
IMA Journal of Numerical Analysis (1994) 14, 563-581

A Newton basis GMRES implementation

Z. f
Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

D. Hut
Center for Research on Parallel Computation, Rice University, Houston,

TX 77251, USA

AND

L. REICHEL|$

Department of Mathematics and Computer Science, Kent State University, Kent,
OH 44242, USA

[Received 17 April 1991 and in revised form 20 April 1994]

The GMRES method by Saad and Schultz is one of the most popular iterative
methods for the solution of large sparse non-symmetric linear systems of
equations. The implementation proposed by Saad and Schultz uses the Arnoldi
process and the modified Gram-Schmidt (MGS) method to compute orthonormal
bases of certain Krylov subspaces. The MGS method requires many vector-vector
operations, which can be difficult to implement efficiently on vector and parallel
computers due to the low granularity of these operations. We present a new
implementation of the GMRES method in which, for each Krylov subspace used,
we first determine a Newton basis, and then orthogonalize it by computing a QR
factorization of the matrix whose columns are the vectors of the Newton basis. In
this way we replace the vector-vector operations of the MGS method by the task
of computing a QR factorization of a dense matrix. This makes the implementa-
tion more flexible, and provides a possibility to adapt the computations to the
computer at hand in order to achieve better performance.

1. Introduction

The generalized minimal residual (GMRES) method introduced by Saad & Schultz
(Saad & Schultz (1986), Saad (1989)) is one of the most powerful iterative
schemes for the numerical solution of large sparse non-symmetric linear systems
of equations

Ax = b (1.1)

t E-mail addresses: bai@ms.uky.edu dyhu@rice.edu reichel@mcs.kent.edu
X Research supported in part by the IBM Bergen Scientific Center, the Center for Research on

Parallel Computation at Rice University, a National Research Council fellowship and NSF Grant
DMS-9002884.

© Oxford University Press 1994

5 6 4 Z. BAI, D. HU AND L. REICHEL

where the matrix A e UN*N is non-singular and the right hand side b e W. In this
method one chooses an initial approximate solution x0, defines the residual
vector ro: = b-Axo, and then computes a better approximate solution x1:=
xo + zoex0 + Km(A, /•„), such that

life-Ac, ||= min \\b-A(xo + z)\\ (1.2)

zeKniA.ro)

where

Km(A, ro):= span {r0, Aro,...,A
m-lro} (1.3)

is a Krylov subspace and m is a given positive integer. Throughout this paper || • ||
denotes the Euclidean vector norm or the corresponding induced matrix norm.

Saad & Schultz (1986) solve the minimization problem (1.2) by first computing
an orthonormal basis {VA;}/̂]1 of Km+l(A,r0) with Vi: = ro/\\r0\\ by the Arnoldi
process. Define the matrices Vm:= [vu v2,...,vm] and Vm+l:=[vuv2,...,vm+1]. The
Arnoldi process also yields an essentially upper Hessenberg matrix H: =
[•njk] e U(m+1)Xm, such that

= Vm+lH. (1.4)

Substitution of (1.4) into (1.2) yields

min ||ro-/4z|| = min ||r0
) yeU"

= min \\r0- Vm+1Hy\\

(1.5)

where we have used that V^^_1r0
:= Ĥbll ^1- Throughout this paper et —

[0,...,0,1, 0,...,0]T denotes the ;th axis vector of appropriate dimension. The
least-squares problem (1.5) is solved for y0 e Um by QR factorization of H, and
we obtain the new approximate solution JCJ of (1.1) from xi:=x0 + VmyQ. For
reasons of numerical stability, Saad & Schultz (1986) implement the Arnoldi
process using the modified Gram-Schmidt (MGS) method. This leads to the
following algorithm.

