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Abstract

The classical Lanczos process can be used to efficiently generate Padé approximants of the
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Partial Padé approximants have a number of prescribed poles and zeros, while the remaining
degrees of freedom are used to match the Taylor expansion of the original transfer function in
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1. Introduction

It has long been known that Padé approximation is a useful tool for generating
reduced-order models of linear dynamical systems; see, e.g., [14] and the references
given there. In recent years, there has been renewed interest in and extensive research
into Padé-based reduced-order modeling. These recent developments were mainly
triggered by the landmark paper [28] that demonstrated the potential of using Padé
approximation in the simulation of large electronic VLSI circuits. Some of the recent
research in this area focused on the efficient and numerically stable computation
of Padé-based reduced-order models. In particular, it is now widely accepted that
Krylov-subspace methods, such as the Lanczos algorithm [26] or the Arnoldi process
[4] should be employed, in order to avoid the inherent numerical ill-conditioning of
generating Padé approximants directly from the Taylor coefficients of the transfer
function of the linear dynamical system. We refer the reader to [15,16] for recent
surveys of reduced-order modeling techniques based on Krylov subspaces and their
use in circuit simulation.

On the other hand, it is also well known that, when applied to stable linear dy-
namical systems, reduced-order modeling techniques based on Padé approximation
in general do not preserve the stability of the original system; see, e.g., [1,14,31].
For some applications, such as the use of Padé-based reduced-order models for the
efficient computation of the frequency response of large-scale linear dynamical sys-
tems, the possible occurrence of unstable poles is not an issue [12]. However, often
reduced-order modeling is used to replace large linear subsystems of a stable, pos-
sibly nonlinear, system by smaller approximate models, with the goal to reduce the
complexity of the simulation of the overall system. In this context, it is crucial that the
reduced-order models of the linear subsystems are stable, in order to ensure stability
of the simulation of the overall system. In circuit simulation, reduced-order model-
ing is often applied to large linear subsystems that represent networks consisting of
only resistors, inductors, and capacitors. These RLC networks are stable and passive,
and again, for the stability of the overall simulation, it is crucial that reduced-order
models preserve the passivity of the original RLC network; see, e.g., [29]. Unfortu-
nately, except for the special cases of RC, RL, and LC networks [18,19], Padé-based
reduced-order models of RLC networks are not passive in general.

The purpose of this paper is to explore the use of partial Padé approximation for
the construction of stable, and possibly passive, reduced-order models. True Padé
approximants are rational functions of a given order where all available degrees of
freedom are used to match the Taylor expansion of the function to be approximated
in as many leading coefficients as possible; see, e.g., [8]. Partial Padé approximants
[9], on the other hand, have a number of prescribed poles and zeros, while only the
remaining degrees of freedom are used to match the Taylor expansion of the function
to be approximated in as many leading coefficients as possible. Our main motivation
for studying the use of partial Padé approximation for reduced-order modeling is
based on the observation that, typically, the instability, and possibly nonpassivity, of
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reduced-order models based on true Padé approximants is only due to a small number
of unstable poles and zeros. By prescribing a small number of stable poles and zeros,
while preserving as much of the approximation property of the Padé approximant as
possible, we obtain a new reduced-order model based on partial Padé approximation.
Often, this new model is stable and possibly passive. In particular, we present an
algorithm that generates partial Padé approximants via rank-1 updates of the tridiago-
nal matrices generated by the Lanczos process. Due to the use of only rank-1 updates,
the algorithm is limited to partial Padé approximants whose number, m, of prescribed
poles and zeros is bounded by n, where n is the order of the true Padé approximant.
However, we stress that, for all practical purposes, this does not pose a limitation
at all. First, we never encountered a situation where the true Padé approximant had
more than n unstable poles and zeros, which would then require to prescribe m > n

poles and zeros. Second, a partial Padé approximant with m prescribed poles and
zeros matches the true Padé approximant in its first 2n − m Taylor coefficients. So
even if m > n would occur, the approximation property of the resulting partial Padé
approximant would be too weak to be of practical interest.

We remark that there is some related earlier work; see [1,2,31]. However, the
techniques proposed there all involve explicit matching of the Taylor coefficients of
the transfer function, and hence they are inherently numerically unstable. In [24],
it is proposed to use an implicitly restarted Lanczos method to remedy the possible
instability of Padé-based reduced-order models. However, the implicit restarts mod-
ify some of the data that describes the given linear dynamical system. Consequently,
as pointed out in [15], the reduced-order model generated by this process no longer
matches leading Taylor coefficients of the transfer function of the given system, and
this is undesirable in some applications, such as circuit simulation, where the leading
Taylor coefficients have some physical meaning.

For the special case of RLC networks, it is actually possible to generate provably
stable and passive reduced-order models by means of projection onto Krylov sub-
spaces; see [17,27,32]. However, the transfer functions of these projected reduced-
order models match only half as many Taylor coefficients of the original transfer
function as the corresponding Padé approximant derived from the same Krylov sub-
space. Moreover, these projection techniques require a very specific formulation of
the equations that characterize a given RLC network. For example, in [5], there is an
example of a simple RLC network for which the projected reduced-order model is
unstable if another formulation of the network equations is used. In contrast, Padé ap-
proximation and also partial Padé approximation yield identical results, independent
of the chosen formulation of the network equations. Finally, we would like to stress
that the techniques described in this paper are not restricted to RLC networks and
can be employed for reduced-order modeling of general single-input single-output
time-invariant linear dynamical systems.

The remainder of the paper is organized as follows. In Section 2, we collect
some facts about transfer functions of single-input single-output time-invariant linear
dynamical systems. In Section 3, we briefly review Padé approximants of transfer
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functions and their computation by means of the Lanczos process. In Sections 4
and 5, we show how partial Padé approximants can be obtained via suitable rank-1
updates of the Lanczos tridiagonal matrix. In Section 6, we present a statement of
the overall computational procedure for generating partial Padé approximants via the
Lanczos process. In Section 7, we report the results of numerical experiments for two
circuit examples. Finally, in Section 8, we make some concluding remarks.

