes the set of all eigenvalues of A. By (7),
all poles of Zn(s) are of the form

pTn = s0 �
1

�
; � 2 �(Tn): (9)

From (6) and since A is positive semide�nite, it follows
from (8) and (9) that

�(Tn) � max�(A) � 0 and maxpTn � maxpA � 0:

Thus, the poles (9) of Zn(s) are all non-positive. More-
over, it can be shown that a possible pole pA = 0 of Zn(s)
is simple. Altogether, this proves that the reduced-order
models de�ned by Zn are stable.
The reduced-order models de�ned by Zn(s) are also pas-

sive. It is well known (see, e.g., [14], [15]) that the reduced-
order model de�ned by a matrix-valued rational matrix
Zn(s) is passive if, and only if, the following three condi-
tions are satis�ed:
(i) Zn(s) has no poles in C+ = f s 2 C j Re s > 0 g (the
right half of the complex plane);

(ii) Zn(�s) = Zn(s) for all s 2 C ;
(iii) Re

�
xHZn(s)x

�
� 0 for all x 2 Cn and s 2 C+ .

Condition (i) is satis�ed in view of the stability of Zn.
Condition (ii) follows immediately from (7) and the fact
that Tn and �n are are real matrices. Finally, we verify
condition (iii). Let s be any complex number with Re s > 0.
Note that, by (6), the matrix Tn is symmetric positive
semide�nite. Therefore, we have for all y 2 Cn

Re
�
yH (I+ �sTn) y

�
= kyk22 + (Re s)yHTny � 0 (10)

For any given x 2 C p , we set

y = (I+ sTn)�nx: (11)

Then y 2 Cn , and inserting (11) into (10) gives (iii). Hence
the reduced-order model given by Zn is passive.
Unfortunately, the stability and passivity proofs given

above do not take into account the �nite precision of any
actual numerical computation. Due to roundo� the com-
puted matrix Tn may have a number of small negative
eigenvalues that, in fact, translate to very large positive
poles. Indeed, when we ran the straightforward implemen-
tation of the SyMPVL algorithm on an extracted RC cir-
cuit consisting of over 200,000 resistors and capacitors, the
resulting matrix Tn had a number of negative eigenvalues
that correspond to unstable poles, see Figure 1. The insta-
bility manifests itself in the time-domain simulation of the
reduced-order model, shown in Figure 2.

Banded Lanczos Process With Coupled

Recurrences

In theory, we know that the resulting matrix, Tn, must
be positive semide�nite. Therefore, it has a factorization

Tn = LTnDnLn;

where Ln is a unit lower triangular matrix and Dn is a
diagonal matrix with nonegative diagonal elements.
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Fig. 1. Reduced-order model poles
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Fig. 2. Time-domain simulation

One way to ensure that, Tn, when computed in �nite
precision remains positive semide�nite despite the roundo�
error is to generate it directly from the factors Ln and
Dn. The proposed new band Lanczos process with coupled
recurrences, does exactly that. Instead of generating the
entries of Tn, it will compute the elements of the factors
Ln and the diagonal elements ofDn. This way the positive
semide�nite property of Tn is structurally enforced. The
algorithm generates two sets of vectors (the columns fvjg
of Vn and the columns fpjg of Pn) by means of coupled
recurrences that can be summarized as follows:

APn = VnLnDn +
�
0 � � � 0 evn+1 � � � evn+mc

�
;

Vn = PnL
T
n :

(12)

We refer to fpjg as the P-vectors. We will see that the
above two equations give rise to two coupled recurrences
for generating the n-th pair of vectors fvng fpng.
In addition to (12), we also impose the orthogonality (4)

and (5), as well as the A-orthogonality conditions

PT
nAPn =Dn: (13)

From (12), (4), (5), and (13), we have

VT
nAVn = LTnDnLn = Tn: (14)

This shows that the band Lanczos process with coupled
recurrences directly computes an LDLT decomposition of
Tn, which can only be positive-semide�nite.
To derive the process to satisfy the equations (12)

and (13), we can use recursion from the (n � 1)-st step
to the n-th step. At the n-th step, we need to perform the
following steps:
(a) Check for de
ation;

(b) Compute the n-th Lanczos vector vn;
(c) Orthogonalize all auxiliary vectors fvn+jg

mc�1

j=0

against the new Lanczos vector vn;
(d) Compute the n-th P-vector pn;
(e) Construct a new auxiliary vector vn+mc

, which ex-
pands the dimension of the underlying block Krylov
subspace by one and is orthogonalized against vn.

