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Abstract. We survey some unusual eigenvalue problems arising in dif-
ferent applications. We show that all these problems can be cast as
problems of estimating quadratic forms. Numerical algorithms based on
the well-known Gauss-type quadrature rules and Lanczos process are re-
viewed for computing these quadratic forms. These algorithms reference
the matrix in question only through a matrix-vector product operation.
Hence it is well suited for large sparse problems. Some selected numerical
examples are presented to illustrate the efficiency of such an approach.

1 Introduction

Matrix eigenvalue problems play a significant role in many areas of computa-
tional science and engineering. It often happens that many eigenvalue problems
arising in applications may not appear in a standard form that we usually learn
from a textbook and find in software packages for solving eigenvalue problems.
In this paper, we described some unusual eigenvalue problems we have encoun-
tered. Some of those problems have been studied in literature and some are new.
We are particularly interested in solving those associated with large sparse prob-
lems. Many existing techniques are only suitable for dense matrix computations
and becomes inadequate for large sparse problems.
We will show that all these unusal eigenvalue problems can be converted to

the problem of computing a quadratic form uT f(A)u, for a properly defined
matrix A, a vector u and a function f . Numerical techniques for computing the
quadratic form to be discussed in this paper will based on the work initially
proposed in [6] and further developed in [11,12,2]. In this technique, we first
transfer the problem of computing the quadratic form to a Riemann-Stieltjes
integral problem, and then use Gauss-type quadrature rules to approximate the
integral, which then brings the orthogonal polynomial theory and the underlying
Lanczos procedure into the scene. This approach is well suitable for large sparse
problems, since it references the matrix A through a user provided subroutine
to form the matrix-vector product Ax.
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The basic time-consuming kernels for computing quadratic forms using par-
allelism are vector inner products, vector updates and matrix-vector products;
this is similar to most iterative methods in linear algebra. Vector inner prod-
ucts and updates can be easily parallelized: each processor computes the vector-
vector operations of corresponding segments of vectors (local vector operations
(LVOs)), and if necessary, the results of LVOs have to sent to other processors
to be combined for the global vector-vector operations. For the matrix-vector
product, the user can either explore the particular structure of the matrix in
question for parallelism, or split the matrix into strips corresponding to the
vector segments. Each process then computes the matrix-vector product of one
strip. Furthermore, the iterative loop of algorithms can be designed to overlap
communication and computation and eliminating some of the synchronization
points. The reader may see [8,4] and references therein for further details.
The rest of the paper is organized as follows. Section 2 describes some unusual

eigenvalue problems and shows that these problems can be converted to the
problem of computing a quadratic form. Section 3 reviews numerical methods for
computing a quadratic form. Section 4 shows that how these numerical methods
can be applied to those problems described in section 2. Some selected numerical
examples are presented in section 5. Concluding remarks are in section 5.

2 Some Unusual Matrix Eigenvalue Problems

2.1 Constrained eigenvalue problem

Let A be a real symmetric matrix of order N , and c a given N vector with
cT c = 1. We are interested in the following optimization problem

max
x

xTAx (1)

subject to the constraints
xTx = 1 (2)

and
cTx = 0. (3)

Let
φ(x, λ, µ) = xTAx− λ(xTx− 1) + 2µxT c, (4)

where λ, µ are Lagrange multipliers. Differentiating (4) with respect to x, we are
led to the equation

Ax− λx+ µc = 0.

Then
x = −µ(A − λI)−1c.

Using the constraint (3), we have

cT (A − λI)−1c = 0. (5)
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An equation of such type is referred as a secular equation. Now the problem
becomes finding the largest λ of the above secular equation.
We note that in [10], the problem is cast as computing the largest eigenvalue

of the matrix PAP , where P is a project matrix P = I − ccT .

