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Lower and upper bounds are given for the trace of the inverse tr(A_l) and the
determinant det(A) of a symmetric positive definite matrix A. They are derived
by applying Gaussian quadrature and related theory.

The bounds for det(A) appears to be new. For the bounds of tr(A™"), the
Kantorovich inequality is available for providing such bounds. In a number of
examples, our bounds are found to be tighter when simple trial vectors are used in
Kantorovich’s bound. The new bounds are equivalent to Robinson and Wathen’s
variational bounds. But our bounds are directly derived for the quantity instead
of the summation of bounds for each diagonal entry of A7,
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1 Introduction

There are a number of applications where it is desired to estimate the bounds for the
quantities of the trace of the inverse tr(A~!) and the determinant det(A) of a matrix
A, such as in the study of fractals [14, 18], lattice Quantum Chromodynamics (QCD)
[15, 3], crystals [11, 12], the generalized cross-validation and its applications (see [7] and
references therein).

In this paper, we focus on deriving lower and upper bounds for the quantities tr(A~1)
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and det(A) of a symmetric positive definite matrix A. Throughout this paper, A will
denote an n-by-n symmetric positive definite matrix with eigenvalues
A< A << A

A(A) is the set of all eigenvalues. The parameters o and 8 denote the bounds for the
smallest and largest eigenvalues A; and A, of A,

0<a<A, M<B

a;; or (A);; will denote the (3, j) entry of a matrix A. Using the eigenvalue decomposition
and the definition of matrix function [6], it is easy to prove the identity

In(det(A)) = tr(In(A)) (1)

for a symmetric positive definite matrix A. Therefore, instead of bounding det(A4), we will
bound In(det(A4)), which is turned into bounding tr(In(A4)). Under this reformulation, the
problems of bounding the quantities tr(A~!) and det(A) are unified to bound tr(f(A))
for f(A) = A~! and In A, respectively.

We first note that the Kantorovich inequality

1/ An
(JiTA—la:)(ajTAm) < Z (i =+ )\—1 + 2> (I;ng)2
holds for all vectors z. For derivation of this inequality, see [9]. By using a simple trial

vector z = (0,...,0,1,0,...,0)7 in the inequality and noting that the upper bound is
monotonically increasing in A, /Aq, it yields

1 a pg
A7t i < —+—+4+2]). 2
(s o (542 +2) @
The summation of the upper bound for all diagonal entries of A~! gives a Kantorovich’s
upper bound for tr(A~1).

Another approach for bounding tr(A~!) is to use variational functional, Robinson
and Wathen [13] show that

i < l — 7(%; —h) )
B B(sii — Paii)

where s;; = Y .»_, aZ,. Hence the sums of the lower and upper bounds for all diagonal en-
tries of A=! give Robinson and Wathen’s lower and upper bounds for tr(A~!), respectively.
Two other types of bounds for (A~1);; are also presented in [13], but more information
1s required.

The third approach is to use Gaussian quadrature and related theory. As discussed
in [4, 5, 1], one first bounds the quantity z7 f(A)z for a given vector z, then probabilistic
bounds and estimates can be obtained for tr(f(A)) by using Monte Carlo simulation. We
refer to [1] for details.

The new bounds derived in this paper also use Gaussian quadrature and related
theory. But they are exact lower and upper bounds for tr(f(A4)) instead of probabilistic

1 a—aiiz
1 (a-aw)

a  aaa; — si)

<(A™h) (3)
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bounds as given in [1]. The new bounds are derived by directly considering the quantity
tr(f(A)) instead of each diagonal entry of f(A). They are very cheap to compute. In a
number of examples our bounds are found to be tighter than Kantorovich’s upper bound,
and are equivalent to the Robinson and Wathen’s bounds, which is computationally more
expensive. Our experiences indicate that the probabilistic bounds presented in [1] are the
most accurate, but they are also the most expensive ones in terms of computational costs
and memory requirement.

In section 2 we present the lower and upper bounds for tr(A~!) and tr(In(4)). A
number of examples, coming from the different applications, and comparisons with the
Kantorovich’s upper bound, Robinson and Wathen’s bounds and the estimates using
Monte Carlo simulation are given in section 3. We give concluding remarks in section 4.

