
Computation of Large-Scale Quadratic Form and

Transfer Function Using the Theory of

Moments, Quadrature and Padé Approximation

Zhaojun BAI

Department of Computer Science

University of California

Davis, CA 95616, USA

Gene GOLUB

Department of Computer Science

Stanford University

Stanford, CA 94305, USA

Abstract

Large-scale problems in scientific and engineering computing often require solutions
involving large-scale matrices. In this paper, we survey numerical techniques for solving
a variety of large-scale matrix computation problems, such as computing the entries and
trace of the inverse of a matrix, computing the determinant of a matrix, and computing
the transfer function of a linear dynamical system.

Most of these matrix computation problems can be cast as problems of computing
quadratic forms uT f(A)u involving a matrix functional f(A). It can then be transformed
into a Riemann-Stieltjes integral, which brings the theory of moments, orthogonal poly-
nomials and the Lanczos process into the picture. For computing the transfer function,
we focus on numerical techniques based on Padé approximation via the Lanczos process
and moment-matching property. We will also discuss issues related to the development
of efficient numerical algorithms, including using Monte Carlo simulation.

1 Introduction

In the 1973 paper entitled “Some Modified Eigenvalue Problems” by Golub [34], numerical
calculation of several matrix computation problems are considered. These include finding
constrained eigenvalue problems, determining the eigenvalues of a matrix which is modified
by a matrix of rank one, solving constrained and total least squares problems. All these
problems require some manipulation before the standard algorithms may be used. Many of
these problems have been further studied and widely applied, such as the total least squares
problems [59].

In this paper, we survey a collection of “new” modified matrix computation problems. It
includes computing the entries of the inverse of a matrix, (A−1)ij , the determinant, det(A),
the trace of the inverse of a matrix, trace(A−1), and the transfer function, h(s) = lT (I −

1

2 Z. Bai and G. Golub

sA)−1r. More generally, we are concerned with the problem of computing the quadratic form
uT f(A)u or bilinear form uT f(A)v involving a matrix functional f(A). The matrix A in
question is typically large and sparse. We will discuss those iterative methods in which the
matrix A in question is only referenced via matrix-vector products.

The necessity of solving these problems appears in many applications. For example, let
x̂ be an approximation of the exact solution x of a linear system of equations Ax = b, where
we assume that A is symmetric positive definite. In order to obtain error bounds of the
approximation, we consider the A-norm of the forward error vector e = x− x̂:

‖e‖2
A = eTAe = rTA−1AA−1r = rTA−1r,

where r is the residual vector r = b − Ax̂. Therefore, the problem becomes to obtain com-
putable bounds for the quadratic form rTA−1r. It is sometimes also of interest to compute
the l2-norm of the error e, ‖e‖2. Then it is easy to see that one needs to compute the quadratic
form ‖e‖2

2 = rTA−2r. Bounds for the error of linear system of equations have been studied
extensively in [21, 35, 36, 17].

There are a number of applications where it is required to compute the trace of the inverse,
tr(A−1), and the determinant, det(A), of a very large and sparse matrix A, such as in the
theory of fractals [56, 63] and lattice Quantum Chromodynamics (QCD) [57, 24, 31].

The solution of a linear least squares problem by the generalized cross-validation technique
involves the computation of the trace of the matrix I −K(KTK +mλI)−1K for estimating
a regularization parameter λ, where K is an m×n matrix, m ≥ n [38]. The quadratic forms
uT exp(

√
−1At)u, uT exp(−βA)u and uT (ωI−A)−1u appear in the computation of magnetic

resonance spectra, quantum statistical mechanics and a variety of other problems in chemical
physics [50]. In molecular dynamics, the total energy of an electronic structure requires the
calculation of a partial eigenvalue sum of a generalized symmetric definite eigenvalue problem.
In [6], it is shown that this sum can be obtained through the computation of the trace of
the matrix A(I + exp((A− τ)/κ)−1, where τ and κ are parameters. Many other origins and
applications of the computation of the quadratic form are listed in [8, 25].

The problem of transfer function computing arises from the steady-state analysis of a
linear dynamical system. A successful approximation of the transfer function also leads to a
very desirable and potentially powerful reduced-order model of the original full-order system.
We will discuss motivations and applications of transfer function computing in section 4.

2 Quadratic form

Given an N × N real symmetric matrix A and a smooth function f such that the matrix
function f(A) is defined, the problem of quadratic form computing is to evaluate the quadratic
form

uT f(A)u, (1)

or computing tight lower and upper bounds γℓ and γu of the quadratic form uT f(A)u:

γℓ ≤ uT f(A)u ≤ γu. (2)

Here u is a given real column vector of length N . Without loss of generality, one may assume
uTu = 1.

Moments, Quadrature and Padé Approximation 3

The quadratic form computing problem was first proposed in [21] for bounding the error
of linear systems of equations. It has been further studied in [35, 37, 5] and extended to other
applications. In this section, we will first discuss the main idea of the approach, and show that
the problem of the quadratic form computing can be transformed into a Riemann-Stieltjes
integral, and then use Gauss-type quadrature rules to approximate the integral, which brings
the theory of moments and orthogonal polynomials, and the underlying Lanczos process into
the picture.

We note that the quadratic form (1) can be generalized to the block case, namely, to
evaluate the matrix quadratic form

UT f(A)U

where U is a block of N -vectors. The problem of computing a bilinear form uT f(A)v, where
u 6= v, can be reduced to the problem of quadratic form computing by the polarization
expression:

uT f(A)v =
1

4

(
yT f(A)y − zT f(A)z

)
,

where y = u+ v and z = u− v.

2.1 Main idea

Let us now go through the main idea. Since A is symmetric, the eigen-decomposition of A
is given by A = QT ΛQ, where Q is an orthogonal eigenvector matrix and Λ is a diagonal
matrix with increasingly ordered diagonal elements λi, the eigenvalues. Then the quadratic
form uT f(A)u can be written as

uT f(A)u = uTQT f(Λ)Qu = ũT f(Λ)ũ =
N∑

i=1

f(λi)ũ
2
i ,

where ũ = (ũi) ≡ Qu. The last sum can be interpreted as a Riemann-Stieltjes integral

uT f(A)u =

∫ b

a
f(λ)dµ(λ), (3)

where the measure µ(λ) is a piecewise constant function and defined by

µ(λ) =





0, if λ < a ≤ λ1,∑i
j=1 ũ

2
j , if λi ≤ λ < λi+1∑N

j=1 ũ
2
j , if b ≤ λN ≤ λ

and a and b are the lower and upper bounds of the eigenvalues λi.
To obtain an estimate for the Riemann-Stieltjes integral (3), one can use Gauss-type

quadrature rules [33, 22]:

In[f] =
n∑

j=1

ωjf(θj) +
m∑

k=1

ρkf(τk), (4)

where the weights {ωj} and {ρk} and the nodes {θj} are unknown and to be determined.
The nodes {τk} are prescribed. If m = 0, then it is the well-known Gauss rule. If m = 1 and

4 Z. Bai and G. Golub

τ1 = a or τ1 = b, it is the Gauss-Radau rule. The Gauss-Lobatto rule is for m = 2 and τ1 = a
and τ2 = b.

The accuracy of the Gauss-type quadrature rules may be obtained by an estimation of
the remainder Rn[f]:

Rn[f] =

∫ b

a
f(λ)dµ(λ) − In[f].

For the Gauss quadrature rule, the remainder Rn[f] can be written as

Rn[f] =
f (2n)(η)

(2n)!

∫ b

a

[
n∏

i=1

(λ− θi)

]2

dµ(λ), (5)

for some η ∈ (a, b). If the sign of Rn[f] can be determined, then the quadrature In[f] is a
lower bound (if Rn[f] > 0) or an upper lower bound (if Rn[f] < 0) of the quadratic form
uT f(A)u. Similarly, for the Gauss-Radau rule, the remainder Rn[f] is given by

Rn[f] =
f (2n+1)(η)

(2n+ 1)!

∫ b

a
(λ− τ1)

[
n∏

i=1

(λ− θi)

]2

dµ(λ), (6)

for some η ∈ (a, b), and for the Gauss-Lobatto rule, it is

Rn[f] =
f (2n+2)(η)

(2n+ 2)!

∫ b

a
(λ− τ1)(λ− τ2)

[
n∏

i=1

(λ− θi)

]2

dµ(λ). (7)

for some η ∈ (a, b).

2.2 Moments

In defining Gaussian quadratures, we choose the weights ωj and nodes θj so that 2n moments
are calculated exactly, i.e.,

µr =

∫ b

a
λrdµ(λ) =

n∑

j=1

ωj θ
r
j

for r = 0, 1, 2, . . . , 2n − 1. A different perspective on this statement is that the summation
on the right is of the form of a solution to a difference equation. In particular, let n = 2, the
moments µr satisfy a second-order difference equation of the form

αµr + βµr−1 + γµr−2 = 0

for certain coefficients α, β and γ. The nodes θj are the roots of the characteristic polynomial

αθ2 + βθ + γ = 0.