2.2 Modified eigenvalue problem

Let us consider solving the following eigenvalue problems

Ax = λx

and
(A + ccT )x̄ = λ̄x̄

where A is a symmetric matrix and c is a vector and without loss of generality,
we assume cT c = 1. The second eigenvalue problem can be regarded as a modifed
or perturbed eigenvalue problem of the first one. We are interested in obtaining
some, not all, of the eigenvalues of both problems. Such computation task often
appears in structural dynamic (re-)analysis and other applications [5].
By simple algebraic derivation, it is easy to show that the eigenvalues λ̄ of

the second problem satisfy the following secular equation

1 + cT (A− λ̄I)−1c = 0. (6)

2.3 Constraint quadratic optimization

Let A be a symmetric positive definite matrix of order N and c a givenN vector.
The quadratic optimization problem is stated as the following:

min
x

xTAx− 2cTx (7)

with the constraint
xTx = α2, (8)

where α is a given scalar. Now let

φ(x, λ) = xTAx− 2cTx+ λ(xTx− α2) (9)

where λ is the Lagrange multiplier. Differentiating (9) with respect to x, we are
led to the equation

(A+ λI)x − c = 0

By the constraint (8), we are led to the problem of determining λ > 0 such that

cT (A+ λI)−2c = α2. (10)

Furthermore, one can show the existence of a unique positive λ∗ for which the
above equation is satisfied. The solution of the original problem (7) and (8) is
then x∗ = (A + λ∗I)−1c.
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2.4 Trace and determinant

The trace and determinant problems are simply to estimate the quantities

tr(A−1) =
n∑
i=1

eTi A
−1ei

and

det(A)

for a given matrix A. For the determinant problem, it can be easily verified that
for a symmetric positive definite matrix A:

ln(det(A)) = tr(ln(A)) =

n∑
i=1

eTi (ln(A))ei. (11)

Therefore, the problem of estimating the determinant is essentially to estimate
the trace of the matrix natural logarithm function ln(A).

2.5 Partial eigenvalue sum

The partial eigenvalue sum problem is to compute the sum of all eigenvalues less
than a prescribed value α of the generalized eigenvalue problem

Ax = λBx, (12)

where A and B are real N × N symmetric matrices with B positive definite.
Specifically, let {λi} be the eigenvalues; one wants to compute the quantity

τα =
∑
λi<α

λi

for a given scalar α.
Let B = LLT be Cholesky decomposition of B, the problem (12) is then

equivalent to

(L−1AL−T )LT x = λLT x.

Therefore the partial eigenvalue sum of the matrix pair (A,B) is equal to the
partial eigenvalue sum of the matrix L−1AL−T , which, in practice, does not need
to be formed explicitly.
A number of approaches might be found in literature to solve such problem.

Our approach will based on constructing a function f such that the trace of
f(L−1AL−T ) approximates the desired sum τα. Specifically, one wants to con-
struct a function f such that

f(λi) =

{
λi, if λi < α
0, if λi > α,

(13)
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for i = 1, 2, . . . , N . Then tr(f(L−1AL−T )) is the desired sum τα. One of choices
is to have the f of the form

f(ζ) = ζg(ζ) (14)

where

g(ζ) =
1

1 + exp
(
ζ−α
κ

) ,
where κ is a constant. This function, among other names, is known as the Fermi-
Dirac distribution function [15, p. 347]. In the context of a physical system, the
usage of this distribution function is motivated by thermodynamics. It directly
represents thermal occupancy of electronic states. κ is proportional to the tem-
perature of the system, and α is the chemical potential (the highest energy for
occupied states).
It is easily seen that 0 < g(ζ) < 1 for all ζ with horizontal asymptotes 0 and

1. (α, 1
2
) is the inflection point of g and the sign of κ determines whether g is

decreasing (κ > 0) or increasing (κ < 0). For our application, we want the sum
of all eigenvalues less than α, so we use κ > 0. The magnitude of κ determines
how “close” the function g maps ζ < α to 1 and ζ > α to 0. As κ → 0+, the
function g(ζ) rapidly converges to the step function h(ζ).

h(ζ) =

{
1 if ζ < α
0 if ζ > α.