Throughout this article, we use boldface letters to denote vectors and matrices.
The n × n identity matrix is denoted by In and the n × m zero matrix by 0n×m;
if the actual dimensions of these matrices are apparent from the context, we omit
these indices and simply write I and 0. For square matrices M, we denote by λ(M)

the set of all eigenvalues of M. The sets of real and complex numbers are denoted
by R and C, respectively. For s ∈ C, Re(s) is the real part of s and Im(s) is the
imaginary part of s. We use C+ := {s ∈ C | Re(s) > 0} to denote the open right-
half of the complex plane. Finally, Rm,n denotes the set of rational functions with
real numerator polynomial of degree at most m and real denominator polynomial of
degree at most n.

2. Transfer functions and some properties

In this section, we collect some facts about transfer functions of single-input sin-
gle-output time-invariant linear dynamical systems.

2.1. Time-invariant linear dynamical systems

We consider single-input single-output time-invariant linear dynamical systems
given by state-variable descriptions of the form

C
d

dt
x(t) = −G x(t) + b u(t),

y(t) = cT x(t),
(1)

where C,G ∈ RN×N and b, c ∈ RN . In (1), the function u(t) represents the input
of the system, y(t) is the output, and x(t) is the N-dimensional vector of state vari-
ables. The matrices C and G are allowed to be singular, and we only assume that
the pencil G + s C is regular, i.e., the matrix G + s C is singular only for finitely
many values of s ∈ C. Note that the first equation in (1) is a system of differential-
algebraic equations if C is singular and a system of ordinary differential equations if
C is nonsingular.

The input–output behavior of the linear dynamical system (1) is described by its
Laplace-domain transfer function,

H : C �→ C ∪ {∞}, H(s) := cT(G + s C)−1b, (2)
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see, e.g., [10]. In Section 3, we consider Padé approximants of transfer functions H
of form (2), and their computation via the Lanczos process. To this end, we will need
the following representation of H in terms of a single matrix A, instead of the two
matrices G and C in the definition of H. Let s0 ∈ R be any fixed expansion point
such that the matrix G + s0 C is nonsingular. Let

G + s0 C = L U, where L,U ∈ RN×N , (3)

be any formal factorization of G + s0 C. For example, (3) can be chosen as a ‘true’
LU factorization where L and U are triangular matrices, possibly permuted due to
pivoting or the ‘trivial’ factorization given by L = G + s0 C and U = I. Using (3),
representation (2) of H can be rewritten as follows:

H(s) = lT(I − (s − s0)A)−1r,

where A := −L−1 C U−1, r := L−1 b, l := U−T c.
(4)

2.2. Stability

If linear dynamical system (1) describes an actual physical system, such as a
functioning electronic circuit, then it will necessarily be stable. Roughly speaking,
stability means that for bounded inputs u(t), the state-variable vector x(t) of (1) will
remain bounded for all times t; see, e.g., [3, Chapter 3.7] or [10, Chapter 8]. For
time-invariant linear dynamical systems (1), stability can be defined via the transfer
function.

Definition 1. The transfer function H of a single-input single-output time-invariant
linear dynamical system is said to be stable (in the sense of Lyapunov ) if H has no
poles in C+ and if any pole of H on the imaginary axis is simple.

Note that for functions H given by (4), any pole pj of H is of the form

pj = s0 + 1

λj
, where λj ∈ λ(A). (5)

However, in general, not every pj of form (5) is a pole of H. Indeed, the poles of H
are given by (5) if, and only if, the triple

A ∈ RN×N , r, l ∈ RN (6)

in (4) is a minimal realization of H. Here, for a given transfer function H, a repre-
sentation (4) is called a minimal realization if the state-space dimension N in (6) is
minimal. If (4) is a minimal realization, then the stability of H can be characterized
completely in terms of λ(A); see, e.g., [3, Theorem 3.7.2]. Next, we state this result.

Theorem A. Let H be a transfer function given by (4), and assume that (4) is a
minimal realization. Then:



144 Z. Bai, R.W. Freund / Linear Algebra and its Applications 332–334 (2001) 139–164

(a) The poles of H are given by

pj = s0 + 1

λj
, where λj ∈ λ(A), j = 1, 2, . . . , N.

(b) The transfer function H is stable if, and only if, the following two conditions are
satisfied:

(i) Re(pj ) � 0 for all j = 1, 2, . . . , N;
(ii) If Re(pj ) = 0, then λj occurs only in 1 × 1 blocks in the Jordan canonical

form of A.

2.3. Passivity

Next, we define passivity, which is a stronger condition than stability. Rough-
ly speaking, a system is passive if it does not generate energy. For example, any
RLC network is passive. For time-invariant linear dynamical systems (1), passivity
is equivalent to positive realness of the associated transfer function H; see, e.g., [3]
or [33, Chapter 4]. Based on this equivalence, in this paper, we will use the following
definition of passivity.

Definition 2. The transfer function H of a single-input single-output time-invariant
linear dynamical system is said to be passive if:

(i) H has no poles in C+;

(ii) H( s ) = H(s) for all s ∈ C;

(iii) Re(H(s)) � 0 for all s ∈ C+.

Note that, for linear dynamical systems (1), condition (ii) is always satisfied since
the data C, G, b, c in (1) is assumed to be real. Furthermore, using representation
(4) of H, condition (i) can be checked via computing the eigenvalues of the matrix A
in (4). Now assume that condition (i) is satisfied. Then, by the Maximum Modulus
Theorem, condition (iii) is satisfied only if

Re(H(iω)) � 0 for all ω ∈ R. (7)

In [6], it is shown how (7) can be checked via computing the eigenvalues of a certain
matrix pencil derived from representation (4) of H.