We can use this fact to bound the quadratic form. In particular, note that first three moments
µ0 = tr(A0) = N , µ1 = tr(A) and µ2 = tr(A2) = ‖A‖2

F can be easily calculated. By using
these three moments, in [7], it is shown that for a symmetric positive definite matrix A, we
have the following computable bounds for the trace of the inverse tr(A−1):

[
µ1 µ0

] [µ2 µ1

b2 b

]−1 [
µ0

1

]
≤ tr(A−1) ≤

[
µ1 µ0

] [µ2 µ1

a2 a

]−1 [
µ0

1

]
,

Moments, Quadrature and Padé Approximation 5

where a and b are the lower and upper bounds of the eigenvalues of A, a > 0. Furthermore,
by the identity

ln(det(A)) = tr(lnA), (8)

we can also use the first three moments of A to obtain lower and upper bounds of ln(det(A)):

[
ln a ln t

] [a t
a2 t2

]−1 [
µ1

µ2

]
≤ ln(det(A)) ≤

[
ln b ln t̄

] [b t̄
b2 t̄2

]−1 [
µ1

µ2

]

where t = (aµ1 − µ2)/(aµ0 − µ1) and t̄ = (bµ1 − µ2)/(bµ0 − µ1).

2.3 Orthogonal polynomials and symmetric Lanczos process

Before we discuss how the weights and the nodes are calculated in the Gauss-type quadratures,
let us briefly review the theory of orthogonal polynomials and symmetric Lanczos process.
For a given nondecreasing measure function µ(λ), it is well-known [58] that a sequence of
polynomials {pj(λ)} can be constructed via a three-term recurrence

βjpj(λ) = (λ− αj)pj−1(λ) − βj−1pj−2(λ),

for j = 1, 2, . . . , n with p−1(λ) ≡ 0 and p0(λ) ≡ 1. Furthermore, they are orthonormal with
respect to the measure µ(λ):

(pi, pj) =

∫ b

a
pi(λ)pj(λ)dµ(λ) =

{
1, if i = j,
0, if i 6= j,

where it is assumed the normalization condition

∫
dµ = 1 (i.e., uTu = 1). Writing the

three-term recurrence in matrix form, we have

λp(λ) = Tn p(λ) + βnpn(λ)en

where

p(λ)T = [p0(λ), p1(λ), . . . , pn−1(λ)],

and

Tn =




α1 β1

β1 α2
. . .

. . .
. . . βn−1

βn−1 αn



.

The following classical symmetric Lanczos process [46] is an elegant way to compute the
recurrence coefficients αj and βj .

Symmetric Lanczos process: Let A be a real symmetric matrix, u a real vector
with uTu = 1. Then the following procedure computes the tridiagonal matrix Tn

and the orthonormal Lanczos vectors qj .

6 Z. Bai and G. Golub

Let q0 = 0, β0 = 0, and q1 = u
α1 = qT

1 Aq1
For j = 1, 2, . . . , n,

rj = Aqj − αjqj − βj−1qj
βj = ‖rj‖2

qj+1 = rj/βj

αj+1 = qT
j+1Aqj+1

Let Qn = [q1, q2, . . . , qn]. Then the symmetric Lanczos process can be written in compact
matrix form

AQn = QnTn + βnqn+1e
T
n ,

and QT
nQn = I and QT

n qn+1 = 0. The Lanczos vectors qj produced by the symmetric Lanczos
process and the orthonormal polynomials {pj(λ)} are connected as the following

qj = pj−1(A)u

for j = 1, . . . , n. Note that the eigenvalues of Tn are the roots of the polynomial pn(λ).

2.4 Basic Algorithms

Gauss-Lanczos (GL) algorithm. Using the eigen-decomposition of Tn:

Tn = SnDnS
T
n

where Dn = diag(θ1, θ2, . . . , θn) and ST
n Sn = In. Then for the Gauss quadrature rule, the

eigenvalues θi of Tn (which are the zeros of the polynomial pn(λ)) are the desired nodes. The
weights ωj are the squares of the first elements of the normalized eigenvectors of Tn, i.e.,
ωj = (eT1 Snej)

2.

By combining the Gauss quadrature and the symmetric Lanczos process, we have an
algorithm for computing an estimate In[f] of the quadrature form uT f(A)u. We refer to it
as the Gauss-Lanczos (GL) algorithm.

From the expression (5) of the remainder Rn[f], we can determine whether the approx-
imation In[f] is a lower or upper bound of the quadratic form uT f(A)u. For example, if
f (2n)(η) > 0, then In[f] is a lower bound ℓl.

We note that it is not always necessary to explicitly compute the eigenvalues and the first
components of eigenvectors of the tridiagonal matrix Tn for obtaining the estimation In[f].
In fact, by the fact that ωj = (eT1 Snej)

2, the Gauss rule can be written in the form

In[f] =

n∑

k=1

ωkf(θk) = eT1 Snf(Dn)ST
n e1 = eT1 f(Tn)e1. (9)

Therefore, if the (1,1) entry of f(Tn) can be easily computed, for example, f(λ) = 1/λ, then
the computation of the eigenvalues and eigenvectors of Tn can be avoided. This is the case
when applying this technique to error estimation of an iterative method for solving linear
system of equations [36, 17].

Moments, Quadrature and Padé Approximation 7

By exploiting the relation between the Lanczos vectors qj and orthogonal polynomials pj ,
it can be shown that the remainder Rn[f] can be written as

Rn[f] =
f (2n)(η)

(2n)!
β2

1β
2
2 · · ·β2

n

for some η ∈ (a, b). Therefore, if f (2n)(η) can be estimated or bounded, the error can be
easily obtained with little additional cost [16, 25].

Gauss-Radau-Lanczos (GRL) algorithm. For the Gauss-Radau and Gauss-Lobatto
rules, the nodes {θj}, {τk} and weights {ωj}, {ρj} come from eigenvalues and the squares
of the first elements of the normalized eigenvectors of an adjusted tridiagonal matrix of Tn,
which has the prescribed eigenvalues a and/or b.

To implement the Gauss-Radau rule with the prescribed node τ1 = a or τ1 = b, the above
GL algorithm needs to be slightly modified. For example, with τ1 = a, we need to extend
the matrix Tn to

T̃n+1 =

[
Tn βnen
βne

T
n φ

]
. (10)

Here the parameter φ is chosen such that τ1 = a is an eigenvalue of T̃n+1. From [34], it is
known that

φ = a+ δn,

where δn is the last component of the solution δ of the tridiagonal system

(Tn − aI)δ = β2
nen.

The eigenvalues and the squares of the first components of orthonormal eigenvectors of T̃n+1

are the nodes and weights of the Gauss-Radau rule.

By combining the Gauss-Radau quadrature and the symmetric Lanczos process, we have
an algorithm for computing an estimate In[f] of the quadrature form uT f(A)u. We refer to
it as the Gauss-Radau-Lanczos (GRL) algorithm.

If f (2n+1)(η) < 0, then Ĩn[f] (with b as a prescribed eigenvalue of T̃n+1) is a lower bound
ℓl of the quantity uT f(A)u. Ĩn[f] (with a as a prescribed eigenvalue of T̃n+1) is an upper
bound ℓu.

Similar to the GL algorithm, it is not always necessary to compute the eigenvalues and
the first components of eigenvectors of the tridiagonal matrix T̃n+1 for obtaining Ĩn[f]. In
fact, one can show that

Ĩn[f] =
n∑

k=1

ωkf(θk) + ρ1f(τ1) = eT1 f(T̃n+1)e1. (11)

Therefore, if the (1,1) entry of f(T̃n+1) can be easily computed, for example, f(λ) = 1/λ, we
can directly compute eT1 f(T̃n+1)e1.

8 Z. Bai and G. Golub

Gauss-Lobatto-Lanczos (GLL) algorithm. To implement the Gauss-Lobatto rule, Tn

computed in the GL algorithm is updated to

T̂n+2 =

[
Tn+1 ψen+1

ψeTn+1 φ

]
. (12)

Here the parameters φ and ψ are chosen so that a and b are eigenvalues of T̂n+2. Again, from
[34], it is known that

φ =
bδn+1 − aµn+1

δn+1 − µn+1
and ψ2 =

b− a

δn+1 − µn+1
,

where δn and µn are the last components of the solutions δ and µ of the tridiagonal systems

(Tn+1 − aI)δ = en+1 and (Tn+1 − bI)µ = en+1.

The eigenvalues and the squares of the first components of eigenvectors of T̂n+2 are the nodes
and weights of the Gauss-Lobatto rule. Moreover, if f (2n+2)(η) > 0, then În[f] is an upper
bound ℓu of uT f(A)u.

By combining the Gauss-Lobatto quadrature and the symmetric Lanczos process, we have
an algorithm for computing an estimation În[f] of the quadrature form uT f(A)u. We refer
to it as the Gauss-Lobatto-Lanczos (GLL) algorithm.

Similarly to (11), we have

În[f] =
n∑

k=1

ωkf(θk) + ρ1f(τ1) + ρ2f(τ2) = eT1 f(T̂n+2)e1. (13)

2.5 Pseudo-code, software and numerical examples

We have now established all basic algorithms we need to compute the quadratic form uT f(A)u
by applying Gauss, Gauss-Radau and Gauss-Lobatto rules. These algorithms are summarized
in the following pseudo-code.

