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Abstract. The symmetric band Lanczos process is an extension of the classical Lanczos al-
gorithm for symmetric matrices and single starting vectors to multiple starting vectors. After n
iterations, the symmetric band Lanczos process has generated an n× n projection, Ts

n, of the given
symmetric matrix onto the n-dimensional subspace spanned by the first n Lanczos vectors. This
subspace is closely related to the nth block-Krylov subspace induced by the given symmetric matrix
and the given block of multiple starting vectors. The standard algorithm produces the entries of
Ts

n directly. In this paper, we propose a variant of the symmetric band Lanczos process that em-
ploys coupled recurrences to generate the factors of an LDLT factorization of a closely related n× n
projection, rather than Ts

n. This is done in such a way that the factors of the LDLT factorization
inherit the “fish-bone” structure of Ts

n. Numerical examples from reduced-order modeling of large
electronic circuits and algebraic eigenvalue problems demonstrate that the proposed variant of the
band Lanczos process based on coupled recurrences is more robust and accurate than the standard
algorithm.
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1. Introduction. In recent years, suitable extensions of the classical Lanczos
process [23] for single right and left starting vectors to multiple right and left starting
vectors have proven to be powerful tools for reduced-order modeling of large-scale
multi-input multi-output linear dynamical systems. The most general such Lanczos-
type algorithm is the one proposed in [1]. Given a square matrix A and two blocks
of right and left starting vectors, the algorithm in [1] generates two sequences of
biorthogonal basis vectors for the right and left block-Krylov subspaces induced by
the given data. The algorithm can handle the most general case of right and left
starting blocks of arbitrary sizes, say, m and p. In [12, 13], it was shown that this
Lanczos-type algorithm can be employed to generate reduced-order models of m-input
p-output linear dynamical systems and that these reduced-order models correspond
to matrix-Padé approximants of the system’s transfer function. The resulting com-
putational procedure is called the MPVL (matrix-Padé via Lanczos) algorithm. For
recent surveys on MPVL, related methods, and their use in VLSI circuit simulation,
we refer the reader to [14, 16].

In circuit simulation, an important special case is linear dynamical systems that
describe large RCL subcircuits consisting of only resistors, capacitors, and inductors.
In this case, by employing so-called modified nodal analysis, the circuit equations
can be formulated so that the matrix A is symmetric and the blocks of right and
left starting vectors are identical; for details of such a symmetric formulation, see,
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e.g., [18]. The SyMPVL algorithm [17, 18] is a variant of MPVL that exploits this
symmetry and as a result requires only half the computational costs and storage of
MPVL. The Lanczos-type algorithm underlying SyMPVL is essentially the symmetric
band Lanczos process first proposed in [26], with some additional features, such as
deflation of Krylov vectors; see [15]. It generates a sequence of n × n projections
Ts

n, n ≥ 1, of the symmetric matrix A onto the n-dimensional subspace spanned by
the first n Lanczos vectors. This subspace is closely related to the nth block-Krylov
subspace induced by A and the given block of multiple starting vectors. As the
classical Lanczos process, the symmetric band Lanczos process generates the entries
of Ts

n directly.

In this paper, we propose a new variant of the symmetric band Lanczos process
that employs coupled recurrences to produce the factors of an LDLT factorization of
an n × n matrix, Tn, closely related to Ts

n, rather than Ts
n itself. This work was

motivated mainly by numerical experiences with the SyMPVL algorithm applied to
RC subcircuits. In this case, the matrix A is symmetric positive semidefinite, and
in order to ensure passivity of the reduced-order models produced by SyMPVL, it is
crucial that the projection of A preserves the positive semidefiniteness of A. In exact
arithmetic, the projection Ts

n of a positive semidefinite matrix A is guaranteed to be
positive semidefinite. However, in finite-precision arithmetic, round-off may cause the
computed projection Ts

n to be slightly indefinite; see [4] for such examples. These
problems are clearly due to the direct computation of Ts

n. Indeed, when the projection
is obtained via the LDLT factorization produced by the proposed symmetric band
Lanczos process based on coupled recurrences, the computed projection preserves
the positive semidefiniteness of A. In addition, the new variant also produces more
accurate reduced-order models with the same number of iterations.

The idea of enforcing positive semidefiniteness of a matrix by generating it via
a factorization is of course not new. Indeed, the very same issue arises in Kalman
filtering where numerical round-off in the standard update formula of the covariance
matrices may result in slightly indefinite matrices. The remedy there is to update
suitable factors, rather than the covariance matrices, resulting in so-called square-root
filtering; see, e.g., [3, Chapter 6.5]. The idea of square-root filtering seems to have
originated with James E. Potter in 1962; see [3, Chapter 6.5] and [8, section 13.7].
The use of square-root filtering was crucial in eliminating problems in the Apollo
navigation systems caused by numerical round-off; see [8] and the references given
there. The same issue also arises in the computation of positive semidefinite solutions
of Lyapunov equations; see [22] and the references therein. In [22], an algorithm is
proposed that directly generates the Cholesky factor of the solution matrix, rather
than the solution matrix.

Finally, in the context of employing the classical Lanczos process for single starting
vectors to the solution of systems of linear equations, it has been observed that coupled
two-term recurrences are more robust than the mathematically equivalent three-term
recurrences; see, e.g., [19] and the references given there. Some recent analysis of this
phenomenon can be found in [21].

The remainder of this paper is organized as follows. In section 2, we describe
the governing equations of the symmetric band Lanczos process based on coupled
recurrences and discuss connections with the standard algorithm. In section 3, we
present a complete statement of the algorithm based on coupled recurrences and
establish some of its properties. In sections 4 and 5, we discuss applications of the
new variant of the symmetric band Lanczos process to reduced-order modeling and to
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eigenvalue computations, respectively, and we report results of numerical experiments.
In section 6, we make some concluding remarks.

Throughout this article, we use boldface letters to denote vectors and matrices.
Unless stated otherwise, vectors and matrices are assumed to have real entries. As
usual, MT = [mkj ] denotes the transpose of the matrix M = [mjk ], and M ≥ 0
(M > 0) means that M = MT is symmetric positive semidefinite (symmetric positive

definite). The vector norm ‖x‖ :=
√
xT x is always the Euclidean norm, and ‖M‖ :=

max‖x‖=1 ‖Mx‖ is the corresponding induced matrix norm. We use In to denote the
n× n identity matrix and 0n×m to denote the n×m zero matrix; we will omit these
indices whenever the actual dimensions of I and 0 are apparent from the context. The
sets of real and complex numbers are denoted by R and C, respectively. For s ∈ C,
Re(s) is the real part of s.