In the following theorem, we collect some well-known necessary conditions for
passivity.

Theorem B (Necessary conditions for passivity).

(a) If H is passive, then H is stable.

(b) If H is passive, then H has no poles and zeros in C+, and any possible pole or
zero of H on the imaginary axis is simple.
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3. Padé approximation via the Lanczos process

In this section, we briefly review the concept of Padé approximation of a given
transfer function and the numerical computation of these Padé approximants via the
Lanczos process.

3.1. Padé approximants

Let H be the transfer function given by (4). Note that H is a rational function.
More precisely, H ∈ RN−1,N , where N is the state-space dimension of (1). In circuit
simulation, N can be extremely large, and then H is replaced by an approximation
Hn ∈ Rn−1,n with state-space dimension n � N . A widely-used and often the only
viable choice of Hn is Padé approximation.

Expanding transfer function (4) about s0, we have

H(s) =
∞∑
j=0

µj(s − s0)
j , where µj := lT Aj r. (8)

A function Hn ∈ Rn−1,n is said to be an nth Padé approximant of H (about the
expansion point s0) if (8) and the corresponding expansion of Hn agree in the first
2n terms, i.e.,

Hn(s) =
2n−1∑
j=0

µj(s − s0)
j + O

(
(s − s0)

2n). (9)

For an overview of Padé approximants, we refer the reader to [8].
Note that Eq. (9) represents 2n conditions for the 2n degrees of freedom that

describe any function Hn ∈ Rn−1,n. In particular, (9) defines a unique nth Padé ap-
proximant Hn if, and only if, the so-called nth moment matrix

Mn := [µj+k−2]j,k=1,2,...,n is nonsingular. (10)

In this paper, for simplicity, we assume that (10) is satisfied for all n.

3.2. Computation via the Lanczos process

The standard approach to computing Hn is to generate the coefficients of the
numerator and denominator polynomials of Hn via the solution of systems of linear
equations with coefficient matrix Mn. However, in general, due to the typical ill-con-
ditioning of Mn, this approach is feasible only for very moderate values of n, such as
n � 10; see [12] for examples. Fortunately, these numerical difficulties can easily be
avoided by exploiting the well-known connection [23] between Padé approximants
Hn and the Lanczos process [26]. Next, we state this connection.

The starting point is representation (4) of H. We apply the nonsymmetric Lanczos
algorithm to the matrix A ∈ RN×N from (4) and with r, l ∈ RN from (4) as right,
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respectively left, starting vector. We remark that our assumption on the nonsingular-
ity of the moment matrices (10) guarantees that no breakdowns occur in the Lanczos
process; see, e.g., [20,23]. After n steps, the Lanczos algorithm has generated right
and left Lanczos vectors,

v1, v2, . . . , vn+1 and w1,w2, . . . ,wn+1, (11)

such that, for all j = 1, 2, . . . , n + 1,

span{v1, v2, . . . , vj } = span
{
r,A r, . . . ,Aj−1 r

}
,

span{w1,w2, . . . ,wj } = span
{

l,AT l, . . . ,
(
AT

)j−1 l
}
,

(12)

and

wT
j vk = 0 for all j �= k = 1, 2, . . . , n + 1. (13)

Conditions (12) and (13) determine the Lanczos vectors only up to a scaling. We use
the scaling ‖vj‖2 = ‖wj‖2 = 1 for all j.

The Lanczos vectors are generated by means of three-term recurrences. For the
right Lanczos vectors in (11), these recurrences can be stated compactly in matrix
form as follows:

A Vn = Vn Tn + ρn+1 vn+1 eT
n . (14)

Here Vn := [v1 v2 · · · vn], en is the nth unit vector of length n, and Tn is the n × n

tridiagonal matrix

Tn =



α1 ρ2

γ2 α2
. . .

. . .
. . . ρn
γn αn


, where ρj , γj �= 0 for all j. (15)

The left Lanczos vectors in (11) satisfy an equation similar to (14).
The Padé-Lanczos connection then states that the nth Padé approximantHn to the

transfer function H in (4) is given by

Hn(s) = (
lTr

)
eT

1 (I − (s − s0)Tn)
−1e1, (16)

where e1 denotes the first unit vector of length n. For a proof of (16), we refer the
reader to [12] or [23]. Computing Hn via (16) has been advocated in [11,12,21],
and following [11,12], this approach is now known as the PVL (Padé via Lanczos)
method.

3.3. Poles and zeros of Hn

Using Cramer’s rule, representation (16) of Hn can be rewritten as

Hn(s) = (
lTr

) det(In−1 − (s − s0)T′
n)

det(In − (s − s0)Tn)
, (17)
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where T′
n is the (n − 1) × (n − 1) tridiagonal matrix obtained by deleting the first

row and first column of the matrix Tn in (15). Representation (17) shows that the
poles and zeros of Hn can be obtained via the eigenvalues of Tn and T′

n. More
precisely, the poles are given by pj = s0 + 1/λj , λj ∈ λ(Tn), and the zeros by
zj = s0 + 1/λ′

j , λ′
j ∈ λ(T′

n). Note that common poles and zeros, pj = zj , which
then would cancel out, cannot occur in (17). This is a consequence of the fact that
all sub- and superdiagonal elements of Tn in (15) are nonzero. We thus have the
following result.

Lemma 1. Let 1 � n � N and Hn be the nth Padé approximant of H. Then the
poles pj and the zeros zj of Hn are given by

pj = s0 + 1

λj
, where λj ∈ λ(Tn),

and

zj = s0 + 1

λ′
j

, where λ′
j ∈ λ(T′

n).