2 Bounds for tr(47!) and tr(In(A4))

Let . 5
e = tr(a) = o0 = [ X (), (4
1=1 @

where the weight function y()) of the Stieltjes integral is y(A\) = E?:l I(A —}), and
I(}) is the unit step function: I(A) = 0if A < 0 and I(A\) = 1if XA > 0. Note that one can
easily compute

n n
Lo =mn, ,ulzzaii, B2 = Z a?j :HA”%
i=1 1,5=1
Our first task is to use pg, g1 and ps and the parameters o and 3 to determine a lower
and an upper bound for p_; = tr(4A71).
The approach is to use the classical Gaussian quadrature and related theory, see for
example [2]. Specifically, we use the Gauss-Radau quadrature rule. By the rule, the
integral in (4) can be written as

B8
o = / Xdy(A) = i + Rl (5)

o

where fi, 1s the following quadrature formula
fir = wotp + wit], (6)

wg and w; are weights and to be determined. ¢; and ¢; are nodes. The node ¢; is
prescribed, say tg = « or . t; is unknown and to be determined. The remainder

/&
Ripw] = gr(r = D= 2772 [* (= o) (3 = 1) dr(Y)

for some a < n < B. If R[ur] > 0, i, is a lower bound of u, and if R[u,] <0, g, is a
upper bound of p,.
From (6), we see that i, satisfies a second order difference equation

Cily + dp‘r—l — Pr—2 = 0 (7)
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for certain coefficients ¢ and d. The nodes t; and ¢; are the roots of the characteristic
polynomial

p(€) = c€® +d¢ — 1. (8)
To determine the coeflicients ¢ and d, by using (7) with the fact g, = p, for r = 0,1, 2,
and the prescribed node ¢y being the root of the characteristic polynomial (8), we have

cp2 +dps —po = 0,
Ctg—{—dto—]_ =

Solving the above linear equations for ¢ and d yields

-1
c | _ | H2 H1 Ho
d| 7| & t 1
Once having the coefficients ¢ and d, the node ¢; of the quadrature f, is given by

t]_ = —1/(toc).

For determining the weights wy and w;, we note that

B1 = wote + wity,

H2 = wotg + U)lt%.

—1
wo | | to t1 b1
=1 ,2 ,2 .
w1 ty 1 K2

To bound tr(A~!) = p_1, writing the difference equation (7) with » = 1, we have

Then

cpp1 +dpo — pi—1 = 0.
le. »
fo1 = cfiy +djio = [ p1 Ho][/;(zf ;;01] [#10}
By the Gauss-Radau quadrature rule (5) with r = —1, we have
po1 = o1 + R,

where the remainder

B
RO = - [ (- te)d ) dr()

for some a < 1 < B. If the prescribed node tg = o, R[A7!] < 0, then fi_; is an upper
bound of u_;. If tg = B, R[A™] > 0, then fi_; is a lower bound of u_;. In summary, we
have the following bounds for tr(A~1).
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Theorem 1 (Lower and upper bounds for tr(471))
Let A be an n-by-n symmetric positive definite matriz, p1 = tr(A4), ps = ||A||% and
AA) C [a, B] with o > 0, then

([ ] [ ]seustm 1 [B 2] [5] @

Let us turn to our second task for bounding tr(In(A4)). Note that the identity (1) can
be further written as

i B
m@muA»::uanAy:EDOH&)::/ (In X)dy(}),

1=1 @

where the weight function y(A) of the Stieltjes integral is the same as the weight function
defined in (4). Again, by using the Gauss-Radau quadrature rule, we have

B
tr(In(A4)) = / (InA)dy(A) = Z[ln A] + R[In A],

(o1

where the quadrature term Z[ln )] is
T[InA] = wo In(to) + w1 In(¢1).

The remainder
21 [F )
3 ). (A —to)(A = t1)%dy(})

for some o < n < B. Therefore, if tg = o, R[InA] > 0, then Z[ln ] is a lower bound of
tr(In(4)). Iftg = B, R[InA] < 0, then Z[In )] is an upper bound. Therefore, we derive
the following bounds for tr(In(4)).

R[n\] =

Theorem 2 (Lower and upper bounds for tr(In(4)))
Let A be an n-by-n symmetric positive definite matriz, p1 = tr(A), p2 = ||A||% and
MA) C [e, B] with o > 0, then

[ Ina lng][a2 é]_l[#l]gtr(m(,q))g[lnﬁ lnf][ﬂ’; ;]_1[#1]

[ H2

where

_apr — P2 _ Ppr— pa

== and =0 e
an — p Bn — pq

|-
S

The bounds (9) and (10) involve only the trace of the lower orders of the matrix
power A", namely, pg = tr(A°) = n, p; = tr(A!) and py = tr(A?). They can be easily
computed. If the trace of the higher orders of the matrix power A”, r > 3, are available,
then using the principles discussed above, we can derive tighter bounds.