2. The symmetric band Lanczos process based on coupled recurrences.
In this section, we describe the governing equations of the symmetric band Lanczos
process based on coupled recurrences and discuss connections with the standard al-
gorithm.

2.1. Preliminaries. In what follows, we assume that

A = AT ∈ R
N×N and R = [ r1 r2 · · · rm ] ∈ R

N×m(2.1)

are given matrices. The columns of R are the multiple starting vectors. The purpose
of the symmetric band Lanczos process is to generate orthogonal basis vectors for the
subspaces spanned by the leading columns of the block-Krylov matrix,

K(A,R) := [R AR A2 R · · · AN−1 R ] ,(2.2)

associated with the matrices (2.1) and to compute the projection of A onto these
subspaces. A proper definition of these subspaces is necessarily quite involved; see the
discussion in [1]. The main reason is that the columns of the matrix K(A,R) in (2.2)
are all vectors of length N , and thus at most N of them are linearly independent.
As a result, in the symmetric band Lanczos process, one needs to perform so-called
deflation of linearly dependent or in some sense almost linearly dependent vectors. As
we will describe below, the symmetric band Lanczos process has a very simple built-in
deflation procedure. In exact arithmetic, only the linearly dependent vectors have to
be removed, and we refer to this as exact deflation. In the case of exact deflation, the
subspaces spanned by the leading columns of the matrix (2.2) can be easily defined,
and we will do so in section 2.5 below.

2.2. Governing equations. The symmetric band Lanczos algorithm is an iter-
ative procedure. After n iterations, the algorithm has generated the first n Lanczos
vectors,

v1,v2, . . . ,vn ∈ R
N ,(2.3)

as well as the mc = mc(n) vectors,

v̂n+1, v̂n+2, . . . , v̂n+mc ∈ R
N ,(2.4)

that are the candidates for the next mc Lanczos vectors, vn+1,vn+2, . . . ,vn+mc . Here,
mc = mc(n) is the current block size defined as follows. In the initialization phase,
i.e., for n = 0, mc := m is set to be the number of starting vectors in (2.1), and
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the candidate vectors (2.4) are set to be the starting vectors from (2.1), i.e., v̂i = ri,
1 ≤ i ≤ m. Within the algorithm, mc is then reduced by 1 every time a deflation
occurs. Moreover, in the algorithm, the vectors (2.4) are used to detect and perform
deflation. More precisely, it can be shown that an exact deflation occurs during the
(n+1)st iteration of the algorithm if and only if v̂n+1 = 0. Therefore, in the algorithm,
one simply checks if the first of the candidate vectors is the zero vector or in some
sense close to the zero vector, and if so, one performs deflation by removing that first
candidate vector.

We remark that due to the use of the candidate vectors (2.4), we need only
generate n × n Lanczos matrices. This is in contrast to approaches such as the
symmetric algorithm [26] and the nonsymmetric algorithm [1], which only involve
Lanczos vectors, but no candidate vectors, and generate (n+mc)×n Lanczos matrices.
Since for the applications we have in mind only the leading n×n part of the Lanczos
matrices is needed anyway, the approach using candidate vectors is more economical.

In addition to (2.3), the symmetric band Lanczos process based on coupled re-
currences also generates a second set of vectors,

p1,p2, . . . ,pn ∈ R
N ,(2.5)

that span the same subspaces as (2.3), i.e.,

span{v1,v2, . . . ,vj} = span{p1,p2, . . . ,pj} for all 1 ≤ j ≤ n.(2.6)

The vectors (2.3)–(2.5) are constructed to satisfy (in exact arithmetic) the following
orthogonality conditions:

VT
n Vn = In,(2.7)

VT
n [ v̂n+1 v̂n+2 · · · v̂n+mc

] = 0,(2.8)

PT
n APn = ∆n := diag (δ1, δ2, . . . , δn) .(2.9)

Here and in what follows,

Vn := [v1 v2 · · · vn ] and Pn := [p1 p2 · · · pn ](2.10)

denote the matrices whose columns are just the vectors (2.3) and (2.5), respectively.
Furthermore, in (2.9), we assume that δi 
= 0 for all i. This implies that

∆n is nonsingular.(2.11)

Note that, by (2.7), the Lanczos vectors (2.3) are an orthonormal basis of the sub-
spaces (2.6), while, by (2.9), the vectors (2.5) are an A-orthogonal basis of (2.6).

The recurrence relations that are used in the algorithm to generate the vec-
tors (2.3)–(2.5) can be stated as follows. The first m1 vectors in (2.3) are obtained by
applying a modified Gram–Schmidt procedure [20] (with deflation) to the m columns
of the block R to eliminate any linearly dependent or almost linearly dependent start-
ing vectors. This procedure can be summarized in a relation of the form

R = Vm1 ρm1
+ V̂df

0 .(2.12)

Here, m1 (≤ m) denotes the number of columns of the block R that have not been

deflated, the matrix V̂df
0 ∈ R

N×m contains the m−m1 deflated starting vectors and
m1 zero vectors as columns, and

ρm1
= [ ρi,j ]i=1,2,...,m1; j=1,2,...,m ∈ R

m1×m(2.13)
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is an upper triangular matrix whose entries are chosen such that the columns of Vm1

are orthonormal. The main relations for generating the vectors (2.3)–(2.5) are coupled
recurrences that can be summarized as follows:

APn = Vn Ln∆n +
[
0 0 · · · 0︸ ︷︷ ︸

n−mc

v̂n+1 v̂n+2 · · · v̂n+mc︸ ︷︷ ︸
mc

]
+ V̂df

n ,(2.14)

Vn = PnUn.(2.15)

Here, ∆n is the diagonal matrix defined in (2.9), and

Ln = [ 
ij ]i,j=1,2,...,n ∈ R
n×n and Un = [uij ]i,j=1,2,...,n ∈ R

n×n(2.16)

are unit lower and upper triangular matrices, respectively. The entries of the matrices
∆n, Ln, and Un are chosen such that the vectors (2.3)–(2.5) satisfy the orthogonality
conditions (2.7)–(2.9). Furthermore, any candidate vector v̂j that was deflated at
the jth iteration, where 1 + mc(j) ≤ j ≤ n, appears as the (j −mc(j))th column of

the matrix V̂df
n in (2.14); all other columns of V̂df

n are zero vectors. In the actual
Algorithm 3.1 below, we use the index set I to record the positions of the potentially
nonzero columns of V̂df

n due to deflation. If no deflation has occurred or if only exact
deflation is performed, then clearly

V̂df
0 = 0 and V̂df

n = 0(2.17)

in (2.12) and (2.14), respectively.