Remark 1. The Lanczos process is intimately connected with formally orthogonal
polynomials; see, e.g., [20,23] and the references given there. More precisely, each
pair of right and left Lanczos vectors of (11) can be expressed as

vj = ξjψj−1(A) r and wj = ηjψj−1
(
AT)

l, (18)

where ψj−1 is a monic polynomial of degree j − 1 and ξj , ηj �= 0 are suitable scal-
ing factors. In view of (18), bi-orthogonality (18) of the Lanczos vectors is equivalent
to the formal orthogonality,

〈ψj ,ψk〉 := lT ψj(A) ψk(A) r = 0 for all j �= k = 0, 1, . . . , n,

of the polynomials ψ0, ψ1, . . . , ψn. It is well known [23] that ψn is the characteristic
polynomial of Tn. Thus, the denominator polynomial in representation (17) of Hn is
the reverse of ψn with respect to s0, i.e.,

det(In − (s − s0)Tn) = (s − s0)
n ψn(1/(s − s0)).

Similarly, the numerator polynomial in (17) is the reverse of the characteristic
polynomial of T′

n with respect to s0.

Remark 2. Using the connection with polynomials outlined in Remark 1, it is pos-
sible to relate our results on partial Padé approximants to the work in [22,25] on the
calculation of Gauss quadratures with some prescribed knots.
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4. Partial Padé approximation

In this section, we first define partial Padé approximants and then establish a con-
nection to the Lanczos process.

In the following, let k, �, and n be given integers with

0 � k � n, 0 � � � n − 1, 1 � m := k + � � n, (19)

and let

0 �= ϕ1, ϕ2, . . . , ϕk, θ1, θ2, . . . , θ� ∈ C, (20)

be given complex numbers. We assume that the m numbers (20) are pairwise distinct
and that each of the sets

P := {ϕ1, ϕ2, . . . , ϕk} and D := {θ1, θ2, . . . , θ�} (21)

is closed under complex conjugation:

ϕj ∈ P ⇒ ϕj ∈ P and θj ∈ D ⇒ θj ∈ D. (22)

We stress that, in (19), either k = 0 or � = 0 is allowed, which means that either
P or D can be the empty set. In analogy to the representations of the poles and zeros
of Hn given in Lemma 1, we use the numbers (20) to define prescribed poles and
zeros

p̂j := s0 + 1

ϕj
, j = 1, 2, . . . , k,

and

ẑj := s0 + 1

θj
, j = 1, 2, . . . , �,

(23)

respectively. Now consider approximants of the form

Ĥn ∈ Rn−1,n with prescribed poles p̂1, . . . , p̂k and zeros ẑ1, . . . , ẑ�. (24)

Functions (24) have 2n − k − � = 2n − m degrees of freedom, and therefore, for a
given expansion point s0 ∈ R, one would expect that such functions can be used to
match the first 2n − m coefficients in expansion (8) of the original transfer function
H. This leads to the following definition. A function Ĥn of form (24) is called an
nth partial Padé approximant of H (about the expansion point s0) if (8) and the
corresponding expansion of Ĥn agree in the first 2n − m terms, i.e.,

Ĥn(s) =
2n−m−1∑

j=0

µj(s − s0)
j + O

(
(s − s0)

2n−m
)
. (25)

We remark that the general concept of partial Padé approximation (not only of
transfer functions) was introduced and studied by Brezinski [9]. The special case
that only poles are prescribed, i.e., � = 0 is usually referred to as Padé-type approx-
imation; see, e.g., [8].
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In [9], it is shown how to generate partial Padé approximants directly from the
coefficients µ0, µ1, . . . , µ2n−m−1 in expansion (8) of H. However, as in the case of
Padé approximants Hn, this approach suffers from inherent ill-conditioning. Next,
we propose a different approach for constructing the partial Padé approximant Ĥn

via the Lanczos process. We stress that, in principle, it is also possible to construct
Ĥn using any pair of bases for the Krylov subspaces (12). However, since for the
computation of Hn, the Lanczos vectors appear to be the bases of choice, we see no
reason to employ any other bases for the construction of Ĥn.

Let Tn be the n × n tridiagonal Lanczos matrix. Recall from (16) that Tn defines
the nth Padé approximant Hn. Let m be the integer defined in (19). We consider
rank-1 updates of Tn of the form

T̂n = Tn + z eT
n, where z =

[
0

zm

]
and zm ∈ Rm. (26)

Here, en denotes the nth unit vector of length n. Therefore, (26) means that T̂n and
the tridiagonal matrix Tn differ only in the trailing m entries of their last columns.
For example, when n = 8 and m = 5, T̂8 is a matrix of the form

T̂8 =




× ×
× × ×

× × ×
× × × ×

× × × ×
× × × ×

× × ×
× ×



.

In analogy to (16), we now set

Ĥn(s) := (
lTr

)
eT

1

(
I − (s − s0) T̂n

)−1e1. (27)

The following lemma shows that function (27) is a candidate for the nth partial
Padé approximant.

Lemma 2. For any choice of the vector zm ∈ Rm in (26), the associated function
Ĥn defined in (27) satisfies

Ĥn(s) = Hn(s) + O
(
(s − s0)

2n−m
)
. (28)

Proof. Expanding both Ĥn in (27) and Hn in (16) about s0, we see that (28) holds
true if

eT
1 T̂j

n e1 = eT
1 Tj

n e1 for all j = 0, 1, . . . , 2n − m − 1. (29)

Thus, it only remains to show (29). To this end, note that, since Tn is tridiagonal and
e1 is the first unit vector, for all i = 1, 2, . . . , n − 1, the trailing n − i entries of the
column vector Ti−1

n e1 are guaranteed to be zero. Together with (26), we get
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T̂n Ti−1
n e1 = Ti

n e1 + z
(
eT
n Ti−1

n e1
) = Ti

n e1, 1 � i � n − 1. (30)

Using induction on i, we deduce from (30) that

T̂i
n e1 = Ti

n e1 for all i = 0, 1, . . . , n − 1. (31)

Similarly, for all j = 1, 2, . . . , n − m, the trailing n − j entries of the row vector
eT