The graphs of the function g(ζ) for α = 0 and different values of the parameter
κ are plotted in Figure 1.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kappa = 1

x

g(
x)

kappa = .3

kappa = .1

Fig. 1. Graphs of g(ζ) for different values of κ where α = 0.

With this choice of f(ζ), we have

τα =
∑
λi<α

λi ≈ tr(f(L
−1AL−T )) =

n∑
i=1

eTi f(L
−1AL−T )ei. (15)
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In summary, the problem of computing partial eigenvalue sum becomes comput-
ing the trace of f(L−1AL−T ).

3 Quadratic Form Computing

As we have seen, all those unusual eigenvalue problems presented in section 2
can be summarized as the problem of computing the quadratic form uT f(A)u,
where A is a N × N real matrix, and u is a vector, and f is a proper defined
function. One needs to find an approximate of the quantity uT f(A)u, or give a
lower bound ` and/or an upper bound ν of it. Without loss of generality, one
may assume uTu = 1.
The quadratic form computing problem is first proposed in [6] for bounding

the error of CG method for solving linear system of equations. It has been
further developed in [11,12,2] and extended to other applications. The main
idea is to first transform the problem of the quadratic form computing to a
Riemann-Stieltjes integral problem, and then use Gauss-type quadrature rules
to approximate the integral, which then brings the orthogonal polynomial theory
and the underlying Lanczos procedure into the picture.
Let us go through the main idea. Since A is symmetric, the

eigen-decomposition of A is given by A = QTΛQ, where Q is an orthogonal
matrix and Λ is a diagonal matrix with increasingly ordered diagonal elements
λi. Then we have

uT f(A)u = uTQT f(Λ)Qu = ũTf(Λ)ũ =

N∑
i=1

f(λi)ũ
2
i ,

where ũ = (ũi) ≡ Qu. The last sum can be considered as a Riemann-Stieltjes
integral

uT f(A)u =

∫ b
a

f(λ)dµ(λ),

where the measure µ(λ) is a piecewise constant function and defined by

µ(λ) =



0, if λ < a ≤ λ1,∑i
j=1 ũ

2
j , if λi ≤ λ < λi+1∑N

j=1 ũ
2
j = 1, if b ≤ λN ≤ λ

and a and b are the lower and upper bounds of the eigenvalues λi.
To obtain an estimate for the Riemann-Stieltjes integral, one can use the

Gauss-type quadrature rule [9,7]. The general quadrature formula is of the form

I[f ] =

n∑
j=1

ωjf(θj ) +

m∑
k=1

ρkf(τk), (16)

where the weights {ωj} and {ρk} and the nodes {θj} are unknown and to be
determined. The nodes {τk} are prescribed. If m = 0, then it is the well-known
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Gauss rule. If m = 1 and τ1 = a or τ1 = b, it is the Gauss-Radau rule. The
Gauss-Lobatto rule is for m = 2 and τ1 = a and τ2 = b.
The accuracy of the Gauss-type quadrature rules may be obtained by an

estimation of the remainder R[f ]:

R[f ] =

∫ b
a

f(λ)dµ(λ) − I[f ].

For example, for the Gauss quadrature rule,

R[f ] =
f(2n)(η)

(2n)!

∫ b
a

[
n∏
i=1

(λ − θi)

]2
dµ(λ),

where a < η < b. Similar formulas exist for Gauss-Radau and Gauss-Lobatto
rules. If the sign of R[f ] is determined, then the quadrature formula I[f ] is a
lower bound (if R[f ] > 0) or an upper lower bound (if R[f ] < 0) of the quantity
uTf(A)u.
Let us briefly recall how the weights and the nodes in the quadrature for-

mula are obtained. First, we know that a sequence of polynomials p0(λ), p1(λ),
p2(λ), . . . can be defined such that they are orthonormal with respect to the
measure µ(λ): ∫ b

a

pi(λ)pj(λ)dµ(λ) =

{
1 if i = j
0 if i 6= j

where it is assumed that the normalization condition
∫
dµ = 1 (i.e., uTu = 1).