GL, GRL, GLL algorithms: Let A be a real symmetric matrix, u a real vector
with uTu = 1. f is a given smooth function. Then the following algorithms
compute the estimates In[f], Ĩn[f] and În[f] of the quadratic form uT f(A)u by
using the Gauss, Gauss-Radau, and Gauss-Lobatto rules via Lanczos process.

Let q0 = 0, β0 = 0, and q1 = u
α1 = qT

1 Aq1
For j = 1, 2, . . . , n,

rj = Aqj − αjqj − βj−1qj
βj = ‖rj‖2

qj+1 = rj/βj

αj+1 = qT
j+1Aqj+1

For GRL algorithm, update Tn according to (10)
For GLL algorithm, update Tn according to (12)

Compute In[f], Ĩn[f] and În[f] according to (9), (11) and (13)

Moments, Quadrature and Padé Approximation 9

(A−1)ii GRL CG

i iter1 lower bound γl iter2 upper bound γu γu − γl iter (A−1)ii

1 12 9.4801416e− 01 19 9.4801776e− 01 3.60e− 06 24 9.4801e− 1
100 11 1.1005253e+ 00 20 1.1005302e+ 00 4.90e− 06 24 1.1005e+ 0
2000 11 1.1003685e+ 00 19 1.1003786e+ 00 1.01e− 05 23 1.1004e+ 0
3125 10 6.4400234e− 01 16 6.4401100e− 01 8.66e− 06 21 6.4400e− 1

Table 1: VFH matrix, eTi A
−1ei computed by GRL and CG methods.

We note that the “For” loop in the above algorithms is the standard symmetric Lanczos
process as described above. The matrix A in question is only referenced in the form of the
matrix-vector product. The symmetric Lanczos process can be implemented with only 3 N -
vectors in the fast memory. This is the major storage requirement for the algorithm. These
are attractive features for large-scale problems.

For the Gauss-Radau and Gauss-Lobatto rules, we need to have the estimates of a and
b as the extreme eigenvalues λ1 and λN of A. Numerical experiments show that more steps
of the Lanczos process may be required with poor estimates of a and b. One needs to weigh
the cost of using a sophisticated method to obtain good estimates of the extreme eigenvalues
against the cost of additional Lanczos iterations. Gershgorin circles can be used to estimate
a and b. It is usually sufficient for use in the Gauss-Radau and Gauss-Lobatto rules.

An ad hoc choice for determining the number of Lanczos iterations n is to use

|In[f] − In−1[f]| ≤ ǫ |In[f]|,

where ǫ is a prescribed tolerance value. This criterion removes the restriction to supply the
number of iteration a priori. It implies that

|I[f] − In[f]| ≤ |I[f] − In−1[f]| + ǫ |In[f]|.

Therefore, the iteration stops if the error is no longer decreasing or is decreasing too slowly.
A Matlab toolset, called QUADFORM, is developed in [25] to implement all GL, GRL

and GLL algorithms.

Example 1. This is a symmetric positive definite matrix from the transverse vibration of
a vicsek fractal Hamiltonian (VFH). The fractal is recursively constructed. The details are
described in [5]. Table 1 shows the numerical results for estimating a few diagonal elements
of the inverse of the matrix of dimension N = 3125. The parameters a and b are computed
by Gershgorin circles. We used ǫ = 10−4 for determining the number of Lanczos iterations in
the GRL algorithm. The last two columns are the number of iterations and the approximate
values of the conjugate gradient (CG) method.

Example 2. This is a 1711 × 1711 matrix from geophysical logs of oil wells data analysis
[48]. It is a symmetric positive definite matrix of condition number on the order of 107.
In this example, we first apply equilibration to improve the condition number. Specifically,

the GRL algorithm is applied to the matrix DAD, where D = diag(a
−1/2
ii). Note that

eTi A
−1ei = (Dei)

T (DAD)−1(Dei). Table 2 shows the numerical results of GRL and CG
methods for estimating few diagonal elements of the inverse of A.

10 Z. Bai and G. Golub

(A−1)ii GRL CG

i iter1 lower bound γl iter2 upper bound γl γu − γl iter (A−1)ii

1 62 5.2589E − 1 115 5.4968E − 1 2.38E − 2 iter (A−1)ii

400 244 7.3332E − 2 344 7.3605E − 2 2.73E − 4 335 5.3138E − 1
900 89 8.5561E + 0 218 8.6671E + 0 1.11E − 1 452 7.3549E − 2
1400 190 1.0137E + 0 343 1.0236E + 0 9.90E − 3 498 1.0215E + 0
1711 36 3.6961E − 2 68 3.7213E − 2 2.52E − 4 237 3.7015E − 2

Table 2: Oil Wells matrix, eTi A
−1ei computed by GRL and CG methods.

3 Monte Carlo simulation

In this section, we discuss a Monte Carlo approach for estimating the trace of a matrix
function, tr(f(A)). For the task of computing the trace of the inverse of A, we simply take
the function f(λ) = 1/λ. For computing the determinant, det(A), of a symmetric positive
definite matrix A, by the identity (8), we take f(λ) = ln(λ). Instead of applying GL, GRL or
GLL algorithm n times for each diagonal element eTi f(A)ei of f(A), a Monte Carlo approach
only applies it m times to obtain an unbiased estimator of the trace of f(A), where in
general m ≪ N . The saving in computational costs could be very significant. Probabilistic
confidence bounds for the unbiased estimator can also be obtained. An alternative Monte
Carlo approach for computing the trace is presented [12].

Our Monte Carlo approach is based on the following basic property due to [42, 24].

Proposition 3.1 Let H be an n×n symmetric matrix with tr(H) 6= 0. Let V be the discrete
random variable which takes the values 1 and −1 each with probability 0.5 and let z be a
vector of n independent samples from V . Then zTHz is an unbiased estimator of tr(H), i.e.,

E(zTHz) = tr(H),

and

Var(zTHz) = 2
∑

i6=j

h2
ij .

In practice, we take m random sample vectors zi as described in Proposition 3.1, and
then use GL algorithm to obtain an unbiased estimator of tr(f(A)),

E(zT
i f(A)zi) = tr(f(A)),

for i = 1, 2, . . . ,m. By using GRL algorithm, we can obtain a lower bound Li and an upper
bound Ui of the quantity zT

i f(A)zi:

Li ≤ zT
i f(A)zi ≤ Ui, (14)

By taking the mean of the m computed lower and upper bounds Li and Ui, we have

1

m

m∑

i=1

Li ≤
1

m

m∑

i=1

zT
i f(A)zi ≤

1

m

m∑

i=1

Ui. (15)

Moments, Quadrature and Padé Approximation 11

It is expected that with a suitable sample size m, Monte Carlo yields good bounds for the
quantity tr(f(A)).

To quantitatively assess the quality of such estimation, we can turn to confidence bounds
of the estimation. In other words, we can find an interval so that the exact value of tr(f(A)) is
in the interval with probability p, where 0 < p < 1. The Hoeffding’s exponential inequality in
probability theory can be immediately used to derive such confidence bounds [54]. Specifically,
let wi = zT

i f(A)zi − tr(f(A)). Since zi are taken as independent random vectors, wi are
independent random variables. From Proposition 3.1, wi has zero means (i.e. E(wi) = 0).
Furthermore, from (14), we also know that wi has bounded ranges

Lmin − tr(f(A)) ≤ wi ≤ Umax − tr(f(A))

for all i, 1 ≤ i ≤ m, where Umax = max{Ui} and Lmin = min{Li}. By Hoeffding’s inequality,
we have the following probabilistic bounds for the mean of m samples zT if(A)zi,

P

(∣∣∣∣∣
1

m

m∑

i=1

zT
i f(A)zi − tr(f(A))

∣∣∣∣∣ ≥
η

m

)
≤ 2 exp

(−2η2

d

)
, (16)

where d = m(Umax−Lmin)
2 and η > 0 is a tolerance value, which is related to the probability

in the right hand side of the inequality. In other words, inequality (16) tells us that

P

(
1

m

m∑

i=1

zT
i f(A)zi −

η

m
< tr(f(A)) <

1

m

m∑

i=1

zT
i f(A)zi +

η

m

)
> 1 − 2 exp

(−2η2

d

)
.

Then from the bounds (15), we have

P

(
1

m

m∑

i=1

Li −
η

m
< tr(f(A)) <

1

m

m∑

i=1

Ui +
η

m

)
> 1 − 2 exp

(−2η2

d

)
. (17)

Therefore, we conclude that the trace of f(A) is in the interval

(
1

m

m∑

i=1

Li −
η

m
,

1

m

m∑

i=1

Ui +
η

m

)

with probability 1 − 2 exp(−2η2/d).

If we specify the probability p in (17), i.e. p = 1−2 exp
(
−2η2

d

)
, then solving this equality

for η
m , yields

η

m
=

√
− 1

2m
(Umax − Lmin)2 ln

(
1 − p

2

)
. (18)

Since (Umax −Lmin)
2 is bounded by 2N2‖f(A)‖2

2, we see that with a fixed value of p, η
m → 0

as m → ∞, i.e., the confidence interval is essentially given by the means of the computed
bounds.