1 Tj−1
n are guaranteed to be zero, and together with (26), we get

eT
1 Tj−1

n T̂n = eT
1 Tj

n + (
eT

1 Tj−1
n z

)
eT
n = eT

1 Tj
n, 1 � j � n − m. (32)

Using induction on j, we deduce from (32) that

eT
1 T̂j

n = eT
1 Tj

n for all j = 0, 1, . . . , n − m. (33)

By multiplying (33) and (31), it follows that

eT
1 T̂j+i

n e1 = (
eT

1 T̂j
n

)(
T̂i
n e1

) = (
eT

1 Tj
n

)(
Ti
n e1

) = eT
1 Tj+i

n e1

for all j + i = 0, 1, . . . , n − m + n − 1 = 2n − m − 1, which is just claim (29). �

In view of (9), (25), and (28), the function Ĥn defined in (27) is indeed an nth
partial Padé approximant if it has the prescribed poles and zeros (23). Note that, in
analogy to (17), function (27) has the representation

Ĥn(s) = (
lTr

) det
(
In−1 − (s − s0) T̂′

n

)
det

(
In − (s − s0) T̂n

) , (34)

where T̂′
n is the (n − 1) × (n − 1) matrix obtained by deleting the first row and the

first column of T̂n. By (34), Ĥn has the prescribed poles and zeros (23) if, and only
if, the matrices T̂n and T̂′

n have the prescribed eigenvalues P and D, respectively.
Therefore, we have established the following theorem.

Theorem 3. Let Tn be the n × n Lanczos tridiagonal matrix and T̂n be its rank-1
update (26). If the vector zm ∈ Rm in (26) is chosen such that

P ⊂ λ
(
T̂n

)
and D ⊂ λ

(
T̂′
n

)
, (35)

then the function Ĥn in (27) is an nth partial Padé approximant of H.

By Theorem 3, computing an nth partial Padé approximant via the Lanczos pro-
cess reduces to constructing the vector zm in (26) such that (35) is satisfied. In the
following section, we show that such a vector can be obtained by solving a suitable
linear system.

5. Computing the vector zm

Let P and D be the sets (21) of prescribed eigenvalues of T̂n and T̂′
n, respectively.
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Clearly, ϕj ∈ P is an eigenvalue of T̂n if, and only if, there is an associated left
eigenvector qj , i.e.,

qj T̂n = ϕj qj , qj ∈ C1×n, qj �= 0. (36)

Using (26), we can rewrite (36) as follows:

ϕj qj − qj Tn = (qj z) eT
n, qj �= 0. (37)

Therefore T̂n has the prescribed eigenvalues P if, and only if, the column vector z
in (26) can be chosen such that, for each j = 1, 2, . . . , k, there exists a row vector
qj satisfying (37). The following proposition gives a condition for such a vector z.

Proposition 4. For each j = 1, 2, . . . , k, let qj be a solution of

qj Tn = ϕj qj , qj ∈ C1×n,
∥∥qj

∥∥
2 = 1, (38)

if ϕj ∈ λ(Tn), and set

qj := (ϕj I − Tn)
−1eT

n (39)

otherwise. Moreover, for j = 1, 2, . . . , k, set

dj :=
{

0 if ϕj ∈ λ(Tn),

1 otherwise.
(40)

Then T̂n has the prescribed eigenvaluesP if, and only if, the vector z in (26) satisfies
the system of linear equations

Qk z = dk, where Qk :=




q1
q2
...

qk


 and dk :=



d1
d2
...

dk


. (41)

Proof. Let qj be any vector satisfying (37). First, we show that

qj z = 0 ⇐⇒ ϕj ∈ λ(Tn). (42)

Indeed, if qj z = 0, then (37) reduces to qj Tn = ϕj qj , qj �= 0, and thus ϕj ∈
λ(Tn) with associated left eigenvector qj . Conversely, let ϕj ∈ λ(Tn) and assume
that qj z �= 0. By (37), it follows that(

ϕj I − TT
n

)
qT
j = dj en, where dj := qj z �= 0,

and thus

en ∈ range
(
ϕj I − TT

n

)
. (43)

On the other hand, by (15), ϕj I − TT
n is an unreduced lower Hessenberg matrix,

which is also singular since ϕj ∈ λ(Tn). This implies



152 Z. Bai, R.W. Freund / Linear Algebra and its Applications 332–334 (2001) 139–164

rank
(
ϕj I − TT

n

) = n − 1 and rank
[(
ϕj I − TT

n

)
en

] = n,

which is a contradiction to (43). Thus, qj z = 0 and the proof of (42) is complete.
Next, note that, in view of (15) and (26), T̂n is an unreduced upper Hessenberg

matrix. This implies that all eigenvalues of T̂n have geometric multiplicity 1, and
thus the left eigenvector qj is uniquely determined by (36) up to a nonzero normal-
ization factor. By (42), we can fix the normalization of qj such that

qj z = dj :=
{

0 if ϕj ∈ λ(Tn),

1 otherwise.
(44)

With normalization (44), it follows that a solution qj of (37) is given by (38) if
ϕj ∈ λ(Tn) and by (39) otherwise. Finally, with the vectors qj , j = 1, 2, . . . , k, giv-
en by (38) or (39), the matrix T̂n has indeed the prescribed eigenvalues if, and only
if, the vector z satisfies normalization conditions (44). However, (44) is just the linear
system (41). �

For the prescribed eigenvalues D of λ(T′
n), we can proceed in analogous fashion.

This leads to the following proposition.