The sequence of orthonormal polynomials πj(λ) satisfies a three-term recurrence

γjpj(λ) = (λ− αj)pj−1(λ) − γj−1pj−2(λ),

for j = 1, 2, . . . , n with p−1(λ) ≡ 0 and p0(λ) ≡ 1. Writing the recurrence in
matrix form, we have

λp(λ) = Tnp(λ) + γnpn(λ)en

where
p(λ)T = [p0(λ), p1(λ), . . . , pn−1(λ)], eTn = [0, 0, . . . , 1]

and

Tn =




α1 γ1
γ1 α2 γ2

γ2 α3
. . .

. . .
. . .
. . .

. . .
. . . γn−1
γn−1 αn



.

Then for the Gauss quadrature rule, the eigenvalues of Tn (which are the zeros
of pn(λ)) are the nodes θj . The weights ωj are the squares of the first elements
of the normalized (i.e., unit norm) eigenvectors of Tn.
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For the Gauss-Radau and Gauss-Lobatto rules, the nodes {θj}, {τk} and
weights {ωj}, {ρj} come from eigenvalues and the squares of the first elements
of the normalized eigenvectors of an adjusted tridiagonal matrices of T̃n+1, which
has the prescribed eigenvalues a and/or b.

To this end, we recall that the classical Lanczos procedure is an elegant way
to compute the orthonormal polynomials {pj(λ)} [16,11]. We have the following
algorithm in summary form. We refer it as the Gauss-Lanczos (GL) algorithm.

GL algorithm: Let A be a N×N real symmetric matrix, u a real N vector with
uTu = 1. f is a given smooth function. Then the following algorithm computes
an estimation In of the quantity u

T f(A)u by using the Gauss rule with n nodes.

– Let x0 = u, and x−1 = 0 and γ0 = 0
– For j = 1, 2, . . . , n,

1. αj = x
T
j−1Axj−1

2. vj = Axj−1 − αjxj−1 − γj−1xj−2
3. γj = ‖vj‖2
4. xj = rj/γj

– Compute eigenvalues θk and the first elements ωk of eigenvectors of Tn
– Compute In =

∑n
k=1 ω

2
kf(θk)

We note that the “For” loop in the above algorithm is an iteration step of the
standard symmetric Lanczos procedure [16]. The matrix A in question is only
referenced here in the form of the matrix-vector product. The Lanczos procedure
can be implemented with only 3 n-vectors in the fast memory. This is the major
storage requirement for the algorithm and is an attractive feature for large scale
problems.

On the return of the algorithm, from the expression of R[f ], we may estimate
the error of the approximation In. For example, if f

(2n)(η) > 0 for any n and η,
a < η < b, then In is a lower bound ` of the quantity u

T f(A)u.

Gauss-Radau-Lanczos (GRL) algorithm: To implement the Gauss-Radau
rule with the prescribed node τ1 = a or τ1 = b, the above GL algorithm just
needs to be slightly modified. For example, with τ1 = a, we need to extend the
matrix Tn to

T̃n+1 =

[
Tn γnen
γne

T
n φ

]
.

Here the parameter φ is chosen such that τ1 = a is an eigenvalue of T̃n+1.
From [10], it is known that

φ = a + δn,

where δn is the last component of the solution δ of the tridiagonal system

(Tn − aI)δ = γ
2
nen.
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Then the eigenvalues and the first components of eigenvectors of T̃n+1 gives
the nodes and weight of the Gauss-Radau rule to compute an estimation Ĩn of
uTf(A)u.
Furthermore, if f(2n+1)(η) < 0 for any n and η, a < η < b, then Ĩn (with b

as a prescribed eigenvalue of T̃n+1) is a lower bound ` of the quantity u
T f(A)u.