We now have a Monte Carlo algorithm which computes an unbiased estimator of tr(f(A)).
The algorithm also returns a confidence interval with user specified probability. We note that
Li and Ui are generally very sharp bounds of zT

i f(A)zi. It would be ideal if we could have a

12 Z. Bai and G. Golub

sharp confidence interval, i.e., η/m is small. However, from equation (18), we may have to
choose a quite large number of samples m. It would be too expensive. Instead, we generally
choose a fixed number of samples m and the probability p to compute the corresponding
confidence interval. Here is the algorithm based on the Monte Carlo approach.

Monte Carlo algorithm. Suppose A is symmetric positive definite. Let m
be a chosen number of samples. Then the following algorithm computes (a) an
unbiased estimator Ip of the quantity tr(f(A)), and (b) a confidence interval
(Lp, Up) such that tr(f(A)) ∈ (Lp, Up) with a user-specified probability p, where
0 < p < 1.

For j = 1, 2, · · · ,m
Generate n-vector zj with uniformly distributed elements in (0,1).
For i = 1 : n, if zj(i) < 0.5, then zj(i) = −1, otherwise, zj(i) = 1.
Apply GL algorithm to obtain an estimator Ij of zT

j f(A)zj
Apply GRL algorithm to obtain the bounds (Lj , Uj) of zT

j f(A)zj
Lmin = min{Lmin, Lj}
Umax = max{Umax, Uj}
η2 = −0.5j(Umax − Lmin)

2 ln(1−p
2)

Lp(j) = 1
j

∑j
i=1 Li − η

j

Up(j) = 1
j

∑j
i=1 Ui + η

j

End
Ip = 1

m

∑m
j=1 Ij

Lp = Lp(m)
Up = Lp(m)

A couple of improvements of Monte Carlo simulation for computing the trace of a matrix
function have been proposed recently. In [62], it is proposed to use a low discrepancy sampling
method for a better choice of sample vectors zj to improve convergence rate. One can also
develop a variance reduction technique via control regression. The essential idea is to apply
the first few easy-to-compute moments of the matrices A and Tn to minimize the variance
of the estimates Ij via regression. The following example includes a preliminary result of
variance reduction.

Example 3. This is a consistent mass matrix from a regular nx×ny grid of 8-node (serendip-
ity) elements. It is from Higham’s test matrix collection available in Matlab’s gallery. The
order of the matrix is N = 3nxny +2nx+2ny +1. We choose nx = ny = 12 and then N = 481.
Numerical results of a Monte Carlo simulation of tr(A−1) and variance reduction are plotted
in Figure 1. Solid horizontal lines in the first top two plots are the exact value tr(A−1).
In the top plot, the solid plus and dash circle lines are the estimates by GL algorithm and
improved ones with variance reduction for 30 different random samples zj , respectively. In
the middle plot, the solid plus and dash circle lines are the means of the GL estimates and
improved ones. The bottom plot is the variances before (solid plus) and after (dash circle)
applying the variance reduction technique via control regression.

Moments, Quadrature and Padé Approximation 13

0 5 10 15 20 25 30
750

800

850

900

950
tr(inv(A))(blue), estimates(red), and estimates+var.red.(magenta)

number of samples

tr
ac

e
of

 th
e

in
ve

rs
e

0 5 10 15 20 25 30
840

850

860

870

880

890

900
tr(inv(A))(blue), mean(estimates)(red), mean(estimate+var.red.)(magenta)

number of samples

tr
ac

e
of

 th
e

in
ve

rs
e

0 5 10 15 20 25 30
0

5

10

15

20
std.dev.(estimates)(red), std.dev(estimate+var.red.)(magenta)

number of samples

st
an

da
rd

 d
ev

ia
tio

n

Figure 1: Monte Carlo simulation of tr(A−1).

4 Transfer function

4.1 Linear dynamical systems and transfer function

A continuous time-invariant lumped multi-input multi-output linear dynamical system is of
the form {

Cẋ(t) +Gx(t) = B u(t),
y(t) = LTx(t),

(19)

with initial condition x(0) = x0. Here t is the time variable, x(t) ∈ RN is a state vector,
u(t) ∈ Rm the input excitation vector, and y(t) ∈ Rp the output measurement vector.
C,G ∈ RN×N are system matrices, B ∈ RN×m and L ∈ RN×p are input and output
distribution arrays, respectively. N is the state space dimension and m and p are the number
of inputs and outputs, respectively. In most practical cases, we can assume that m and p are
much smaller than N and m ≥ p.

Linear systems arise in many applications, such as the network circuit with linear elements
[60], structural dynamics analysis with only lumped mass and stiffness elements [19, 20],
linearization of a nonlinear system around an equilibrium point [27], and a semi-discretization
with respect to spatial variables of a time-dependent differential-integral equations [55, 61].

The matrices C and G in (19) are allowed to be singular, and we only assume that the
pencil G + sC is regular, i.e., the matrix G + sC is singular only for a finite number of
values s ∈ C. The assumption that G + sC is regular is satisfied for all applications we are
concerned with that lead to systems of the form (19). In addition, C and G in (19) are general
nonsymmetric matrices. However, in some important applications, C and G are symmetric,

14 Z. Bai and G. Golub

and possibly positive definite or positive semidefinite. Note that when C is singular, the
first equation in (19) is a first-order system of linear differential-algebraic equations. The
corresponding linear system is called a descriptor system or a singular system.

The linear system of the form (19) is often referred to as the representation of the system
in the time domain or in the state space. Equivalently, one can also represent the system in
the frequency domain via a Laplace transform. Recall that for a vector-valued function f(t),
the Laplace transform of f(t) is defined by

F (s) := L{f(t)} =

∫ ∞

0
f(t)e−stdt, s ∈ C. (20)

The physically meaningful values of the complex variable s are s = iω, where ω ≥ 0 is
referred to as the frequency. Taking the Laplace transform of the system (19), we obtain the
following frequency domain formulation of the system:

{
sCX(s) +GX(s) = B U(s),

Y (s) = LTX(s),
(21)

where X(s), Y (s) and U(s) represents the Laplace transform of x(t), y(t) and u(t), respec-
tively. For simplicity, we assume that we have zero initial conditions x(0) = x0 = 0 and
u(0) = 0.

Eliminating the variable X(s) in (21), we see that the input U(s) and the output Y (s) in
the frequency domain are related by the following p×m matrix-valued rational function

H(s) = LT (G+ sC)−1B. (22)

H(s) is known as the transfer function or Laplace-domain impulse response of the linear
system (19).

Steady-state analysis, also called frequency response analysis, is to determine the fre-
quency responses H(iω) of the system to external steady-state oscillatory (i.e., sinusoidal)
excitation.

Linear dynamical systems have been studied extensively, especially for the case C = I, for
example, see [44]. Numerous techniques have been developed for performing various analyses
of the system. One of the primary computational challenges we are confronted with today
is the large state dimension N of the system (19). For example, in circuit simulation and
structural dynamics applications, N could be as large as 106. In addition, the differential
equations in the system (19) are often stiff from multi-energy and multi-scaling simulation.
The system may be required to be analyzed repeatedly for different excitation inputs u(t).

For the sake of simplicity, in the rest of this section we mostly confine our discussion to
single-input single-output systems, i.e., p = m = 1. We will use lower case letters b and l to
denote the input and output distribution vectors, instead of the capital letters B and L.

4.2 Eigensystem methods

Let us first review eigensystem methods as an introduction to compute the transfer function.
To compute H(s) about a selected expansion point s0, let us set

A = −(G+ s0C)−1C and r = (G+ s0C)−1b,

Moments, Quadrature and Padé Approximation 15

where we assume that G+ s0C is nonsingular. Then H(s) can be cast as

H(s) = lT ((G+ s0C) + (s− s0)C)−1 b = lT (I − (s− s0)A)−1r. (23)

In other words, we reduce the representation of the transfer function H(s) using only one
matrix A. Assume that the matrix A is diagonalizable,

A = S ΛS−1 = S · diag(λ1, λ2, . . . , λN) · S−1.

Let f = ST l = (fj) and g = S−1r = (gj), then the transfer function H(s) can be expressed
as a partial-fraction expansion,

H(s) = fT (I − (s− s0)Λ)−1g =
N∑

j=1

fjgj

1 − (s− s0)λj
= ρ∞ +

∑

λj 6=0

κj

s− pj
. (24)

This is known as the pole-residue representation. pj = s0 + 1
λj

are poles of the system1,

κj = −fjgj

λj
are residues, and ρ∞ =

∑
λj=0 fjgj is a constant, which corresponds to the poles

at infinity (or zero eigenvalues). Note that it costs O(N3) operations to diagonalize A, and
only O(N) operations to evaluate the transfer function H(s) for each given point s.

Unfortunately, in practice, diagonalization of A is prohibitive when it is ill-conditioned or
is too large. As a remedy for the possible ill-conditioning of diagonalization, we may use the
numerically stable Schur decomposition. Let A = QTQT be the Schur decomposition of A.
Then

H(s) = lT (I − (s− s0)A)−1r = (QT l)T (I − (s− s0)T)−1(QT r).

Now, it costs O(N2) to evaluate the transfer function H(s) at each given point s. Alterna-
tively, we can also use the Hessenberg decomposition as suggested in [47].