Proposition 5. For each j = 1, 2, . . . , �, let rj be a solution of

rj T′
n = θj rj , rj ∈ C1×n−1, ‖rj‖2 = 1, (45)

if θj ∈ λ(T′
n), and set

rj := (
θj I − T′

n

)−1 eT
n−1 (46)

otherwise. Moreover, for j = 1, 2, . . . , �, set

fj :=
{

0 if θj ∈ λ(T′
n),

1 otherwise.
(47)

Then T̂′
n has the prescribed eigenvaluesD if, and only if, the vector z in (26) satisfies

the system of linear equations

R� z = f�, where R� :=




r1
r2
...

r�


 and f� :=



f1
f2
...

f�


. (48)

Proof of Proposition 5 is completely analogous to that of Proposition 4 and can
thus be omitted.

By combining the linear systems (41) and (48), we obtain m = k + � equations
for the vector z. Furthermore, recall from (26) that the first n − m entries of z are zero
and that only the trailing part zm needs to be computed. For the case m � n − 1, the
resulting linear system for zm is as follows:[

Qk(:, n − m + 1 : n)
R�(:, n − m : n − 1)

]
zm =

[
dk

f�

]
. (49)
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Here M(:, i : j) denotes the submatrix consisting of the ith column to jth column of
the matrix M. For the case m = n, the linear system for zm is as follows:[

Qk

0�×1 R�

]
zm =

[
dk

f�

]
. (50)

Note that both (49) and (50) are systems of m linear equations for the m entries of zm.
Therefore, both these linear systems have unique solutions, provided their coefficient
matrices are nonsingular.

We remark that, though the coefficient matrices of (49) and (50) are complex in
general, the solution vector zm is always real. This follows from assumption (22)
on the sets P and D. Indeed, let ϕj ∈ P and ϕj+1 = ϕj ∈ P be a pair of complex
conjugate prescribed eigenvalues of T̂n. It then follows from (38)–(40) that

qj+1 = qj and dj+1 = dj . (51)

Multiplying the jth and (j + 1)st row of (41) from the left by

1

2

[
1 1

−i i

]
and using (51), we obtain the equivalent real equations[

Re(qj )

Im(qj )

]
z =

[
dj
0

]
.

This means that, in (41) and thus also in (49), respectively (50), we can replace the
pair of rows corresponding to each pair of complex conjugate numbers in P by an
equivalent real pair of rows. Similarly, one can turn system (48) into a real system.
All together, this means that system (49), respectively (50), can always be made real,
and thus the solution vector zm is real.

In summary, we have the following algorithm for computing the vector z in (26).

Algorithm 1 (Computing the vector z).

INPUT: nth Lanczos tridiagonal matrix Tn, sets P and D satisfying (19)–(22).

OUTPUT: A vector z ∈ Rn such that the matrices T̂n = Tn + z eT
n and T̂′

n have the
prescribed eigenvalues P and D, respectively.

(1) For j = 1, 2, . . . , k do:
If ϕj ∈ λ(Tn),

compute qj as a solution of (38),
else

compute qj by (39).

(2) For j = 1, 2, . . . , � do:
If θj ∈ λ(T′

n),
compute rj as a solution of (45),

else
compute rj by (46).
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(3) Compute dk by (40) and (41).

(4) Compute f� by (47) and (48).

(5) If m = k + � < n do:
If the coefficient matrix of (49) is singular: stop.
Otherwise, solve (49) for the vector zm and set z =

[
0

zm

]
.

If m = k + � = n do:
If the coefficient matrix of (50) is singular: stop.
Otherwise, solve (50) for the vector zm and set z = zm.

We conclude this section with remarks about the two special cases of partial Padé
approximants with all poles, respectively all zeros, prescribed.

Remark 3. Consider the case that all poles p̂1, p̂2, . . . , p̂n of the partial Padé ap-
proximant Ĥn are prescribed. In this case, k = n and � = 0 in (19), and the linear
system (50) reduces to Qn z = dn. In view of Definition 1, this special case can
always be used to generate a reduced-order transfer function Ĥn that is guaranteed
to be stable. Indeed, all one needs to do is prescribe pairs of complex conjugate
poles with Re(p̂j ) < 0 for all j = 1, 2, . . . , n. On the other hand, the associated nth
partial Padé approximant Ĥn then only matches 2n − n = n Taylor coefficients of
the original transfer function H, instead of the 2n coefficients matched by the nth
Padé approximant Hn. For example, suppose n − 2 of the poles pj = s0 + 1/λj of
Hn are pairwise distinct and satisfy Re(pj ) < 0, while the other two poles, say pn−1
and pn, violate the stability of Hn. Then we can choose the elements of the set P in
(21) as follows:

ϕj =
{
λj for j = 1, 2, . . . , n − 2,

1/(p̂j − s0) for j = n − 1, n.

Here p̂n−1 and p̂n is any pair of prescribed real or complex conjugate poles with
strictly negative real part. For this choice of P, Algorithm 1 generates a vector z
such that the associated reduced-order transfer function (27), Ĥn, is guaranteed to be
stable.

Remark 4. If k = 0 and � = n − 1, then all the zeros of Ĥn are prescribed. In this
case, the linear system (49) reduces to Rn−1 zn−1 = fn−1, and the associated function
(27), Ĥn, matches 2n − (n − 1) = n + 1 Taylor coefficients of the original transfer
function H.

6. PVL� algorithm

In this section, we combine the PVL method sketched in Section 3.2 with the
update procedure for obtaining partial Padé approximants described in Sections 4 and
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5. The resulting computational procedure is called the PVL� algorithm. It consists
of the basic PVL algorithm to generate the true Padé approximant Hn and additional
post-processing, with the goal to remove unstable poles, and possibly unstable zeros,
of Hn.

A sketch of the PVL� algorithm is as follows.

Algorithm 2 (Sketch of the PVL� algorithm).

INPUT: Expansion point s0 ∈ R, data A, r, l of the function H(s) = lT(I − (s −
s0)A)−1r.

OUTPUT: An nth Padé approximant Hn or partial Padé approximant Ĥn of H.