The parameters o and 3 for the bounds of eigenvalues of A must be provided, which
happens to be required in all such bounds discussed in Section 1.
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Table 1

Lower and upper bounds for tr(A™")

Matrix (order) “Exact” MC estimation Lower bound Upper bound
Poisson (900) 5.12644 - 10° 5.02012 - 10° 2.60852 - 10° 8.74445 . 10°
Wathen (341) 6.16011 - 102 6.21092 - 10? 4.49424 - 102 9.20451 - 102
Heat flow (625) 3.65722 - 10 3.65179 - 10° 3.59979 - 10 3.73996 - 10

3 Examples

In this section, we use four examples to show the tightness of the bounds given in (9)
and (10). We will also compare with the Kantorovich’s upper bound (2), Robinson and
Wathen’s bounds (3) and the approach using Monte Carlo simulation (henceforth the MC
estimation) described in [1].

Numerical experiments are carried out in Matlab environment on a SUN Sparcstation
10. The so-called “exact” value of tr(A~!) is computed by analytic formulas if available,
or by first computing the inverse using function inv in Matlab, and then calculating the
trace. For the “exact” value of tr(ln(A)) = In(det(A)), we use the analytic formula if
available, or first compute the Cholesky decomposition of A using Matlab function chol
and then compute the natural logarithm of the product of diagonals of Cholesky factor.

Example 1 (Pei matrix): Consider the so-called n-by-n Pei matrix A = 7 +uuT, where
u=(1,1,...,1)T [8]. It is easy to see that A has two distinct eigenvalues 7 and n + 7.
The eigenvalue 7 has multiplicity n — 1. If 7 > 0, A is symmetric positive definite. By
the Sherman-Morrison formula [6], the inverse of A can be written as

1 1 T

At =2 ——
T (T +n)

Then tr(A™1) = z— T(Tn—_l_n) and tr(In(4)) = (n—1)In7+In(r+n). It is easy to compute
that pu; = tr(4) = (7+1)n and pa = tr(A?) = n? 4+ 7(7+2)n. If let parameters o = 7 and
B = n+7, then by straightforward algebraic calculation, both lower and upper bounds for
tr(A~1) in (9) are equal to the exact value. Similarly, one can also easily show that both
lower and upper bounds for tr(In(A)) in (10) are also equal to the exact value. For this
example, the bounds (9) and (10) are perfect! Of course, one can also verify that for this
example, there are no intergration errors (the remainders are zero) in the Gauss-Radau
quadrature rule.

For this example, Robinson and Wathen’s bounds for tr(A~!) are also equal to the
exact value.

Example 2 (Poisson matrix): The matrix of order m? is a block tridiagonal matrix from

the b-point central difference discretization of the 2-D Poisson’s equation on a m X m
square mesh [8]. It can be shown that the parameters a and g for the bounds of the

smallest and largest eigenvalues are o = 2 (mL_H) and @ = 8, respectively. In Tables 1
and 2, we have tabulated the exact values for tr(A~!) and tr(In(A)), the estimated values
by the MC estimation [1]. and the lower and upper bounds given in (9) and (10) for the

900 by 900 Poisson matrix (i.e., m = 30).
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Table 2

Lower and upper bounds for tr(ln(A))

Matrix (order) “Exact” MC estimation Lower bound Upper bound
Poisson (900) 1.06500 - 10° 1.06023 - 10° 4.73862 - 10° 1.16857 - 10°
Wathen (341) —1.20071 - 102 —1.20263 - 102 —2.00165 - 10° —6.86595 - 10
Heat flow (625) 3.51679 - 10° 3.50715 - 10 3.47348 - 10° 3.54997 - 10

The Kantorovich’s upper bound for tr(A~1) is 2.20208 - 10*. Robinson and Wathen’s
lower and upper bounds are 2.60969 - 102 and 8.73279 - 103. Note that the estimates from
the Monte Carlo simulation for tr(A~!) and tr(In(A)) are only at 2% and 0.4% of relative
errors of the actual values, respectively [1].