To reduce the cost of diagonalizing A or computing its decomposition in Schur or Hes-
senberg form for large N , we may use partial eigen-decomposition. This is also referred to
as the modal superposition method, for example, see [19]. By examining the pole-residue
representation (24), it is easy to see that the motivation of this approach comes from the
fact that only a few poles (and associated eigenvalues) around the region of frequencies of
interest are necessary for the approximation of H(s). Those poles are called the dominant
poles. Therefore, to study the steady-state response to an input of the form u(t) = ũeiωt,
where ũ is a constant vector, we express the solution as x(t) = Skv(ω)eiωt, where Sk contains
k selected modal shapes (eigenvectors) of the matrix pair {C,G} needed to retain all the
modes whose resonant frequencies lie within the range of input excitation frequencies. Then
one may solve the system

(
iω ST

k CSk + ST
k GSk

)
v(ω) = ST

k Bũ (25)

for v(ω). Once the selected dominant poles and their corresponding modal shapes Sk are
computed, the problem of computing the steady-state response is reduced to solving the
k × k system (25). In practice, it is typical that only a relatively small number of the modal
shapes is necessary, i.e., k ≪ N . The problem of finding a few modal shapes Sk within a
certain frequency range is one of the well-known algebraic eigenvalue problems in numerical
linear algebra [3].

1By a simple exercise, it can be shown that the definition of poles and residues of the system is independent

of the choice of the expansion point s0.

16 Z. Bai and G. Golub

4.3 Padé approximation and moment-matching

Note that the transfer function H(s) of (22) is a rational function. More precisely, H(s) ∈
RN−1,N , where N is the state-space dimension of (19).2 The Taylor series expansion of H(s)
of (23) about s0 is given by

H(s) = lT (I − (s− s0)A)−1 r

= lT r + (lTAr)(s− s0) + (lTA2r)(s− s0)
2 + · · ·

= m0 +m1(s− s0) +m2(s− s0)
2 + · · · , (26)

where mj = lTAjr for j = 0, 1, 2, . . ., are called moments about s0. Since our primary
concern is large state-space dimension N , we seek to approximate H(s) by a rational function
Hn(s) ∈ Rn−1,n over the range of frequencies of interest, where n ≤ N . A natural choice of
such a rational function is a Padé approximation. A function Hn(s) ∈ Rn−1,n is said to be an
nth Padé approximant of H(s) about the expansion point s0 if it matches with the moments
of H(s) as far as possible. Precisely, it is required that

H(s) = Hn(s) + O
(
(s− s0)

2n
)
. (27)

For a thorough treatment of Padé approximants, we refer the reader to [11]. Note that
equation (27) presents 2n conditions on the 2n degrees of freedom that describe any function
Hn(s) ∈ Rn−1,n. Specifically, let

Hn(s) =
Pn−1(s)

Qn(s)
=

an−1s
n−1 + · · · + a1s+ a0

bnsn + bn−1sn−1 + · · · + b1s+ 1
, (28)

where b0 is chosen to be equal to 1, which eliminates an arbitrary multiplicative factor in the
definition of Hn(s). Then the coefficients {aj} and {bj} of polynomials Pn−1(s) and Qn(s)
can be computed as follows. Multiplying Qn(s) on both sides of (27) yields

H(s)Qn(s) = Pn−1(s) + O
(
(s− s0)

2n
)
. (29)

Comparing the first n (s − s0)
k-terms of (29) for k = 0, 1, . . . , n − 1 shows that the coeffi-

cients {bj} of the denominator polynomial Qn(s) satisfy the following system of simultaneous
equations: 



m0 m1 · · · mn−1

m1 m2 · · · mn
...

... · · · ...
mn−1 mn · · · m2n−2







bn
bn−1

...
b1


 = −




mn

mn+1
...

m2n−1


 . (30)

The coefficient matrix of (30) is called the Hankel matrix, denoted asMn. Once the coefficients
{bj} are computed, then by comparing the second n (s − s0)

k-terms of (29) for k = n, n +
1, . . . , 2n − 1, we see that the coefficients {aj} of the numerator polynomial Pn−1(s) can be
computed according to

a0 = m0

a1 = m0b1 +m1
...

an−1 = m0bn−1 +m1bn−2 + · · · +mn−2b1 +mn−1.
2
Rm,n denotes the set of rational functions with real numerator polynomial of degree at most m and real

denominator polynomial of degree at most n.

Moments, Quadrature and Padé Approximation 17

It is clear that Hn(s) defines a unique nth Padé approximant of H(s) if, and only if, the
Hankel matrix Mn is nonsingular. We will assume that this is the case for all n.

This formulates the framework of the asymptotic waveform evaluation (AWE) techniques
as they are known in circuit simulation, first presented in [53] around 1990. The manuscript
[18] has a complete treatment of the AWE technique and its variants. A survey of the Padé
techniques for model reduction of linear systems is also presented in the earlier work [15]. It
is well-known that in practice, the Hankel matrix Mn is generally extremely ill-conditioned.
Therefore, the computation of Padé approximants using explicit moments is inherently nu-
merically unstable. Indeed, this approach can be used only for very small values of n, such as
n ≤ 20, even with some sophisticated schemes to improve the conditioning of the underlying
Hankel matrix Mn. As a result, the approximation range of a computed Padé approximant
is limited to only a narrow frequency range around the selected expansion point s0. A large
number of expansion points is generally required for the approximation of the transfer func-
tion H(s) over a broad frequency range of interest. Since for each expansion point s0, one
has to be concerned with the cost of applying the matrix A = −(G+ s0C)−1C, which is gen-
erally the most expensive part of the overall computational cost, one would like to use as few
expansion points as possible by increasing the order n of Padé approximants with a selected
expansion point s0. Fortunately, numerical difficulties associated with explicit moments can
be remedied by exploiting the well-known connection between the Padé approximants and
the Lanczos process. We will discuss this connection in the next section.

4.4 Krylov subspaces and the Lanczos process

A Krylov subspace is a subspace spanned by a sequence of vectors generated by a given
matrix and a vector as follows. Given a matrix A and a starting vector r, the nth Krylov
subspace Kn(A, r) is spanned by a sequence of n column vectors:

Kn(A, r) = span{ r,Ar,A2r, . . . , An−1r }.

This is sometimes called the right Krylov subspace. When the matrix A is nonsymmetric,
there is a left Krylov subspace generated by AT and a starting vector l defined by

Kn(AT , l) = span{ l, AT l, (AT)2l, . . . , (AT)n−1l }.

Note that the first 2n moments {mj} of H(s) in (26), which define the Hankel matrix Mn

in the Padé approximant (30), are connected with Krylov subspaces through computing the
inner products between the left and right Krylov sequences:

m2j =
(
(AT)jl

)T ·
(
Ajb
)T
, m2j+1 =

(
(AT)jl

)T ·
(
Aj+1b

)T
,

for j = 1, 2, . . . , n−1. Therefore, loosely speaking, the left and right Krylov subspaces contain
the desired information of moments, but the vectors {Ajr} and {(AT)jl} are unsuitable as
basis vectors. The remedy is to construct more suitable basis vectors:

{ v1, v2, . . . , vn } and {w1, w2, . . . , wn },

such that they span the same desired Krylov subspaces, specifically,

Kn(A, r) = span{ v1, v2, . . . , vn } and Kn(AT , l) = span{w1, w2, . . . , wn }.

18 Z. Bai and G. Golub

It is well-known that the nonsymmetric Lanczos process is an elegant way to generate the
desired basis vectors of two Krylov subspaces [46]. Given a matrix A, a right starting vector
r and a left starting vector l, the nonsymmetric Lanczos process generates the desired basis
vectors {vi} and {wi}, known as the Lanczos vectors. Moreover, these Lanczos vectors are
constructed to be biorthogonal

wT
j vk = 0, for all j 6= k. (31)

The Lanczos vectors can be generated by two three-term recurrences. These recurrences can
be stated compactly in matrix form as follows

AVn = VnTn + ρn+1vn+1e
T
n ,

ATWn = WnT̃n + ηn+1wn+1e
T
n ,

where Tn and T̃n are the tridiagonal matrices

Tn =




α1 β2

ρ2 α2
. . .

. . .
. . . βn

ρn αn




T̃ T
n =




α1 γ2

η2 α2
. . .

. . .
. . . γn

ηn αn




and they are related by a diagonal similarity transformation T̃ T
n = DnTnD

−1
n , where Dn =

W T
n Vn = diag(δ1, δ2, . . . , δk). The projection of the matrix A onto Kn(A, r) and orthogonally

to Kn(AT , l) is represented by
W T

n AVn = DnTn.

If the nonsymmetric Lanczos process is carried to the end with N being the last step, then
it can be viewed as a means of tridiagonalizing A by a similarity transformation:

V −1
N AVN = TN , (32)

where TN is a tridiagonal matrix, with Tn as its n × n leading principal submatrix, n ≤ N .
The Lanczos vectors are determined up to a scaling. We use the scaling ‖vj‖2 = ‖wj‖2 = 1
for all j.

An algorithm template for the basic nonsymmetric Lanczos process is presented as the
following:

Nonsymmetric Lanczos process: Let A be a real nonsymmetric matrix, r
and l are real vectors. Then the following procedure computes the tridiagonal
matrices Tn and T̃n, and the biorthogonal Lanczos vectors vk and wk.