2.3. The Lanczos matrix. By multiplying (2.9) from the left by UT
n and from

the right by Un, and by using (2.15), it follows that

Tn := VT
n AVn = UT

n ∆nUn.(2.18)

The matrix Tn defined in (2.18) is the so-called nth Lanczos matrix. It represents
the projection of A onto the subspaces spanned by the Lanczos vectors (2.3). Recall
that Un is a unit upper triangular matrix and that ∆n is a diagonal matrix. Thus,
in view of (2.18), the symmetric band Lanczos process based on coupled recurrences
computes the factors of an LDLT decomposition of the Lanczos matrix Tn, rather
than Tn itself.

In the important special case A ≥ 0, in view of (2.9), the diagonal entries of ∆n

satisfy

δi = pT
i Api ≥ 0 for all i,(2.19)

and hence ∆n ≥ 0. Thus, for A ≥ 0, generating Tn via the factorization (2.18)
always results in a positive semidefinite matrix.

The triangular matrices Ln in (2.14) and Un in (2.15) are closely related. In-
deed, by multiplying (2.14) from the left by VT

n and from the right by Un, and by
using (2.7), (2.8), and (2.15), we get

VT
n AVn = (Ln∆n + Σn) Un, where Σn := VT

n V̂df
n .(2.20)

By comparing (2.18) and (2.20), it follows that

Un = LT
n + ∆−1

n ΣT
n .(2.21)

In particular, if no deflation has occurred or if only exact deflation is performed, then,
in view of (2.17), we have Σn = 0 in (2.20) and thus Un = LT

n .
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2.4. Structure of the triangular factor Un. In this subsection, we describe
the sparsity structure of the matrix Un.

The unit upper triangular Un consists of a banded part with bandwidth decreas-
ing from m+ 1 to mc + 1 and a “spiked” part with potentially nonzero elements only
in rows with index i ∈ I and to the right of the banded part. Recall that the index
set I records deflation. It turns out that in the additive splitting (2.21) of Un, the
first term, LT

n , is the banded part, while the second term, ∆−1
n ΣT

n , is the spiked part.
Next, we present an example that illustrates this structure of Un. Consider the

case that m = 5 and that the three candidate vectors v̂8 (when mc = 5), v̂11 (when
mc = 4), and v̂13 (when mc = 3) have been deflated. The associated index set is
I = { 3, 7, 10 }. After n = 15 iterations, we then have mc = 2, and the matrix U15

has the following structure:

U15 =




1 × × × × ×
1 × × × × ×

1 × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 × × × ×

1 × × × ×
1 × × × ×

1 × × × ∗ ∗ ∗ ∗ ∗
1 × × ×

1 × × ×
1 × × ∗ ∗ ∗

1 × ×
1 × ×

1 × ×
1 ×

1




.

Here, potentially nonzero off-diagonal entries in the banded part of U15 are marked
by “×”, and potentially nonzero entries in the spiked part are marked by “∗”.

2.5. Block-Krylov subspaces in the case of exact deflation. It can be
shown that performing only exact deflation in the symmetric band Lanczos process is
equivalent to scanning the columns of the block-Krylov matrix (2.2) from left to right
and deleting each column that is linearly dependent on earlier columns; see [1]. The
result of such a deletion of columns in (2.2) is the deflated block-Krylov matrix

Kdf(A,R) := [R1 AR2 A2 R3 · · · Ajmax−1 Rjmax ] .

By the structure of (2.2), a column Aj−1 ri being linearly dependent on earlier
columns implies that all A-multiples, Akri, k ≥ j, of that column are also linearly de-
pendent on earlier columns. As a result, for each j = 1, 2, . . . , jmax, Rj is a submatrix
of Rj−1, where, for j = 1, we set R0 := R.

By construction, all columns of the matrix Kdf(A,R) are linearly independent.
The nth block-Krylov subspace, Kn(A,R), induced by A and R is now defined as
the n-dimensional subspace of R

N spanned by the first n columns of the matrix
Kdf(A,R). When only exact deflation is performed in the symmetric band Lanczos
process, then the Lanczos vectors (2.3) span the nth block-Krylov subspace, i.e.,

span{v1,v2, . . . ,vn} = Kn(A,R).(2.22)
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2.6. The standard symmetric band Lanczos process. In this subsection,
we review the standard symmetric band Lanczos process. The standard process only
generates Lanczos vectors (2.3) and candidate vectors (2.4), but not the second set
of vectors (2.5). We stress that our notion of “standard” process includes the same
proper deflation procedure as used in the coupled algorithm. Moreover, all numerical
comparisons reported in this paper were run with deflation turned on in both algo-
rithms. In particular, the difference in the numerical behavior is indeed due to the
use of coupled vs. standard recurrences, and not due to one algorithm being run with
deflation and the other without deflation.

In the standard algorithm, the Lanczos vectors (2.3) and candidate vectors (2.4)
are constructed to satisfy the orthogonality conditions (2.7) and (2.8). The first m1

Lanczos vectors again satisfy a relation of the form (2.12). The main recurrences used
in the standard algorithm can be summarized in the form

AVs
n = Vs

n T̃
s
n +

[
0 0 · · · 0︸ ︷︷ ︸

n−mc

v̂s
n+1 v̂s

n+2 · · · v̂s
n+mc︸ ︷︷ ︸

mc

]
+ V̂s, df

n .(2.23)

Here, the upper index “s” is used to differentiate the vectors and matrices generated
by the standard process from those generated by the coupled process.

In (2.23), T̃s
n is an n×n matrix whose entries are chosen such that the vectors (2.3)

and (2.4) satisfy the orthogonality conditions (2.7) and (2.8). By multiplying (2.23)

from the left by (Vs
n)

T
, and by using (2.7) and (2.8), it follows that

Ts
n := (Vs

n)
T
AVs

n = T̃s
n + (Vs

n)
T
V̂s, df

n .(2.24)

It turns out that Ts
n consists of a symmetric banded part with bandwidth decreasing

from 2m + 1 to 2mc + 1 and a “spiked” part with potentially nonzero elements only
in rows and columns with index i ∈ I and outside of the banded part. This means
that the matrix Ts

n has the same “fish-bone” sparsity structure as UT
n + Un, where

Un is the triangular factor of Tn described in section 2.4.
For the example considered in section 2.4, the corresponding matrix Ts

n produced
by the standard algorithm has the following structure:

Ts
15 =




× × × × × ×
× × × × × × ×
× × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
× × × × × × × ×
× × × × × × × × ×
× × × × × × × × × ×

× × × × × × × × × ∗ ∗ ∗ ∗ ∗
∗ × × × × × × × ×
∗ × × × × × × × ×
∗ × × × × × × × ∗ ∗ ∗
∗ ∗ × × × × × ×
∗ ∗ × × × × × ×
∗ ∗ ∗ × × × × ×
∗ ∗ ∗ × × × ×
∗ ∗ ∗ × × ×




.