Ĩn (with a as a prescribed eigenvalue of T̃n+1) is an upper bound ν .

Gauss-Lobatto-Lanczos (GLL) algorithm: To implement the Gauss-Lo-
batto rule, Tn computed in the GL algorithm is updated to

T̂n+1 =

[
Tn ψen
ψeTn φ

]
.

Here the parameters φ and ψ are chosen so that a and b are eigenvalues of T̂n+1.
Again, from [10], it is known that

φ =
δnb− µna

δn − µn
and ψ2 =

b+ a

δn − µn
,

where δn and µn are the last components of the solutions δ and µ of the tridi-
agonal systems

(Tn − aI)δ = en and (Tn − bI)µ = en.

The eigenvalues and the first components of eigenvectors of T̂n+1 gives the nodes
and weight of the Gauss-Lobatto rule to compute an estimation În of u

T f(A)u.
Moreover, if f(2n)(η) > 0 for any η, a < η < b, then În is an upper bound ν of
the quantity uT f(A)u.
Finally, we note that we need not always compute the eigenvalues and the first

components of eigenvectors of the tridiagonal matrix Tn or its modifications T̃n+1
or T̂n+1 for obtaining the estimation In or Ĩn, În. We have following proposition.

Proposition 1. For Gaussian rule:

In =

n∑
k=1

ω2kf(θk) = e
T
1 f(Tn)e1. (17)

For Gauss-Radau rule:

Ĩn =

n∑
k=1

ω2kf(θk) + ρ1f(τ1) = e
T
1 f(T̃n+1)e1. (18)

For Gauss-Lobatto rule:

În =

n∑
k=1

ω2kf(θk) + ρ1f(τ1) + ρ2f(τ2) = e
T
1 f(T̂n+1)e1. (19)

Therefore, if the (1,1) entry of f(Tn), f(T̃n+1) or f(T̂n+1) can be easily
computed, for example, f(λ) = 1/λ, we do not need to compute the eigenvalues
and eigenvectors.
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4 Solving the UEPs by Quadratic Form Computing

In this section, we use the GL, GRL and GLL algorithms for solving those
unusual eigenvalue problems discussed in section 2.

Constraint eigenvalue problem Using the GL algorithm with the matrix A
and the vector c, we have

cT1 (A − λI)
−1c = eT1 (Tn − λI)

−1e1 +R,

where R is the remainder. Now we may solve reduced-order secular equation

eT1 (Tn − λI)
−1e1 = 0

to find the largest λ as the approximate solution of the problem. This secular
equation can be solved using the method discussed in [17] and its implementation
available in LAPACK [1].

Modified eigenvalue problem Again, using the GL algorithmwith the matrix
A and the vector c, we have

1 + cT (A − λ̄I)−1c = 1 + eT1 (Tn − λ̄I)
−1e1 + R,

where R is the remainder. Then we may solve the eigenvalue problem of Tn
to approximate some eigenvalues of A, and then solve reduced-order secular
equation

1 + eT1 (Tn − λ̄I)
−1e1 = 0

for λ̄ to find some approximate eigenvalues of the modified eigenvalue problem.

Constraint quadratic programming By using the GRL algorithm with the
prescribed node τ1 = b for the matrix A and vector c, it can be shown that

cT (A + λI)−2c ≥ eT1 (T̃n+1 + λI)
−2e1

for all λ > 0. Then by solving the reduced-order secular equation

eT1 (T̃n+1 + λI)
−2e1 = α

2

for λ, we obtain λn, which is a lower bound of the solution λ
∗: λn ≤ λ

∗

On the other hand, using the GRL algorithmwith the prescribed node τ1 = a,
we have

cT (A + λI)−2c ≤ eT1 (T̃n+1 + λI)
−2e1

for all λ > 0. Then by solving the reduced-order secular equation

eT1 (T̃n+1 + λI)
−2e1 = α

2
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for λ. We have an upper bound λ̄n of the solution λ
∗: λ̄n ≥ λ∗.