ρ1 = ‖r‖2

η1 = ‖l‖2

v1 = r/ρ1

w1 = l/η1

For k = 1, 2, . . . , n
δk = wT

k vk

αk = wT
k Avk/δk

Moments, Quadrature and Padé Approximation 19

βk = (δk/δk−1)ηk

γk = (δk/δk−1)ρk

v = Avk − vkαk − vk−1βk

w = ATwk − wkαk − wk−1γk

ρk+1 = ‖v‖2

ηk+1 = ‖w‖2

vk+1 = v/ρk+1

wk+1 = w/ηk+1

We note that the nonsymmetric Lanczos process could stop prematurely due to δk =
0 (or δk ≈ 0 considering the finite precision arithmetic). This is called breakdown. Our
assumption of the nonsingularity of the Hankel matrix Mn guarantees that no breakdown
occurs, see [52]. In practice, the problem is curable by a variant of the nonsymmetric Lanczos
process, for example, a look-ahead scheme is proposed in [29]. An implementation of the
nonsymmetric Lanczos process with a look-ahead scheme to overcome the breakdown can be
found in QMRPACK [30].

4.5 Padé approximation using the Lanczos process

Let us first consider the nonsymmetric Lanczos process as a process for tridiagonalizing the
matrix A. Then by (32), the transfer function H(s) of the original system (19) can be
rewritten as

H(s) = (lT r) eT1 (I − (s− s0)TN)−1e1 = (lT r)
det(I − (s− s0)T

′
N)

det(I − (s− s0)TN)
(33)

where T ′
N is an (N − 1) × (N − 1) matrix obtained by deleting the first row and column of

TN . Note that for the second equality, we have used the following Cauchy-Binet theorem to
the matrix I − (s− s0)TN :

(I − (s− s0)TN) · adj(I − (s− s0)TN) = det(I − (s− s0)TN) · I,

where adj(X) stands for the classical adjugate matrix made up of the (N − 1) × (N − 1)
cofactors of X. Expression (33) is called the zero-pole representation. It is clear that the
poles of H(s) can be computed from the eigenvalues of the N ×N tridiagonal matrix TN and
the zeros of H(s) from the eigenvalues of the (N − 1)× (N − 1) tridiagonal matrix T ′

N . More
precisely, the poles are given by pj = s0 +1/λj , λj ∈ λ(TN), and the zeros by zj = s0 +1/λ′j ,
λ′j ∈ λ(T ′

N).
Now, let us turn to large-scale linear systems where the order N of the matrix A is too

large to fully tridiagonalize, and where the Lanczos process terminates at n (≤ N) Then it
is natural to define an n-th reduced-order approximation of the transfer function H(s) as

Hn(s) = (lT r) eT1 (I − (s− s0)Tn)−1e1, (34)

where Tn is the n× n leading principal submatrix of TN , as generated by the first n steps of
the nonsymmetric Lanczos process. In analogy to (33), we have the zero-pole representation
of Hn(s):

Hn(s) = (lT r)
det(I − (s− s0)T

′
n)

det(I − (s− s0)Tn)
, (35)

20 Z. Bai and G. Golub

where T ′
n is an (n− 1)× (n− 1) matrix obtained by deleting the first row and column of Tn.

Now, the question is: what is Hn(s)? The answer, which seems surprising to many first-
time readers, is that Hn(s) is the Padé approximation of H(s) as computed by using explicit
moments in section 4.3. To show this, let us first recall the following proposition, which was
originally developed in [64] for a convergence analysis of the Lanczos algorithm for eigenvalue
problems.

Proposition 4.1 If Tn is the n×n leading principal submatrix of TN , where n ≤ N . Then
for any 0 ≤ j ≤ 2n− 1,

eT1 T
j
Ne1 = eT1 T

j
ne1

and for j = 2n,

eT1 T
2n
N e1 = eT1 T

2n
n e1 + β2β3 · · ·βnβn+1 · ρ2ρ3 · · · ρnρn+1.

A verification of this proposition can be easily carried out by induction. By Proposi-
tion 4.1, we immediately see that the first 2n moments of H(s) and Hn(s) are matched:

mj = lTAjr = (lT r)eT1 T
j
Ne1 = (lT r)eT1 T

j
ne1 = m̂j (36)

for j = 0, 1, . . . , 2n − 1. Furthermore, by Taylor expansions of H(s) and Hn(s) about s0
and (36), we have

H(s) = Hn(s) + (lT r)




n+1∏

j=2

βj

n+1∏

j=2

ρj


 (s− s0)

2n + O
(
(s− s0)

2n+1
)
.

Therefore, we conclude that Hn(s) is a Padé approximant of H(s).
This Lanczos-Padé connection at least goes back to [39] and [40]. The work of [26, 32] ad-

vocates the use of the Lanczos-Padé connection instead of the mathematical equivalent, but
numerically unstable AWE method [53] in the circuit simulation community. The Lanczos-
based Padé approximation method has become known as the PVL (Padé Via Lanczos)
method, as coined in [26]. An overview of various Krylov methods and their applications
in model reduction for state-space control models in control system theory is presented in
[13]. The presentation style here partially follows the work of [10]. In the following, we present
two examples, one from circuit simulation and one from structural dynamics, as empirical
validation of the efficiency of the PVL method. We note that in both cases, we only use
one expansion point s0 over the entire range of frequencies of interest. However, the degree
of the underlying Padé approximants constructed via the Lanczos process is as high as 60,
which seems to be an impossible mission by using explicit moment-matching as discussed in
section 4.3.

Example 4. This example demonstrates the efficiency of the PVL method for a popular
circuit problem, which simulates a lumped element network generated by a 3-D electro-
magnetic problem modeled via the partial element equivalent circuit (PEEC) model [18,
26]. The PEEC model is obtained by appropriate discretizations of the boundary integral
formulation of Maxwell’s equations for the electric and magnetic fields at any point in a
conductor [55]. The order of the system matrices C and G is 306. To capture the dynamic

Moments, Quadrature and Padé Approximation 21

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Frequency (GHz)

C
ur

re
nt

(A
m

ps
)

exact

PVL 60 iter.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
9

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Frequency (Hz)

R
el

at
iv

e
er

ro
r

Figure 2: PEEC example, |H(iω)| and PVL |H60(iω)| (left) and relative error |H(iω) −
H60(iω)|/|H(iω)| (right).

behavior of the transfer function H(iω) over the broad frequency range [ωmin, ωmax] = [1, 5×
109], it is necessary to evaluate H(s) at a large number of frequency points. We used a total
of 1001 frequency points. On the left of Figure 2, we plot the absolute values of H(iω) and
the Padé approximant H60(iω) of order 60 generated by the PVL method with only a single
expansion s0 = 2π × 109. Note that it is nearly indistinguishable from the curve of |H(iω)|.
The right plot of Figure 2 is the relative error between H(iω) and H60(iω).

Example 5. This example is from dynamics analysis of automobile brakes, extracted from
MSC/NASTRAN, a finite element analysis software for structural dynamics [45]. The order
of the mass matrix M and stiffness matrix K is 834. The transfer function is of the form
H(iω) = lT (K−ω2M)−1b. The expansion point is chosen as s0 = 0. A total of 501 frequency
points is evaluated between 0 and 10000Hz. The left plot of Figure 3 shows the magnitudes
of the original transfer function H(iω) and the reduced-order transfer function H45(iω) after
45 PVL iterations. The right plot of Figure 3 shows the relative error between H(iω) and
H45(iω).

4.6 Error estimation

An important question associated with the PVL method is how to determine the order n
of a Padé approximant Hn(s), or equivalently, the number of steps of the Lanczos process
in order to achieve a desired accuracy of the approximation. In [9], through an algebraic
derivation, it is shown that forward error between the full-order transfer function H(s) and
the reduced-order transfer function Hn(s) is given by

H(s) −Hn(s) = (lT r)

(
ρn+1ηn+1

δn

)[
σ2τn1(σ)τ1n(σ)

]
γn+1(σ), (37)

where σ = s − s0, τ1n(σ) = eT1 (I − σTn)−1en, τn1(σ) = eTn (I − σTn)−1e1, and γn+1(σ) =
wT

n+1(I−σA)−1vn+1. From (37), we see that there are essentially two factors to determine the
forward error of the PVL method, namely σ2τn1(σ)τ1n(σ) and γn+1(σ). Numerous numerical

22 Z. Bai and G. Golub

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Frequency (Hz)

M
ag

ni
tu

de

Exact
PVL45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Frequency (Hz)

R
el

at
iv

e
er

ro
r

Figure 3: Automobile brake example, |H(iω)| and PVL |H45(iω)| (left) and relative error
|H(iω) −H45(iω)|/|H(iω)| (right).