(1) Run n steps of the Lanczos process (applied to the matrix A with right and left
starting vectors r and l) to obtain the tridiagonal Lanczos matrix Tn, and set

Hn(s) = (
lTr

)
eT

1

(
I − (s − s0)Tn

)−1e1. (52)

Here, n is chosen such that some appropriate stopping criterion is satisfied.

(2) Compute the eigenvalues λ(Tn) and λ(T′
n), and from these the poles and zeros

pj = s0 + 1

λj
, λj ∈ λ(Tn), and zj = s0 + 1

λ′
j

, λ′
j ∈ λ(T′

n),

of Hn.

(3) Check the stability, and possibly passivity, of Hn.
If Hn is stable, and possibly passive, then: stop.

(4) Choose 0 � k � n and 0 � � � n − 1 with k + � � n. Prescribe k poles {p̂j }kj=1

and � zeros {ẑj }�j=1 such that the numbers

ϕj := 1

p̂j − s0
, 1 � j � k, and θj := 1

ẑj − s0
, 1 � j � �,

satisfy (20)–(22).

(5) Use Algorithm 1 to compute the vector z.
(6) Set T̂n = Tn + z eT

n and

Ĥn(s) = (
lTr

)
eT

1

(
I − (s − s0) T̂n

)−1e1. (53)

(7) Compute the poles, and possibly zeros, of Ĥn and check the stability, and possi-
bly passivity, of Ĥn.
If Ĥn is stable, and possibly passive, then: stop.
Otherwise, return to Step (4) and choose another set of prescribed poles and
zeros.

Next, we make some remarks on the various steps of Algorithm 2.

Remark 5. The PVL algorithm [11,12] essentially consists of Steps (1) and (2).
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Remark 6. In Step (1), a simple stopping criterion is to check the convergence of
the dominant poles of Hn, as suggested in [12]. A more sophisticated stopping crite-
rion based on directly estimating the error |H(s) − Hn(s)| was recently proposed in
[7].

Remark 7. To test for stability in Steps (3) and (7), one just needs to check if all
poles of Hn and Ĥn, respectively, satisfy the conditions given in part (b) of Theo-
rem A.

Remark 8. If the given function H is passive, then in Steps (3) and (7) one also
needs to check the passivity of Hn and Ĥn, respectively. The necessary conditions
for passivity given in Theorem B only involve the poles and zeros, and thus they
can easily be checked once the eigenvalues λ(Tn) and λ(T′

n), respectively λ(T̂n)

and λ(T̂′
n), have been computed. If these necessary conditions are not satisfied, the

function Hn, respectively Ĥn, is not passive. Otherwise, one proceeds to check the
eigenvalue-based characterization of passivity recently proposed in [6]. More pre-
cisely, in [6], it is shown that the function Hn given by (52) is passive if, and only if,
the following three conditions are satisfied:

(i) Hn is stable.
(ii) (lTr) det(M + λ0 N) � 0 for a given λ0 � 0.

(iii) The matrix pencil M + λN has either no real positive eigenvalues or if any real
positive eigenvalue has even multiplicity.

Here the matrix pencil M + λN is given by

M := (I + s0 Tn)
2(I − e1 eT

1

) + (I + s0 Tn) e1 eT
1 , N := T2

n

(
I − e1 eT

1

)
.

Analogously, for checking the passivity of Ĥn, one simply needs to replace Hn by
Ĥn and Tn by T̂n in the above conditions (i)–(iii).

Remark 9. The post-processing Steps (3) to (7) are all performed on n × n matrices
and they involve O(n3) arithmetic operations. Since it is expected that n � N , the
overall cost of these post-processing steps should not be significant.

Remark 10. We are not aware of any systematic choice of the prescribed poles and
zeros in Step (4) that would guarantee stability, and possibly passivity, of the asso-
ciated partial Padé approximant. For the numerical experiments reported in Section
7, we chose the prescribed poles and zeros by suitable reflections of the unstable
poles and zeros with respect to the imaginary axis, and this lead to stable and passive
models.

Remark 11. In general, modified matrix (26), T̂n, is no longer tridiagonal if m > 2.
However, it is easy to reduce T̂n again to tridiagonal form. Indeed, all one needs to
do is run n steps of the Lanczos process applied to the matrix T̂n with right starting
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vector ṽ1 = e1 and left starting vector w̃1 = e1. Again, for simplicity, we assume
that no breakdown occurs in the Lanczos process. Then, after n steps, the algorithm
has generated a tridiagonal matrix T̃n ∈ Rn×n and two matrices Ṽn, W̃n ∈ Rn×n of
right and left Lanczos vectors such that

W̃T
n T̂n Ṽn = W̃T

n Ṽn T̃n and W̃T
n Ṽn = diag

(
1, δ̃2, . . . , δ̃n

)
. (54)

Furthermore, the matrices Ṽn, W̃n, and W̃T
n Ṽn are all nonsingular. Note that, by the

second relation in (54), we have

W̃T
n e1 = W̃T

n ṽ1 = e1 and ṼT
n e1 = ṼT

n w̃1 = e1. (55)

Using (54) and (55), we can rewrite formula (53) of Ĥn as follows:

Ĥn(s)=
(
lTr

)
eT

1

(
I − (s − s0) T̂n

)−1e1

=(
lTr

) (
eT

1 Ṽn

) (
W̃T

n Ṽn − (s − s0) W̃T
n T̂n Ṽn

)−1 (
W̃T

n e1
)

=(
lTr

)
eT

1

(
I − (s − s0) T̃n

)−1(W̃T
n Ṽn

)−1 e1

=(
lTr

)
eT

1

(
I − (s − s0) T̃n

)−1e1.

This shows that, in (53), we can simply replace T̂n by the tridiagonal matrix T̃n

obtained from n steps of the Lanczos process applied to T̂n with e1 as both right and
left starting vector.

7. Numerical examples

In this section, we present two circuit examples that demonstrate the effectiveness
of the PVL� method.