Example 3 (Wathen matrix): The matrix A is “wathen(n,, ny)” in the set of Matlab
test matrices collection by Higham [8]. It is a consistent mass matrix in finite element
computations for a regular ng-by-n, grid of 8-node (serendipity) elements in 2 space
dimensions (see [16]). The resulting matrix is of order n = 3nzny + 2n, + 2ny + 1. Let
D be the diagonals of A, then realistic bounds for the eigenvalues of D~1 A are given
by Wathen [17]. In our numerical experiment, we let n, = ny, = 10. Then the matrix
A is of order n = 341 and o = 0.25 and B = 4.5. The bounds for tr(D%A_lD%) and
tr(ln(D_%AD_%)) are tabulated in Table 1 and 2.

The Kantorovich’s upper bound for tr(D%A_lD%) is 1.70974 - 10% and the Robinson
and Wathen’s lower and upper bounds are 4.53280 - 102 and 9.19952 - 102, respectively.
Again, note that the estimated values of the MC estimation are only at 0.8% and 0.1%
of relative errors of the actual values.

Example 4: This test matrix is from [10], see also [13]. The matrix is resulted from
the implicit finite different discretization of a linear heat flow problem. It is a m? by m?
block tridiagonal matrix of the form

- C
C D
where D i1s a m X m tridiagonal matrix with 1 + 4v on diagonal, and —v on super- and
sub-diagonal, and C is a diagonal matrix with diagonal entries v. v is the ratio of the
time step and the square of grid size. The Gershgorin circle theorem gives o = 1 and
B = 1+ 8v for the eigenvalue bounds of A. We have tabulated in Tables 1 and 2 the
bounds for tr(A~!) and tr(ln(A)), respectively, where n = 625 (m = 25) and v = 0.5.
The Kantorovich’s upper bound for tr(A~!) is 4.32692 - 102 and the Robinson and
Wathen'’s lower and upper bounds are 3.59996 - 102 and 3.73972 - 102, respectively.
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4 Concluding Remarks

Simple bounds for tr(A~!) and tr(In(A)) of a symmetric positive definite matrix A are
derived by using Gaussian quadrature and related theory. The bounds involve only n
(the order of A), tr(A) and ||A||% and the parameters o and 3, namely for the bounds of
eigenvalues of A.

From the numerical examples presented in Section 3 and numerous other experiments
conducted, our bounds for tr(A~!) are found to be tighter when simple trial vectors
are used in the Kantorovich’s bound, and are equivalent to the Robinson and Wathen’s
bounds. But it is generally poorer than the probablistic bounds and estimations for
tr(A~!) and In(det(A)) derived by using Gaussian quadrature and Monte Carlo simulation
[1]. The latter costs significantly more arithmetic operations and memory. But a fully
parallelism scheme can be developed for the simulation [1].

We point out that using Gaussian quadrature and related theory, we have the ad-
vantage of easily extending the approach for tr(A~!) to tr(In(A)), while the approaches
based on Kantorovich inequality and variational inequality do not enjoy. If the traces of
higher orders of the matrix power A™, r > 3, are available, then bounds can be further
tightened by using the same technique. Moreover, one could use modified moments to
get improved estimates of the quadrature rule.

5 Afternote

While we were finishing up this paper, we read an article by Ortner and Krauter on lower
bounds for the determinant and the trace of the inverse in the most recent issue of Linear
Algebra and its Applications [12]. One central problem studied by Ortner and Krauter
is to find lower bounds of tr(P~!) and det(P~1!), where P = %XTX, X is a given m-
by-n (m > n) full rank matrix, whose rows have unit length. This problem arises from
accuracy considerations in real second-rank tensor measurements of single crystals [11].
By using standard matrix theory, one can show that the condition number of the matrix
X is related to the quantity tr(P~1!), namely,

kp(X) = | X|p || XTF = vix(P~1).

where X1 is the Moore-Penrose inverse of X [6]. Therefore, a lower bound of tr(P~1)
also gives a lower bound of the condition number of X.

Using an approach based on matrix theory and combinatorics, various lower bounds
of tr(P~!) are derived in [12]. The sharpness of those lower bounds are demonstrated
for small m and n ([12, Example 3]). Our approach yields the same lower bounds for
their set of test problems, provided that the extreme eigenvalues of P are available. As
indicated by Ortner and Krauter [12], in most cases, it is very hard, if not impossible, to
find a suitable configuration of the row vectors of X to attain the optimal lower bound.
Since our approach gives both lower and upper bounds of the quantity tr(P~1), it might
provide a way to assess how far a given configuration is from the optimal configuration.
It would be interesting to make further investigations in this direction.
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