0 10 20 30 40 50 60
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

n: Lanczos iteration

|τ
1n

τ n1
|

Figure 4: Convergence of |τn1(σ)τ1n(σ)| for a fixed σ = s− s0.

experiments indicate that the first factor, which can be easily computed during the PVL
approximation, is the primary contributor to the convergence of the PVL approximation,
while the second factor tends to be steady when n increases. Note that τn1(σ) and τ1n(σ)
are the (1, n) and (n, 1) elements of the inverse of the tridiagonal matrix I − σTn. This is
in agreement with the rapid decay phenomenon observed in the inverse of a band matrix
[49]. Figure 4 shows typical convergence behavior of the factor |σ2τn1(σ)τ1n(σ)| for a fixed σ.
The direct computation of the second factor γn+1(σ) would cost just as much as computing
the original transfer function. It is advocated that wT

n+1Avn+1 be used as an estimation of
the factor γn+1(σ) near convergence. With this observation, it is possible to implement the
PVL method with an adaptive stopping criteria to determine the required number of Lanczos
iterations, see [9]. Related work for error estimation can be found in [43, 41] and recently in
[51].

More efficient and accurate error estimations of the PVL approximation and its exten-

Moments, Quadrature and Padé Approximation 23

sion to the other moment-matching based Krylov techniques warrant further study. One
alternative approach is to use the technique of backward error analysis. By some algebraic
derivation, it can be shown that the reduced-order transfer function Hn(s) of (34) can be
interpreted as the exact transfer function of a perturbed full-order system. Specifically,

Hn(s) = (lT r) · eT1 (I − (s− s0)Tn)−1e1 = lT [I − (s− s0)(A+ Fn)]−1 r,

where

Fn = − 1

δn

[
vn vn+1

] [0 ηn+1

ρn+1 0

] [
wT

n

wT
n+1

]

Therefore, one may use ‖Fn‖ for monitoring convergence. However, it is observed that this is
generally a conservative monitor and often does not indicate practical convergence. An open
problem is to find an optimal normwise relative backward error

η(ǫ) = min
{
ǫ : lT [I − (s− s0)(A+ Fn)]−1 r = Hn(s), ‖Fn‖ ≤ ǫ‖A‖

}
.

With this optimal backward error and perturbation analysis of the transfer function H(s),
one may be able to derive a more efficient error estimation scheme.

5 Reduced-order modeling

The Padé approximation of the transfer function H(s) using the Lanczos process naturally
leads to an efficient method for reduced-order modeling of large-scale linear dynamical sys-
tems. The desired attributes of a reduced-order model include replacing the full-order system
by a system of the same type but with a much smaller state-space dimension such that it
has an admissible error between the full-order and reduced-order models. Furthermore, the
reduced-order model should also preserve essential properties of the full-order system. Such
a reduced-order model would let designers efficiently analyze and synthesize the dynamical
behavior of the original system within a tight design cycle. Specifically, given the linear
dynamical system (19), we want to find a reduced-order linear system of the same form

{
Cnż(t) +Gnz(t) = Bn u(t),

ỹ(t) = LT
nz(t),

(38)

where z(t) ∈ Rn, Cn, Gn ∈ Rn×n , Bn ∈ Rn×m, Ln ∈ Rn×p, and ỹ(t) ∈ Rp. The state-
space dimension n of (38) should generally be much smaller than the state-space dimension
N of (19), i.e., n ≪ N . Meanwhile, the output ỹ(t) of (38) approximates the output y(t)
of (19) in accordance with some criteria for all u in the class of admissible input functions.
Furthermore, the reduced-order system (38) should preserve essential properties of the full-
order system (19), such as stability and passivity. We refer to [1, 14] for the definitions of
these properties.

Note that the p ×m matrix-valued transfer function of the reduced-order model (19) is
given by

Hn(s) = LT
n (Gn + sCn)−1Bn.

Hence, for the steady-state analysis in the frequency domain, the objectives of constructing
a reduced-order model (38) include that the reduced-order transfer function Hn(s) should be

24 Z. Bai and G. Golub

an approximation of the transfer function H(s) of the full-order model over the frequency
range of interest with an admissible error, and that Hn(s) preserves essential properties of
H(s).

We now show how to construct a reduced-order model of the linear system (19) in the
time domain for transient analysis. With a selected expansion point s0 as for the steady-
state analysis, the linear system (19) under the so-called “shift-and-invert” transformation
becomes {

−Aẋ(t) + (I + s0A)x(t) = r u(t),
y(t) = lTx(t),

where A = −(G+ s0C)−1C and r = (G+ s0C)−1b. Let Vn be the Lanczos vectors generated
by the nonsymmetric Lanczos process with matrix A and starting vectors r and l as discussed
in section 4.4. Then considering the approximation of the state vector x(t) by another state
vector, constrained to stay in the subspace spanned by the columns of Vn, namely,

x(t) ≈ Vnz(t) for some z(t) ∈ RN ,

yields an over-determined linear system with respect to the state variable z(t):

{
−AVnż(t) + (I + s0A)Vnz(t) = r u(t),

ỹ(t) = lTVnz(t).

After left-multiplying the first equation by W T
n , we have

{
−W T

n AVnż(t) +W T
n (I + s0A)Vnz(t) = W T

n r u(t),
ỹ(t) = lTVnz(t).

Then an n-th reduced-order model of the linear system (19) in the time domain is naturally
defined as {

Cnż(t) +Gnz(t) = rnu(t),
ỹ(t) = lTn z(t),

(39)

where Cn = −W T
n AVn, Gn = W T

n (I+s0A)Vn, rn = W T
n r and ln = V T

n l. By using the govern-
ing equations of the nonsymmetric Lanczos process presented in section 4.4, the quadruples
(Cn, Gn, rn, ln) can be simply expressed as Cn = −Tn, Gn = (In − s0Tn), rn = ρ1e1, and
ln = η1δ1e1.

Example 6. Figure 5 shows transient analysis of a small RLC network presented in [18,
p.29]. The system matrices C and G have order 11. An input excitation u(t) of 0.1 ns rise/fall
and 0.3 ns duration was simulated. The convergence for orders 2 and 4 of the reduced-order
models in the time domain is shown in Figure 5. The expansion point is chosen to be
s0 = π × 109.

The continual and pressing need for accurately and efficiently simulating dynamical be-
havior of complex physical systems arising from computational science and engineering appli-
cations has led to increasingly large and complex models. Reduced-order modeling techniques
play an indispensable role in providing an efficient computational prototyping tool to replace
such a large-scale model by an approximate smaller model, which is capable of capturing
dynamical behavior and preserving essential properties of the larger one.

Moments, Quadrature and Padé Approximation 25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−9

−0.1

0

0.1

0.2

0.3

0.4

Time

V
ol

ta
ge

exact

PVL 2nd

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−9

−0.1

0

0.1

0.2

0.3

0.4

Time

V
ol

ta
ge

exact

PVL 4th

Figure 5: RLC network transient responses: 2nd and 4th order PVL approximation.

An accurate and effective reduced-order model can be applied for steady state analysis,
transient analysis, or sensitivity analysis of such a system. As a result, it can significantly re-
duce design time and allow for aggressive design strategies. Such a computational prototyping
tool would let designers try “what-if” experiments in hours instead of days.

A myriad of reduced-order modeling methods has been presented in various fields. We
can categorize most of these methods into two classes. The first comprises techniques based
on the optimization of a reduced-order model according to a suitably chosen criterion. The
second class consists of methods that preserve exactly a limited number of parameters of the
original model. The work of De Villemagne and Skelton [23] in 1987 provides a survey of early
work on these methods. Over the past several years, Krylov-subspace-based techniques, such
as the one presented in section 4, have emerged as one of the most powerful tools for reduced-
order modeling of large-scale systems. We refer the reader to recent surveys [27, 28, 2, 4] for
further study on the topic.

Acknowledgments

We are grateful to the organizers A. Bourlioux, M. Gander, K. Mikula and G. Sabidussi
for their invitation and hospitality. Z. Bai is supported in part by NSF grant ACI-9813362
and DOE grant DE-FG03-94ER25219, and in part by a MICRO project (#00-005) from
University of California and MSC.software Corporation. G. Golub is supported in part by
NSF grant CCR9971010.

References

[1] B. D. O. Anderson. A system theory criterion for positive real matrices. SIAM J.
Control., 5:171–182, 1967.

[2] A. C. Antoulas and D. C. Sorensen. Approximation of large-scale dynamical systems:
An overview. Technical report, Electrical and Computer Engineering, Rice University,
Houston, TX, Feb. 2001.

26 Z. Bai and G. Golub

[3] Z. Bai, , J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for
the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Philadelphia, 2000.
SIAM.

[4] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynamical
systems. Applied Numerical Mathematics, 2002. (to appear).

[5] Z. Bai, M. Fahey, and G. Golub. Some large scale matrix computation problems. J. of
Comput. and Appl. Math., 74:71–89, 1996.

[6] Z. Bai, M. Fahey, G. Golub, and E. Menon, M.and Richter. Computing partial eigen-
value sum in electronic structure calculations. Scientific Computing and Computational
Mathematics Program SCCM-98-03, Stanford University, 1998.

[7] Z. Bai and G. Golub. Bounds for the trace of the inverse and the determinant of
symmetric positive definite matrices. Annals of Numer. Math., 4:29–38, 1997.

[8] Z. Bai and G. Golub. Some unusual matrix eigenvalue problems. In J. Palma, J. Don-
garra, and V. Hernandez, editors, Proceedings of VECPAR’98 - Third International
Conference for Vector and Parallel Processing, volume 1573 of Lecture Notes in Com-
puter Science, pages 4–19. Springer, 1999.