Here, potentially nonzero entries in the banded part of Ts
15 are marked by “×”, and

potentially nonzero entries in the spiked part are marked by “∗”.
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For further details and properties of the standard symmetric band Lanczos algo-
rithm, we refer the reader to [15]. We would also like to point the reader to the earlier
work [9, 10, 26] on symmetric band or block Lanczos algorithms. The symmetric band
Lanczos algorithm proposed in [26] identifies Lanczos vectors that need to be deflated
in a similar fashion as described above. However, the deflated vectors are then simply
discarded, and, as a result, a relation such as (2.24) holds true only approximately
for this algorithm. The symmetric block Lanczos algorithm described in [9] and [10,
Chapter 7] is a block and not a band procedure. At each block iteration, a new block
of mc vectors is computed so that it is orthogonal to the earlier blocks. Similar to
the deflation procedure described above, vectors in the new block that are in some
sense close to the zero vector are properly deflated, and not just discarded, before the
remaining columns in the new block are orthogonalized.

2.7. Connection with the standard process. The standard band Lanczos
process and the algorithm based on coupled recurrences are mathematically equivalent
in the case that no deflation occurs or that only exact deflation is performed. Indeed,
in this case, the first n Lanczos vectors (2.3) generated by both algorithms are identical
and, in view of (2.22), span the nth block-Krylov subspace Kn(A,R). Hence, the
associated projected Lanczos matrices Tn and Ts

n given by (2.18) and (2.24) are

identical. Moreover, in (2.14) and (2.23), we have V̂df
n = V̂s, df

n = 0. This implies
that the spiked parts of both Tn and Un are actually zero matrices. Thus both Tn

and Un = LT
n are banded matrices, and (2.18) reduces to the LDLT factorization

Tn = Ts
n = Ln∆n L

T
n

of the Lanczos matrix associated with both variants of the symmetric band Lanczos
process.

As soon as deflation of almost linearly dependent vectors is performed, the two
processes are no longer mathematically equivalent in general. In this case, the spiked
parts of both Tn and Un are nonzero, and thus

Ts
n 
= Tn = UT

n ∆nUn

in general. Indeed, Ts
n has a “fish-bone” sparsity structure, while Tn is a full matrix

in general, even though Un is sparse. However, one can show that ‖Tn −Ts
n‖ is

bounded by the tolerance used to check for deflation.

3. The algorithm and its properties. In this section, we present a detailed
statement of the symmetric band Lanczos process with coupled recurrences, and es-
tablish some of its properties.

3.1. Statement of the algorithm. At each pass n through the main loop of
the algorithm, one first checks if the candidate vector v̂n needs to be deflated. If
yes, it is deleted, the indices of all the remaining candidate vectors are reduced by 1,
and the deflation check is repeated. If no, the candidate vector v̂n is normalized to
become the nth Lanczos vector vn. In the remaining steps of pass n, the algorithm
orthogonalizes the candidate vectors against vn, generates the potentially nonzero
entries of the nth column of Un and, if n ≤ m1, of the nth row of ρm1

, and computes
the vector pn, the scalar δn, and a new candidate vector v̂n+mc

.
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A detailed statement of the algorithm is as follows.

Algorithm 3.1 (symmetric band Lanczos process with coupled recurrences).
INPUT: A matrix A = AT ∈ R

N×N , and a block R = [ r1 r2 . . . rm ] ∈ R
N×m

of m starting vectors.

OUTPUT: Matrices Un, ∆n, and (if n ≥ m1) ρm1
.

(0) Set v̂i = ri for i = 1, 2, . . . ,m.

Set mc = m.

Set I = ∅.
For n = 1, 2, . . . , do :

(1) (If necessary, deflate.)
Decide if v̂n should be deflated.
If no, continue with step 2.
If yes, deflate v̂n by doing the following :
(a) If n−mc > 0, set I = I ∪ {n−mc} and v̂df

n−mc
= v̂n.

(b) Set mc = mc − 1. If mc = 0, set n = n− 1 and stop.
(c) For i = n, n + 1, . . . , n + mc − 1, set v̂i = v̂i+1.
(d) Repeat all of step 1.

(2) (Normalize v̂n to become the nth Lanczos vector vn.)

Set vn =
v̂n

‖v̂n‖ .

If n−mc > 0, set un−mc,n =
‖v̂n‖
δn−mc

.

If n−mc ≤ 0, set ρn,n−mc+m = ‖v̂n‖.
If n = mc, set m1 = mc.

(3) (Orthogonalize the vectors v̂n+j , 1 ≤ j < mc, against vn.)
For j = 1, 2, . . . ,mc − 1, do :

Set τ = vT
n v̂n+j and v̂n+j = v̂n+j − vn τ .

If n + j −mc > 0, set un+j−mc,n =
τ

δn+j−mc

.

If n + j −mc ≤ 0, set ρn,n+j−mc+m = τ .
(4) (Update the spiked part of Un.)

For each j ∈ I, set ujn =
vT
n v̂df

j

δj
.

(5) (Compute the vector pn.)

Set j0 = max{1, n−mc} and

pn = vn −
∑
j∈I

pj ujn −
n−1∑
j=j0

pj ujn.(3.1)

Set unn = 1.
(6) (Advance the block-Krylov subspace.)

Set v̂n+mc
= Apn.

(7) Set δn = pT
n v̂n+mc

.
If δn = 0, stop : look-ahead would be needed to continue.

(8) Set v̂n+mc = v̂n+mc − vn δn.
(9) Test for convergence.
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Remark 3.1. In Algorithm 3.1, only the potentially nonzero entries of the matrices
Un and ρm1

and the diagonal entries of the diagonal matrix ∆n are computed. All
other entries of these matrices are set to be zero.

Remark 3.2. The entries of Un generated in step 3 of Algorithm 3.1 are just the
potentially nonzero off-diagonal entries of the banded part of the unit upper triangular
matrix Un. In view of (2.21), the unit lower triangular matrix Ln can be obtained
by simply transposing the banded part of Un.

Remark 3.3. A practical criterion for deflation in step 1 of Algorithm 3.1 is as
follows. The vector v̂n is deflated if and only if

‖v̂n‖ ≤ dtoln.