Using such two-sided approximation as illustrated in Figure 2, the iteration
can be adaptively proceeded until the estimations λn and λ̄n are sufficiently
close, we then obtain an approximation

λ∗ ≈
1

2
(λn + λ̄n)

of the desired solution λ∗.

λ 
λ λ λ λ 

α2

n n
*

Fig. 2. Two-sided approximation approximation of the solution λ∗ for the con-
straint quadratic programming problem (7) and (8).

Trace, determinant and partial eigenvalue sum As shown in sections
2.4 and 2.5, the problems of computing trace of the inverse of a matrix A,
determinant of a matrix A and partial eigenvalue sum of a symmetric positive
definite pair (A,B) can be summarized as the problem of computing the trace
of a corresponding matrix function f(H), where H = A or H = L−1AL−T

and f(λ) = 1/λ, ln(λ) or λ/
(
1 + exp(λ−ακ )

)
. To efficiently compute the trace

of f(H), instead of applying GR algorithm or its variations N times for each
diagonal element of f(H), we may use a Monte Carlo approach which only
applies the GR algorithmm times to obtain an unbiased estimation of tr(f(H)).
For practical purposes, m can be chosen much smaller than N . The saving in
computational costs could be significant. Such a Monte Carlo approach is based
on the following lemma due to Hutchinson [14].

Proposition 2. Let C = (cij) be an N ×N symmetric matrix with tr(C) 6= 0.
Let V be the discrete random variable which takes the values 1 and −1 each with
probability 0.5 and let z be a vector of n independent samples from V. Then
zTCz is an unbiased estimator of tr(C), i.e.,

E(zTCz) = tr(C),
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and

var(zTCz) = 2
∑
i 6=j

c2ij.

To use the above proposition in practice, one takes m such sample vectors

zi, and then uses GR algorithm or its variations to obtain an estimation I
(i)
n , a

lower bound `
(i)
n and/or an upper bound ν

(i)
n of the quantity zTi f(H)zi:

`(i)n ≤ z
T
i f(H)zi ≤ ν

(i)
n .

Then by taking the mean of the m computed estimation I
(i)
n or lower and upper

bounds `
(i)
n and ν

(i)
n , we have

tr(f(H)) ≈
1

m

m∑
i=1

I(i)n

or
1

m

m∑
i=1

`(i)n ≤
1

m

m∑
i=1

zTi f(H)zi ≤
1

m

m∑
i=1

ν(i)n .

It is natural to expect that with a suitable sample size m, the mean of the
computed bounds yields a satisfactory estimation of the quantity tr(f(H)). To
assess the quality of such estimation, one can also obtain probabilistic bounds
of the approximate value [2].

5 Numerical Examples

In this section, we present some numerical examples to illustrate our quadratic
form based algorithms for solving some of the unusual eigenvalue problems dis-
cussed in section 2.

Table 1. Numerical Results of estimating tr(A−1)

Matrix N “Exact” Iter Estimated Rel.err

Poisson 900 5.126e+ 02 30–50 5.020e + 02 2.0%
VFH 625 5.383e+ 02 12–21 5.366e + 02 0.3%
Wathen 481 2.681e+ 01 33–58 2.667e + 01 0.5%
Lehmer 200 2.000e+ 04 38–70 2.017e + 04 0.8%
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Table 2. Numerical results of estimating ln(det(A)) = tr(lnA)

Matrix N “Exact” Iter Estimated Rel.err

Poisson 900 1.065e+ 03 11–29 1.060e+ 03 0.4%
VFH 625 3.677e+ 02 10–14 3.661e+ 02 0.4%

Heat Flow 900 5.643e+ 01 4 5.669e+ 01 0.4%
Pei 300 5.707e+ 00 2–3 5.240e+ 00 8.2%

5.1 Trace and determinant

Numerical results for a set of test matrices presented in Tables 1 and 2 are
first reported in [2]. Some of these test matrices are model problems and some
are from practical applications. For example, VFH matrix is from the analysis of
transverse vibration of a Vicsek fractal. These numerical experiments are carried
out on an Sun Sparc workstation. The so-called “exact” value is computed by
using the standard methods for dense matrices. The numbers in the “Iter”-

column are the number of iterations n required for the estimation I
(i)
n to reach

stationary value within the given tolerance value tol = 10−4, namely,

|In − In−1| ≤ tol ∗ |In|.