Quantitatively, these tasks mean that at the n-th step,
we need to compute the vectors vn, pn and the scalars
f`njg

n�1
j=n�mc

, �n. The following algorithm summarizes
such a band Lanczos process with coupled recurrences.

Algorithm 1 (Band Lanczos with coupled recurrences)

Input: A = AT 2 R
N�N, eV1 =

�ev1 � � � evm�
2 RN�m,

and the total number of steps n.
Output: Vn =

�
vk

�
, Pn =

�
pk

�
, Ln =

�
`i;j

�
, and Dn =

diag(�k).

mc = m

for k = 1; : : : ; n, do
/* check for de
ation */
�k = kevkk2
while �k = 0

if mc � 2,
for j = 1; 2; : : : ;mc � 1,evk+j�1 = evk+j
end

else
exit /* invariant subspace found */

end
mc := mc � 1
�k = kevkk2

end
/* compute k-th Lanczos vector vk */
vk = evk=�k
/* update the existing auxiliary vectors */
if k �mc > 0

`k;k�mc
= �k=�k�mc

end if
for j = 1; : : : ;mc � 1,

� = vTk evj+1evk+j = evk+j � �vk
if k �mc + j > 0

`k;k�mc+j = �=�k�mc+j

end if
end for
/* compute the k-th vector pk */
pk = vk
for j = max(1; k�mc); : : : ; k � 1

pk := pk � `k;jpj
end for
/* compute the new auxiliary vector */
t = Apk
�k = pTk tevk+mc

= t� �kvk
end for

With our new band Lanczos process (Algorithm 1),
the (semi-)positive de�niteness of the computed matrix
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Fig. 3. Ex. 1: dominant poles, SyMPVL(top) and by Alg. 1(bottom)

LnDnL
T
n can be detected from the diagonal entries �k of

Dn. Furthermore, since �k = pTkApk. it is guaranteed
that the resulting matrix LnDnL

T
n is positive de�nite if

the matrix A is positive de�nite, which in turn guarantees
the stability and passivity of the reduced order model.
The reduced-order model is obtained by applying Algo-

rithm 1 to matrix A = M�1CM�T and starting vectorseV1 = M�1B. After n iteration, we obtain Vn, Ln, and
Dn. and �n = VT

n (M
�1B). In terms of these quantities,

the n-th matrix-Pad�e approximant Zn(s) of Z(s) is

Zn(s) = �
T
n

�
In + (s � s0)LnDnL

T
n

��1
�n:

By (14) and [1], [12], it is known Zn(s) is an nth matrix-
Pad�e approximation of Z(s), stable and passive.

Examples

The �rst example is the RC circuit described in the pre-
vious section which resulted in an unstable reduced-order
model with the classic SyMPVL. The number of Lanczos
iterations was 300 due to the large number of ports. On
the other hand, SyMPVL with the new coupled recurrences
Lanczos process, produced Tn = LnDnL

T
n , symmetric pos-

itive de�nite, therefore, all poles are stable, and passivity
is preserved. The dominant poles produced by the two
algorithms are plotted in Fig. 3.
The second example is another extracted circuit with

about 30,000 R and C elements. 60 Lanczos iterations are
necessary to account for all the ports. Again, the clas-
sic SyMPVL algorithm produced unstable poles, while the
new algorithm produced a stable, and passive model. The
dominant poles produced by the two algorithms versus the
exact ones are plotted in Fig. 4.

Concluding Remarks

This paper has shown that theoretical proofs of stability
and passivity of various model-reduction algorithms are in
general insu�cient. Numerical roundo�, inherent in any
practical computer realization of the algorithm, can still
cause the loss of these properties, as we illustrated on a cou-
ple of realistic circuit examples. Any method that claims
guaranteed stability or passivity must be backed by a nu-
merical method capable of translating such a guarantee
into practice. This paper has introduced exactly such a
method for the SyMPVL algorithm. The newly introduced
band Lanczos process with coupled recurrences guarantees
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Fig. 4. Ex. 2: SyMPVL (top), Alg. 1 (middle), exact (bottom).

that even a �nite-precision implementation of SyMPVL
produces stable and passive reduced-order models.
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