7.1. The PEEC circuit

Our first example is a circuit resulting from the so-called PEEC discretization [30]
of an electromagnetic problem. This circuit has often been used as a test problem
for reduced-order modeling techniques. The circuit is an RLC network consisting
of only inductors, capacitors, and inductive couplings, and a single resistive source
that drives the circuit. In this case, the transfer function H represents the current
flowing through one of the inductors. The circuit is stable with all poles of H in the
left half of the complex plane. However, since the circuit is mostly an LC network,
most of the poles are close to the imaginary axis. Due to this proximity, during
the computation of a reduced-order model, numerical and approximation errors can
easily produce unstable poles pj ∈ C+. Indeed, running the PVL algorithm (with
expansion point s0 = 2� × 109) for n = 60 iterations produces an almost exact
transfer function in the relevant frequency range s = 2� iω, 0 � ω � 5 × 109. The
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Fig. 1. The PEEC transfer function, exact and 60 PVL iterations.

corresponding curves for |H(s)| and |H60(s)| are shown in Fig. 1. However, the Padé
approximant H60 in not stable due to 15 unstables poles pj ∈ C+. More precisely,
eight of these 15 are truly unstable poles, while the other seven are nearly stable
poles, as shown in Fig. 2.

In order to produce a stable reduced-order model, we ran the PVL� Algorithm 2
to force all the 15 unstable poles, pj = Re(pj ) + i Im(pj ), into the left half-plane.
This is done by setting, in Step (4) of Algorithm 2, k = 15, � = 0, and

ϕj = 1

p̂j − s0
, where p̂j = −Re(pj ) + i Im(pj ),

for all 15 unstable poles pj of H60. Fig. 2 shows the poles of H60 and the poles
of the modified reduced-order transfer function Ĥ60 generated by PVL�. Note that
Ĥ60 has all its poles in the left half-plane, and thus Ĥ60 is stable. Fig. 3 shows the
curves |H(s)| and |Ĥ60(s)| for the relevant frequency range. In Fig. 4, we plot both
the PVL error curve |H(s) − H60(s)| and the PVL� error curve H(s) − Ĥ60(s)| for
the relevant frequency range. These error curves show that the accuracy of the stable
reduced-order transfer function Ĥ60 remains satisfactory.

7.2. A package model

Our second example is a circuit that arose in the analysis of a 64-pin package
model used for an RF integrated circuit. The package model is described by approxi-
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Fig. 3. The PEEC transfer function, exact and 60 PVL� iterations.
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Fig. 4. PVL and PVL� error curves for the PEEC transfer function.

mately 4000 RLC circuit elements, resulting in matrices C and G in (2) of size about
2000. Here we are interested in approximating the passive transfer function H that
represents the input impedance of one of the pins of the package. The PVL algorithm
(with expansion point s0 = 5� × 109) requires n = 80 iterations to generate a Padé
approximant that approximates the exact transfer function H sufficiently well in the
relevant frequency range s = 2� iω, 0 � ω � 1010. Fig. 5 shows the corresponding
curves for |H(s)| and |H80(s)|. However, the Padé approximant is neither stable nor
passive due to two unstable poles pj ∈ C+ and four unstable zeros zj ∈ C+.

In order to produce a stable and passive reduced-order model, we ran the PVL�
Algorithm 2 to force the two unstable poles, pj = Re(pj ) + i Im(pj ), and the four
unstable zeros, zj = Re(zj ) + i Im(zj ), into the left half-plane. This is done by set-
ting, in Step (4) of Algorithm 2, k = 2, � = 4, and

ϕj = 1

p̂j − s0
, where p̂j = −0.1 Re(pj ) + i 10 Im(pj ),

θj = 1

ẑj − s0
, where ẑj = −0.1 Re(zj ) + i 10 Im(zj ),

for all unstable poles and zeros of H80. The resulting partial Padé approximant Ĥ80
produced by PVL� now has all its poles and zeros in the left complex half-plane.
Thus, Ĥ80 is stable and satisfies the necessary conditions for passivity stated in part
(b) of Theorem B. Furthermore, using the eigenvalue-based passivity test proposed
in [6], we verified that Ĥ80 is indeed passive. Fig. 6 shows the curves |H(s)| and
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Fig. 5. The package transfer function, exact and 80 PVL iterations.

|Ĥ80(s)| for the relevant frequency range. These curves clearly illustrate that no ac-
curacy has been lost by enforcing stability and passivity by means of the PVL�
post-processing.

8. Concluding remarks

We have introduced the PVL� algorithm for generating reduced-order models
based on partial Padé approximation via the Lanczos process. The algorithm can be
viewed as a variant of PVL with added post-processing to remove possible unstable
poles and zeros of the PVL reduced-order model.

There are still two important open problems. First, we are not aware of any sys-
tematic way of choosing the prescribed poles and zeros of the partial Padé approx-
imants so that stability, and possibly passivity, of the corresponding reduced-order
model can always be guaranteed. While we obtained stable and passive models by
simply prescribing reflections of the unstable PVL poles and zeros with respect to the
imaginary axis, there is a definite need for automating the selection of the prescribed
poles and zeros. One possibility is to use an optimization procedure that minimizes
some suitable measure of distance to stability, and possibly passivity. Such an op-
timization procedure consists of an outer iteration for the choice of the prescribed
poles and zeros, while PVL� is employed to generate the associated partial Padé
approximant within each outer iteration. Work in this direction is in progress and
will be reported elsewhere.
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Fig. 6. The package transfer function, exact and 80 PVL� iterations.

Second, this paper only treats the case of scalar transfer functions. In [13], the
PVL algorithm has been extended to the general case of matrix-valued transfer func-
tions of multi-input multi-output linear dynamical systems. It is also possible to ex-
tend PVL� to this more general case, by using the concept of partial matrix-Padé
approximation. Such an extension would be beyond the scope of this paper, and
instead, this will be done in some future report.
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