Here,

dtoln := dtol×
{ ‖rn+m−mc‖ if n ≤ m1,

nest(A) if n > m1

(3.2)

is the product of an absolute deflation tolerance dtol and a scaling factor that makes
the deflation check independent of the actual scaling of the columns ri of R and of
the matrix A. Ideally, we would like to set nest(A) = ‖A‖ in (3.2). However, if ‖A‖
is not available, then nest(A) is set to be an estimate of ‖A‖. For example, we can
use the estimate

nest(A) := max
1≤i≤m1

‖Api‖
‖pi‖ ≤ ‖A‖ ,

which can be obtained from the vectors generated in Algorithm 3.1 at the expense of
2m1 additional vector-norm computations. Based on our numerical experiences with
Algorithm 3.1, we recommend the absolute deflation tolerance dtol =

√
eps, where

eps is the machine precision.

Remark 3.4. If A ≥ 0, then δn > 0 for all n and so Algorithm 3.1 never stops in
step 7. If A is indefinite, then it cannot be excluded that Algorithm 3.1 terminates
prematurely due to δn = 0 in step 7. In this case, look-ahead can be used to continue
the process, but in order to keep the algorithm relatively simple, we opted to treat
only the no-look-ahead case in this paper. However, we stress that Algorithm 3.1
can be extended to include look-ahead. Such an extension again generates an LDLT

factorization (2.18), where ∆n is a block-diagonal matrix in general. Furthermore,
the nonsingularity (2.11) of ∆n is guaranteed only for the values of n that correspond
to the end of a look-ahead step.

Remark 3.5. Algorithm 3.1 requires storage of the vector vn, the mc candidate
vectors v̂n+1, v̂n+2, . . . , v̂n+mc , the mc vectors pn−mc+1,pn−mc+2, . . . ,pn, and all the
vectors pi and v̂df

i with i ∈ I. Since the set I contains at most m−mc elements, the
total number of vectors to be stored is at most

1 + mc + mc + 2(m−mc) = 2m + 1,

which is identical to the storage requirement of the standard symmetric band Lanczos
process.
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3.2. Properties. We now show that the quantities generated by Algorithm 3.1
indeed satisfy the governing equations stated in section 2.2.

Theorem 3.2. The vectors and matrices generated by n iterations of Algo-
rithm 3.1 satisfy the recurrence relations (2.14), (2.15), and (if n ≥ m1) (2.12).

Proof. Using the matrices introduced in (2.9), (2.10), (2.13), and (2.16), it is
straightforward to verify that all the recurrences employed in the first n iterations
of Algorithm 3.1 can indeed be summarized as the matrix relations (2.12), (2.14),
and (2.15).

Theorem 3.3. The vectors and matrices generated by n iterations of Algo-
rithm 3.1 (run in exact arithmetic) satisfy the orthogonality conditions (2.7)–(2.9).

Proof. From steps 2, 6, and 7 of Algorithm 3.1, it follows that

vT
i vi = 1 and pT

i Api = δi for all 1 ≤ i ≤ n.(3.3)

Next, we use induction on n (≥ 0) to show that

vT
i vn = 0 for all 1 ≤ i < n,(3.4)

pT
i Apn = 0 for all 1 ≤ i < n,(3.5)

vT
i v̂n+j = 0 for all 1 ≤ i ≤ n, 1 ≤ j ≤ mc(n).(3.6)

Note that the relations (3.4)–(3.6), together with (3.3), are equivalent to the orthog-
onality conditions (2.7)–(2.9).

The assertions (3.4)–(3.6) are trivially satisfied for n = 0, since the sets of indices i
in (3.4)–(3.6) are all empty in this case. Now let n ≥ 1, and as induction hypothesis,
assume that for all 0 ≤ n′ < n, we have

vT
i vn′ = 0 for all 1 ≤ i < n′,

pT
i Apn′ = 0 for all 1 ≤ i < n′,(3.7)

vT
i v̂n′+j = 0 for all 1 ≤ i ≤ n′, 1 ≤ j ≤ mc(n

′).(3.8)

We need to show that the relations (3.4)–(3.6) are satisfied.
Since vn = v̂n/ ‖v̂n‖, the orthogonality condition (3.4) for vn is an immediate

consequence of (3.8) (with n′ = n− 1 and j = 1).
We now turn to (3.5). Note that at the end of the ith iteration of Algorithm 3.1,

we have

v̂
(i)
i+mc(i)

:= v̂i+mc(i) = Api − vi δi.(3.9)

Here, the upper index “(i)” indicates that v̂
(i)
i+mc(i)

is the (i + mc(i))th candidate

vector at the end of the ith iteration. Note that, by (3.9) and (3.4), we have

vT
n Api = vT

n

(
v̂

(i)
i+mc(i)

+ vi δi

)
= vT

n v̂
(i)
i+mc(i)

for all 1 ≤ i < n.(3.10)

Let 1 ≤ i < n be arbitrary, but fixed, and consider the transformations that are

performed on the candidate vector v̂
(i)
i+mc(i)

during iterations i + 1, i + 2, . . . , n of

Algorithm 3.1. Note that there are only two types of transformations: shift of the
(lower) index of the candidate vector by −1, and orthogonalization against previous

Lanczos vectors. For the transformed vector resulting from v̂
(i)
i+mc(i)

, there are the

following three cases:
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(I) The transformed vector is deflated during iteration ñ for some i < ñ ≤ n.
(II) The transformed vector is one of the candidate vectors v̂n, v̂n+1, . . . , v̂n−mc−1

before steps 2 and 3 are performed within the nth iteration of Algorithm 3.1.
(III) The transformed vector is normalized to become the kth Lanczos vector vk

for some k < n.
Case I occurs if and only if i ∈ I. Indeed, let m̃c be the value of mc when the

transformed vector v̂ñ is checked for deflation during iteration ñ. Since v̂ñ resulted

from v̂
(i)
i+mc(i)

, we have

ñ = i + mc(i) − (mc(i) − m̃c) = i + m̃c,

and thus i = ñ − m̃c > 0. By step 1(a) of Algorithm 3.1, deflation of the vector v̂ñ

is equivalent to i = ñ − m̃c ∈ I. Moreover, note that v̂df
i = v̂ñ and that v̂ñ was

obtained by orthogonalizing v̂
(i)
i+mc(i)

against Lanczos vectors vk with k < ñ ≤ n. In

view of (3.4) and step 4 of Algorithm 3.1, it follows that

vT
n v̂

(i)
i+mc(i)

= vT
n v̂df

i = δi uin if i ∈ I.(3.11)

Case II occurs if and only if i ≥ j0 := max{1, n−mc}. Indeed, the transformed
vector has index i + mc and is thus one of the candidate vectors v̂n, . . . , v̂n−mc−1 if
and only if

n ≤ i + mc ≤ n−mc − 1.(3.12)

Since 1 ≤ i < n, the condition (3.12) is equivalent to i ≥ j0. Note that, in view
of (3.4) and steps 2 and 3 of Algorithm 3.1, we have

vT
n v̂

(i)
i+mc(i)

= vT
n v̂i+mc

= δi uin if i ≥ j0.(3.13)

Case III complements cases I and II, and thus occurs if and only if i < j0 and
i 
∈ I. In this case, in view of (3.4), we have

vT
n v̂

(i)
i+mc(i)

= vT
n v̂k =

(
vT
n vk

) ‖v̂k‖ = 0.(3.14)

Here, k < n is the index of the Lanczos vector vk that resulted from v̂
(i)
i+mc(i)

.