The number of random sample vector zi is m = 20. For those test matrices, the
relative accuracy of the new approach within 0.3% to 8.2% may be sufficient for
practical purposes.

5.2 Partial eigenvalue sum

Here we present a numerical example from the computation of the total energy
of an electronic structure. Total energy calculation of a solid state system is
necessary in simulating real materials of technological importance [18]. Figure 3
shows a carbon cluster that forms part of a “knee” structure connecting nan-
otubes of different diameters and the distribution of eigenvalues such carbon
structure with 240 atoms. One is interested in computing the sum of all these
eigenvalues less than zero. Comparing the performance of our method with dense
methods, namely symmetric QR algorithm and bisection method in LAPACK,
our method achieved up to a factor of 20 speedup for large system on an Con-
vex Exemplar SPP-1200 (see Table 3). Because of large memory requirements,
we were not able to use LAPACK divide-and-conquer symmetric eigenroutines.
Furthermore, algorithms for solving large-sparse eigenvalue problems, such as
Lanczos method or implicitly restarted methods for computing some eigenval-
ues are found inadequate due to large number of eigenvalues required. Since the
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Fig. 3. A carbon cluster that forms part of a “knee” structure, and the corre-
sponding spectrum

Table 3. Performance of our method vs. dense methods on Convex Exemplar
SPP-1200. Here, 10 Monte Carlo samples were used to obtain estimates for each
systems size.

Dense methods GR Algorithm % Relative
n m Partial Sum QR Time BI Time Estimate Time Error

480 349 -4849.8 7.4 7.6 -4850.2 2.8 0.01
960 648 -9497.6 61.9 51.8 -9569.6 18.5 0.7
1000 675 -9893.3 80.1 58.6 -10114.1 22.4 2.2
1500 987 -14733.1 253.6 185.6 -14791.8 46.4 0.4
1920 1249 -18798.5 548.3 387.7 -19070.8 72.6 1.4
2000 1299 -19572.9 616.9 431.8 -19434.7 78.5 0.7
2500 1660 -24607.6 1182.2 844.6 -24739.6 117.2 0.5
3000 1976 -29471.3 1966.4 1499.7 -29750.9 143.5 0.9
3500 2276 -34259.5 3205.9 2317.4 -33738.5 294.0 1.5
4000 2571 -39028.9 4944.3 3553.2 -39318.0 306.0 0.7
4244 2701 -41299.2 5915.4 4188.0 -41389.8 339.8 0.2
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problem is required to be solved repeatly, we are now able to solve previously
intractable large scale problems. The relative accuracy of new approach within
0.4% to 1.5% is satisfactory for the application [3].

6 Concluding Remarks

In this paper, we have surveyed numerical techniques based on computing
quadratic forms for solving some unusual eigenvalue problems. Although there
exist some numerical methods for solving these problems (see [13] and references
therein), most of these can be applied only for small and/or dense problems.
The techniques presented here reference the matrix in question only through a
matrix-vector product operation. Hence, they are more suitable for large sparse
problems.
The new approach deserves further study; in particular, for error estimation

and convergence of the methods. An extensive comparative study of the trade-
offs in accuracy and computational costs between the new approach and other
existing methods should be conducted.

Acknowledgement Z. B. was supported in part by an NSF grant ASC-9313958,
an DOE grant DE-FG03-94ER25219.
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