[9] Z. Bai, R. D. Slone, W. T. Smith, and Q. Ye. Error bound for reduced system model
by Padé approximation via the Lanczos process. IEEE Trans. Computer-Aided Design,
CAD-18:133–141, 1999.

[10] Z. Bai and Q. Ye. Error estimation of the Padé approximation of transfer functions via
the Lanczos process. Electronic Trans. Numer. Anal., 7:1–17, 1998.

[11] G. A. Baker, Jr. and P. Graves-Morris. Padé Approximants. Cambridge University Press,
1996.

[12] R. P. Barry and R. K. Pace. Monte Carlo estimates of the log determinant of large
sparse matrices. Linear Algebra and its Applications, 289:41–54, 1999.

[13] D. L. Boley. Krylov subspace methods on state-space control models. Circuit Systems
Signal Process, 13:733–758, 1994.

[14] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM, Philadelphia, 1994.

[15] A. Bultheel and M. van Barvel. Padé techniques for model reduction in linear system
theory: a survey. J. Comp. Appl. Math., 14:401–438, 1986.

[16] D. Calvetti, G. H. Golub, and L. Reichel. A computable error bound for matrix func-
tionals. J. Comput. Appl. Math., 103:301–306, 1999.

[17] D. Calvetti, S. Morigi, L. Reichel, and F. Sgallari. Computable error bounds and esti-
mates for the conjugate gradient method. Numer. Alg., 25:75–88, 2000.

[18] E. Chiprout and M. S. Nakhla. Asymptotic Waveform Evaluation. Kluwer Academic
Publishers, 1994.

Moments, Quadrature and Padé Approximation 27

[19] R. W. Clough and J. Penzien. Dynamics of Structures. McGraw-Hill, 1975.

[20] R. R. Craig, Jr. Structural Dynamics: An Introduction to Computer Methods. John
Wiley & Sons, 1981.

[21] G. Dahlquist, S. C. Eisenstat, and G. H. Golub. Bounds for the error of linear systems
of equations using the theory of moments. J. Math. Anal. and Appl., 37:151–166, 1972.

[22] P. Davis and P. Rabinowitz. Methods of Numerical Integration. Academic Press, N.Y.,
1984.

[23] C. De Villemagne and R. E. Skelton. Model reductions using a projection formulation.
Int. J. Control, 46:2141–2169, 1987.

[24] S. Dong and K. Liu. Stochastic estimation with z2 noise. Physics Letters B, 328:130–136,
1994.

[25] M. Fahey. Numerical Computation of Quadratic Forms Involving Large Scale Matrix
Functions. PhD thesis, University of Kentucky, 1998.

[26] P. Feldman and R. W. Freund. Efficient linear circuit analysis by Padé approximation
via the Lanczos process. IEEE Trans. Computer-Aided Design, CAD-14:639–649, 1995.

[27] R. W. Freund. Reduced-order modeling techniques based on Krylov subspaces and their
use in circuit simulation. In B. N. Datta, editor, Applied and Computational Control,
Signals, and Circuits, Volume 1, pages 435–498. Birkhäuser, Boston, 1999.

[28] R. W. Freund. Krylov-subspace methods for reduced-order modeling in circuit simula-
tion. J. Comput. Appl. Math., 123:395–421, 2000.

[29] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal. An implementation of the
look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. on Sci. Comput.,
14:137–158, 1993.

[30] R. W. Freund and N. M. Nachtigal. QMRPACK: a package of QMR algorithms. ACM
Trans. Math. Softw., 22:46–77, 1996.

[31] A. Frommer, T. Lippert, B. Medeke, and K. Schilling, editors. Numerical Challenges
in Lattice Quantum Chromodynamics, Berlin, 2000. Springer Verlag. Lecture Notes in
Computational Science and Engineering. 15.

[32] K. Gallivan, E. Grimme, and P. Van Dooren. Asymptotic waveform evaluation via a
Lanczos method. Appl. Math. Lett., 7:75–80, 1994.

[33] W. Gautschi. A survey of Gauss-Christoffel quadrature formulae. In P. L Bultzer and
F. Feher, editors, E. B. Christoffel – the Influence of His Work on on Mathematics and
the Physical Sciences, pages 73–157. Birkhauser, Boston, 1981.

[34] G. Golub. Some modified matrix eigenvalue problems. SIAM Review, 15:318–334, 1973.

28 Z. Bai and G. Golub

[35] G. Golub and G. Meurant. Matrics, moments and quadrature. In D. F. Griffiths and
G. A. Watson, editors, Proceedings of the 15th Dundee Conference, June 1993. Longman
Scientific & Technical, 1994.

[36] G. Golub and G. Meurant. Matrices, moments and quadrature II: how to compute the
norm of the error iterative methods. BIT, 37:687–705, 1997.

[37] G. Golub and Z. Strakos̃. Estimates in quadratic formulas. Numerical Algorithms,
8:241–268, 1994.

[38] G. Golub and U. Von Matt. Generalized cross-validation for large scale problems. J.
Comput. Graph. Stat., 6:1–34, 1997.

[39] W. B. Gragg. Matrix interpretations and applications of the continued fraction algo-
rithm. Rocky Mountain J. of Math., 5:213–225, 1974.

[40] W. B. Gragg and A. Lindquist. On the partial realization problem. Lin. Alg. Appl.,
50:227–319, 1983.

[41] E. Grimme. Krylov projection methods for model reduction. PhD thesis, Univ. of Illinois
at Urbana-Champaign, 1997.

[42] M. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Commun. Statist. -Simula., 18(3):1059–1076, 1989.

[43] I. M. Jaimoukha and E. M. Kasenally. Oblique projection methods for large scale model
reduction. SIAM J. Matrix Anal. Appl., 16:602–627, 1997.

[44] T. Kailath. Linear Systems. Prentice-Hall, New York, 1980.

[45] L. Komzsik. MSC/NASTRAN, Numerical methods User’s Guide, Version 70.5. The
MacNeal-Schwendler Corporation, Los Angeles, 1998.

[46] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Natl. Bur. Stand, 45:225–280, 1950.

[47] A. J. Laub. Efficient calculation of frequency response matrices from state space models.
ACM Trans. Math. Software, 12:26–33, 1986.

[48] H. Madrid. private communications, 1995.

[49] G. Meurant. A review of the inverse of symmetric tridiagonal and block tridiagonal
matrices. SIAM J. Mat. Anal. Appl., 13:707–728, 1992.

[50] H.-D. Meyer and S. Pal. A band-Lanczos method for computing matrix elements of a
resolvent. J. Chem. Phys., 91:6195–6204, 1989.

[51] A. Odabasioglu, M. Celik, and L. T. Pileggi. Practical considerations for passive reduc-
tion of RLC circuits. In Proc. Inter. Conf. on Computer-Aided Design, pages 214–219,
1999.

Moments, Quadrature and Padé Approximation 29

[52] B. Parlett. Reduction to tridiagonal form and minimal realizations. SIAM J. Mat. Anal.
Appl., 13(2):567–593, 1992.

[53] L. T. Pillage and R. A. Rohrer. Asymptotic waveform evaluation for timing analysis.
IEEE Trans. Computer-Aided Design, 9:353–366, 1990.

[54] David Pollard. Convergence of Stochastic Processes. Springer-Verlag, 1984.

[55] A.E. Ruehli. Equivalent circuit models for three-dimensional multiconductor systems.
IEEE Trans. Microwave Theory and Tech., 22:216–221, 1974.

[56] B. Sapoval, Th. Gobron, and A. Margolina. Vibrations of fractal drums. Phy. Rev. Lett.,
67(21):2974–2977, 1991.

[57] J. C. Sexton and D. H. Weingarten. The numerical estimation of the error induced by
the valence approximation. Nuclear Physics B (Proc. Suppl.), pages xx–xx, 1994.

[58] G. Szegö. Orthogonal polynomials. American Mathematical Society, third edition, 1974.

[59] S. Van Huffel and J. Vandewalle. The Total Least Squares Problem: Computational
aspects and analysis. SIAM, Philadelphia, 1991.

[60] J. Vlach and K. Singhal. Computer Methods for Circuit Analysis and Design. Van
Nostrand Reinhold, New York, 1994.

[61] K. Willcox, J. Peraire, and J. White. An Arnoldi approach for generalization of reduced-
order models for turbomachinery. FDRL TR-99-1, Fluid Dynamic Research Lab., Mas-
sachusetts Institute of Technology, 1999. submitted to Computers and Fluids.

[62] M. N. Wong. Finding tr(A−1) for large A by low discrepancy sampling. Presentation at
the Fourth International Conference on Monte Carlo and Quasi-Monte Carlo Methods
in Scientific Computing, Hong Kong, China, 2000.

[63] S. Y. Wu, J. A. Cocks, and C. S. Jayanthi. An accelerated inversion algorithm using the
resolvent matrix method. Comput. Phy. Comm., 71:125–133, 1992.

[64] Q. Ye. A convergence analysis for nonsymmetric Lanczos algorithms. Math. Comp.,
56:677–691, 1991.