By combining (3.10) with (3.11), (3.13), and (3.14), we get

vT
n Api = vT

n v̂
(i)
i+mc(i)

=

{
δi uin if i ∈ I or j0 ≤ i < n,

0 if i < j0 and i 
∈ I.
(3.15)

On the other hand, by transposing the relation (3.1), multiplying it from the right by
Api, and using (3.3) and (3.7), it follows that

pT
n Api = vT

n Api −
{
δi uin if i ∈ I or j0 ≤ i < n,

0 if i < j0 and i 
∈ I.
(3.16)

Inserting (3.15) into (3.16) gives (3.5).
Finally, we show (3.6). Note that mc(i) is a nonincreasing function of i, and in

particular, m′
c ≥ mc(n) =: mc. By (3.8) (for n′ = n − 1 and 2 ≤ j ≤ mc), the

candidate vectors v̂n+1, . . . , v̂n+mc−1 are orthogonal to v1, . . . ,vn−1 before step 3 is
performed within the nth iteration of Algorithm 3.1. The update

v̂n+j = v̂n+j − vn

(
vT
n v̂n+j

)
, 1 ≤ j < mc,(3.17)
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in step 3 then makes these candidate vectors also orthogonal to vn. Moreover, in view
of (3.4), the update (3.17) does not destroy the orthogonality to v1, . . . ,vn−1, and
thus (3.6) is satisfied for all 1 ≤ j < mc. In order to prove (3.6) for j = mc, we first
note that, by (3.9) (for i = n),

v̂n+mc = Apn − vn δn.

Multiplying this relation from the left by vT
i and using (2.6), (3.4), and (3.5), it follows

that

vT
i v̂n+mc = vT

i Apn − (
vT
i vn

)
δn = 0 for all 1 ≤ i < n.

We have thus established all three relations (3.4)–(3.6), and the proof of Theorem 3.3
is complete.

4. Application to passive reduced-order modeling. In this section, we dis-
cuss the application of the band Lanczos process with coupled recurrences to construct
passive reduced-order models.

4.1. The problem. Consider symmetric m-input m-output time-invariant lin-
ear dynamical systems of the form

C
d

dt
x(t) = −Gx(t) + Bu(t),

y(t) = BT x(t).
(4.1)

Here, C = CT, G = GT ∈ R
N×N , and B ∈ R

N×m are given matrices. Moreover,
we assume that the matrix pencil G + sC is regular, i.e., det (G + sC) = 0 for only
finitely many values of s ∈ C. In (4.1), the components of the given vector-valued
function u : [0,∞) �→ R

m are the inputs, y : [0,∞) �→ R
m is the unknown function of

outputs, the components of the unknown vector-valued function x : [0,∞) �→ R
N are

the state variables, and N is the state-space dimension. Systems of the form (4.1) can
be used to model so-called RCL electrical networks consisting of resistors, capacitors,
and inductors; see, e.g., [14] and the references given there. An important special case
is RC networks consisting of only resistors and capacitors; in this case, the matrices
C and G in (4.1) are sparse and positive semidefinite.

A reduced-order model of (4.1) is a system of the same form as (4.1) but of smaller
state-space dimension n < N . A reduced-order model of dimension n is thus of the
form

Cn
d

dt
z(t) = −Gn z(t) + Bn u(t),

y(t) = BT
n x(t),

(4.2)

where Cn = CT
n , Gn = GT

n ∈ R
n×n, and Bn ∈ R

n×m. These three matrices should
be chosen such that the input-output mapping u(t) �→ y(t) of (4.2) somehow approx-
imates the input-output mapping of the original system (4.1).

The input-output behavior of the original system (4.1), respectively, the reduced-
order model (4.2), can be described by the associated transfer function

Z(s) = BT(G + sC)−1B, respectively, Zn(s) = BT
n (Gn + sCn)−1Bn,(4.3)

where s ∈ C is a complex variable. Note that both Z and Zn are (m × m)-matrix-
valued rational functions.
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Now, let s0 ∈ C be any expansion point such that the matrix G + s0 C is non-
singular. The transfer function Zn is called an nth matrix-Padé approximant of Z
(about the expansion point s0) if the matrices Cn, Gn, and Bn in (4.3) are chosen
such that

Zn(s) = Z(s) + O(
(s− s0)

q(n))
,(4.4)

where the integer q(n) is as large as possible; see, e.g., [7, pp. 429–466]. The con-
dition (4.4) means that the Taylor expansions of Zn and Z about s0 agree in as
many leading ((m × m)-matrix-valued) coefficients as possible. In what follows, we
call the reduced-order model (4.2) of (4.1) a matrix-Padé model (associated with the
expansion point s0) if its transfer function Zn is an nth matrix-Padé approximant
of Z.

4.2. Reduced-order models via the symmetric band Lanczos process.
In what follows, we assume that the matrices C and G in (4.1) are sparse and positive
semidefinite. Moreover, let s0 ≥ 0 be any real expansion point such that G+s0 C > 0,
and let

G + s0 C = MMT(4.5)

be a sparse Cholesky factorization of G+ s0 C. Note that, in general, M is a product
of a permutation matrix, which records any pivoting for sparsity, and a sparse lower
triangular matrix. Using (4.5), the transfer function Z in (4.3) can be recast as follows:

Z(s) = RT (I + (s− s0)A)
−1

R,

where A := M−1 CM−T ≥ 0 and R := M−1 B.
(4.6)

In [17, 18], it was proposed to obtain reduced-order models via the symmetric
band Lanczos process applied to the matrix A and the block of starting vectors R
given in (4.6). More precisely, after n (≥ m1) iterations of the algorithm, a reduced-
order transfer function of dimension n is defined as follows:

Zn(s) = ρT
n (In + (s− s0)Tn))

−1
ρn, where ρn =

[
ρm1

0n−m1×m

]
.(4.7)

Here, Tn is the n×n projected Lanczos matrix and ρn is the m1×m matrix containing
the coefficients used to orthogonalize the starting block R. In [17, 18], the standard
symmetric band Lanczos process was used to generate Tn and ρn, and the resulting
algorithm was termed SyMPVL.

Here, we propose to employ the symmetric band Lanczos process based on coupled
recurrences, instead of the standard algorithm, and we call the resulting computational
procedure SyMPVL2.

Algorithm 4.1 (SyMPVL2).
INPUT: Matrices C, G ∈ R

N×N such that C, G ≥ 0 and G+sC is a regular pencil.
A matrix B ∈ R

N×m.

OUTPUT: Transfer function Zn of a reduced-order model of dimension n.
(1) Select expansion point s0 ≥ 0 with G + s0 C > 0.
(2) Compute Cholesky decomposition G + s0 C = MMT.
(3) Run n (≥ m1) iterations of Algorithm 3.1 (applied to A := M−1 CM−T

and R := M−1 B) to generate matrices Un, ∆n, and ρm1
.
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(4) Set

Zn(s) = ρT
n

(
In + (s− s0)UT

n ∆nUn

)−1
ρn, where ρn =

[
ρm1

0n−m1×m

]
.

Remark 4.1. As we mentioned in section 2.7, the standard band Lanczos process
and the algorithm based on coupled recurrences are mathematically equivalent in the
case that no deflation occurs or that only exact deflation is performed. Consequently,
in this case, SyMPVL and SyMPVL2 are mathematically equivalent. Furthermore,
in [13, 18], it was shown that the reduced-order model defined by the transfer func-
tion (4.7) is a matrix-Padé model.

4.3. Passivity. Linear dynamical systems of the form (4.1) with C, G ≥ 0 are
passive. Roughly speaking, a system (4.1) is passive if it does not generate energy. In
terms of the transfer function (4.3), Z, passivity of (4.1) is equivalent to the positive
realness of Z; see, e.g., [2, 27]. A precise definition of positive realness is as follows.

Definition 4.2 (positive realness). An (m × m)-matrix-valued rational func-
tion Z is called positive real if

(i) Z has no poles in C+ := { s ∈ C | Re(s) > 0 };
(ii) Z(s̄) = Z(s) for all s ∈ C;
(iii) Re

(
xH Z(s)x

) ≥ 0 for all x ∈ C
m and all s ∈ C+.

Passivity is a stronger condition than stability of a linear dynamical system. When
reduced-order models of passive linear subsystems are used within a simulation of a
(not necessarily linear) system, then passivity of the reduced-order models is needed
to guarantee stability of the overall simulation; see the references given in [16].

By [16, Theorem 13], a reduced-order model (4.2) with transfer function Zn given
by (4.3) is passive if Cn ≥ 0 and Gn ≥ 0. By applying this result to the reduced-order
transfer function (4.7), it follows that passivity is guaranteed if

Tn ≥ 0 and In − s0 Tn ≥ 0.(4.8)

In exact arithmetic, the two conditions (4.8) are always fulfilled. Indeed, the first
relation in (4.8) follows from Tn = VT

n AVn and A ≥ 0, and the second relation
in (4.8) follows from

M (IN − s0 A) MT = G ≥ 0

and

In − s0 Tn = VT
n (IN − s0 A) Vn ≥ 0.

Unfortunately, in finite-precision arithmetic, round-off may cause the matrix Tn gen-
erated by the standard band Lanczos process to be indefinite. The negative eigenval-
ues of Tn translate into positive poles of Zn, causing the reduced-order model given
by (4.7) to be nonpassive; see the examples given in section 4.4 below. This problem
can easily be remedied by employing the SyMPVL2 Algorithm 4.1. Instead of Tn, it
generates an LDLT factorization, UT

n ∆nUn, of Tn. In view of (2.9) and (2.19), we
have ∆n ≥ 0 and thus the first relation in (4.8) is satisfied.

An important practical issue for the SyMPVL2 Algorithm 4.1 is to determine
if the reduced-order model Zn is a sufficiently good approximation to Z for some
prescribed range of s. By applying the technique in [6] to the reduced-order transfer
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function Zn generated by Algorithm 4.1, it is easy to verify the following result; see [5]
for more details. For all s with |s− s0| < 1/ ‖A‖, we have

‖Z(s) − Zn(s)‖ ≤ |s− s0|2 ‖Fm(s− s0)‖2 ‖V̂mc‖2

1 − |s− s0| ‖A‖ + O (dtoln) .(4.9)

Here, we set

Fn(s− s0) := [0mc×n−mc
Imc

]
(
In + (s− s0)UT

n ∆nUn

)−1
[

ρT
m

0n−m×m

]
,

V̂mc := [ v̂n+1 v̂n+2 · · · v̂n+mc
] .

In practice, we drop the last term, O (dtoln), in the error bound (4.9), and evaluate
only the remaining terms. The (mc ×m)-matrix-valued function Fm(s − s0) can be
computed explicitly, and sufficiently good approximations of the norms ‖Fm(s− s0)‖
and ‖V̂mc

‖ can easily be obtained, for instance, using the Matlab function normest.
The norm ‖A‖ can be estimated by using the largest eigenvalue of the projected
Lanczos matrix UT

n ∆nUn; see, e.g., [20, section 9.1.4].

We have performed extensive numerical tests with SyMPVL2 using the conver-
gence check based on evaluating the error bound (4.9). We found that, typically, the
computational costs for this convergence check is about 5% to 8% of the cost of the
underlying symmetric band Lanczos process.

4.4. Numerical examples. In this subsection, we present results of three nu-
merical examples that demonstrate the superiority, in terms of both robustness and
accuracy, of the SyMPVL2 Algorithm 4.1 based on coupled recurrences over the orig-
inal SyMPVL algorithm [17, 18] based on the standard symmetric band Lanczos
process.

All three examples are passive linear dynamical systems (4.1) describing RC net-
works arising in VLSI circuit simulation. The frequency range of interest is always
s = 2π iω, where 1 ≤ ω ≤ 109. The goal is to compute a reduced-order transfer
function Zn that approximates the transfer function Z of (4.1) well in this frequency
range. In all three examples, C ≥ 0, G > 0, and the expansion point s0 = 0 is used.
All experiments were performed in Matlab. The symmetric band Lanczos process
was run with deflation tolerance (3.2), where dtol =

√
eps and eps is the machine

precision.

Example 4.1. In this example, C and G are matrices of order N = 1346, and
m = 10. Both SyMPVL and SyMPVL2 required n = 60 iterations. However, the
reduced-order model generated via SyMPVL is not passive, and not even stable. The
reason is that the computed matrix T60 is indefinite, causing some positive poles of the
transfer function Z60. On the other hand, SyMPVL2 generates a diagonal matrix ∆60

with only positive diagonal entries, and the matrix UT
60 ∆60 U60 is positive definite.

In particular, the transfer function Z60 does not have any positive poles. In Figure 1,
we show the dominant poles of the reduced-order models obtained from SyMPVL and
SyMPVL2, as well as the dominant poles of the transfer function Z of the original
linear dynamical system. Note that SyMPVL not only generated two unstable poles,
but also that one of the negative poles close to zero is wrong. In Figure 2, we plot
the SyMPVL and SyMPVL2 errors ‖Z(s) − Z60(s)‖ for all s = 2π iω, 1 ≤ ω ≤ 109.
Clearly, the SyMPVL2 model is also more accurate than the SyMPVL model.
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Fig. 1. Dominant poles of SyMPVL reduced-order model (top), SyMPVL2 reduced-order
model (middle), and the exact dominant poles (bottom) for Example 4.1.
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Fig. 2. Error ‖Z(s)− Zn(s)‖ of SyMPVL and SyMPVL2 models for Example 4.1.

Example 4.2. In this example, C and G are matrices of order N = 13875, and
m = 150. A reduced-order model of dimension n = 300 is needed to achieve con-
vergence in the frequency range of interest. Again, SyMPVL produced an indefinite
matrix T300, resulting in some positive poles of Z300, while the reduced-order model
generated via SyMPVL2 has no positive poles and is indeed passive. In Figure 3, we
show the dominant poles of the reduced-order models obtained from SyMPVL and
SyMPVL2.

Example 4.3. This example illustrates the behavior of the error bound (4.9).
We use the same matrices C and G as in Example 4.2, but now B has only m = 50
columns. The left plot in Figure 4 shows the norm of the reduced-order transfer
function Z300(2π iω) for the frequency range 1 ≤ ω ≤ 109. The right plot in Fig-
ure 4 shows the upper bound (4.9) for the corresponding error norm ‖Z(s) − Zn(s)‖
obtained after n = 100, 200, and 300 iterations of Algorithm 3.1.
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Fig. 3. Dominant poles of SyMPVL reduced-order model (top) and SyMPVL2 reduced-order
model (bottom) for Example 4.2.
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Fig. 4. ‖Z300(s)‖ (left) and upper bounds for ‖Z(s)− Zn(s)‖ (right) for Example 4.3.

5. Application to eigenvalue computations. In this section, we present some
preliminary numerical examples to illustrate the application of Algorithm 3.1 to the
solution of generalized symmetric definite eigenvalue problems of the form

Kx = λMx,(5.1)

where K = KT ∈ R
N×N , M = MT ∈ R

N×N , and M > 0.
The usual approach is first to compute a Cholesky decomposition M = LLT of

M, and then convert (5.1) to the standard eigenvalue problem(
L−1 KL−T

)
y = λy, where y := LT x.(5.2)

The band Lanczos process is then applied to the symmetric matrix A := L−1 KL−T

and a random block B ∈ R
N×m of m starting vectors. Note that the Lanczos process

requires only matrix-vector products with A. These can be computed by means of
multiplications with K and backsolves with L and LT, without explicitly forming A.

Next, we present two numerical examples. These experiments were performed
in Matlab, and in both cases m = 2 starting vectors were used. In both examples,
K ≥ 0, and hence the eigenvalues λk, 1 ≤ k ≤ N , of (5.2) are all real and nonnegative.

Example 5.1. The matrices K and M in this example are of order N = 1346,
and are taken from an application in circuit simulation. We ran both the standard
symmetric band Lanczos process and the coupled Algorithm 3.1 for n = 20 and n = 40
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Fig. 5. The standard (left) and the coupled (right) band Lanczos process for Example 5.1.

iterations. The Ritz values are then computed as the eigenvalues of the matrices Tn

(for the standard algorithm) and UT
n ∆nUn (for Algorithm 3.1). In Figure 5, we plot

the computed Ritz values θi and their relative errors vs. their index i, i = 1, 2, . . . , n,
for both variants of the Lanczos process, and for n = 20 and 40. Here, the relative
error of a computed Ritz value θi is defined as

min1≤k≤N |θi − λk|
|λki |

, where ki := argmin1≤k≤N |θi − λk|.(5.3)

Note that for n = 20, the computed Ritz values and their relative errors for both
variants of the band Lanczos process are essentially the same. However, for n = 40,
the standard algorithm is significantly worse than the coupled algorithm, and even
has generated negative Ritz values. On the other hand, all the Ritz values from the
coupled Algorithm 3.1 are positive.

Example 5.2. In this example, K and M are 834 × 834 stiffness and mass
matrices arising in a structural analysis within MSC’s NASTRAN application. In
Figure 6, we show the computed Ritz values, as well as their relative errors (5.3), that
were obtained after n = 40 iterations of both variants of the band Lanczos process.
Note that the standard algorithm produced one negative Ritz value, namely, θ30,
while all Ritz values from the coupled Algorithm 3.1 are positive.

6. Concluding remarks. We proposed a variant of the band Lanczos process
for symmetric matrices and multiple starting vectors that uses coupled recurrences
involving two sets of basis vectors, instead of the recurrences involving only one set
in the standard algorithm. The new variant generates the factors of an LDLT fac-
torization of the Lanczos matrix, rather than the Lanczos matrix directly. Numerical
experiments suggest that the coupled algorithm is superior to the standard algorithm
both in terms of accuracy and robustness. However, a precise round-off error analysis
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Fig. 6. The standard (left) and the coupled (right) band Lanczos process for Example 5.2.

that would provide a theoretical basis for the superiority of the coupled algorithm
still remains to be done.

For a single starting vector, the symmetric band Lanczos process reduces to the
classical symmetric Lanczos algorithm [23] and the Lanczos matrix is tridiagonal. In
the last few years, it has gradually become clear that the standard representation of
a tridiagonal matrix via its entries is an unfortunate one, and that it is better, for
both accuracy and efficiency, to represent the matrix as a product of bidiagonals; see,
e.g., [11, 24, 25]. This paper has demonstrated that the same is true for the Lanczos
matrix associated with the symmetric band Lanczos process. Instead of representing
that matrix via its entries, it is preferable to present it via the entries of an LDLT

factorization.
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