ALGORITHM 1.1 (GMRES implementation by Saad & Schultz (1986))

A NEWTON BASIS GMRES IMPLEMENTATION 565

Input: m, x0, ro:=b - Ax0;

Output: xx, H

Arnoldi process:^

for k := 1, 2,...,m do

w:=Avk;

for;:= 1, 2,...,k do

Vjk'-=wTVj; w := w - T)jkvf, (1.6)

end ;';

Vk+i,k'-= \\w\\; vk+l:=w/T)k+hk; (1.7)

end k;

Solve (1.5) for y0 by computing the QR factorization of H using m Givens
rotations; *, := x0 + Vmy0, where Vm = [u,, u2,...,um]. D

For future reference, we remark that in the Arnoldi method for computing
approximations of eigenvalues of A, one determines the spectrum of the mXm
upper Hessenberg matrix

Hm:=VlAVm. (1.8)

Note that Hm consists of the first m rows of the matrix H e R("1+1>Xm determined
by Algorithm 1.1.

The storage requirement of Algorithm 1.1 grows linearly with m, and the
number of arithmetic operations required grows quadratically with m. Therefore,
one generally chooses a fixed value of m, say 1 0 « m ^ 50, and computes an
approximate solution xx by Algorithm 1.1. If the norm of the residual error
rx:=b - Axx is not sufficiently small, then one seeks to improve xx by solving a
minimization problem analogous to (1.2). This gives rise to the cyclic GMRES

algorithm, also introduced by Saad & Schultz (1986).

ALGORITHM 1.2 (Cyclic GMREs(m) Algorithm (Saad & Schultz (1986))
Input: m, x0, ro:= b - Ax0, s >0;

Output: approximate solution x, such that \\b - Axt\\ « e;

for / := 0, 1, 2,... until ||ry|| =£ e do

zy:=arg min | | /) - / lz | | (1.9)

xj+l:=xj + zj; (1.10)

rJ+1:=rj-Azj;

end j . D

The solution of (1.2) or (1.9) by the Arnoldi process gives rise to many

tThe elements r\jk defined in the algorithm are the non-vanishing entries of the matrix
< 1 > X

5 6 6 Z. BAI, D. HU AND L. REICHEL

vector-vector operations; see (1.6). These operations can be difficult to imple-
ment efficiently on vector and parallel computers due to their low granularity; see
for example Dongarra et al (1986, 1991), Chronopoulos & Kim (1990). The
present paper describes a scheme for the solution of (1.9) in which the MGS
method in Algorithm 1.1, i.e., the vector-vector operations (1.6), is replaced by
the QR factorization of a dense N X {m +1) matrix. This has the advantage of
making the implementation of our scheme more flexible than the implementation
of Algorithm 1.1; the QR factorization can be computed by an algorithm that is
well suited for the computer at hand. The number of arithmetic operations
required by our implementation of the cyclic GMREs(m) algorithm is roughly the
same as if Algorithm 1.1 were used for the solution of (1.9).

Other approaches to avoid the vector-vector operations (1.6) are described by
Hindmarsh & Walker (1986) and Walker (1988,1989). In Walker (1988, 1989)
two schemes that use Householder transformations, instead of the MGS method
(1.6) and (1.7), for computing orthonormal bases of Krylov subspaces Km+l(A, rt)
are presented. These schemes might perform well on certain computers.
However, they require roughly two to three times more arithmetic operations
(depending on implementation details) than Algorithm 1.1, and this can make
these schemes slower than Algorithm 1.1.

In Hindmarsh & Walker (1986) the Krylov subspaces are represented by using
scaled monomial bases in the matrix A, i.e.,

KOT+1(/t, /)) = span {o-0ry, (TxArh..., amAmr^

where the ak >0 are scaling factors. The QR factorization of JVX(m + l)
matrices with columns akA

krj, Q^k^m, are computed by using Householder
transformations. Computed examples in Hindmarsh & Walker (1986) and Walker
(1989) show this approach to yield poor convergence or even no convergence.
This is due to the fact that the bases {crkA

krj}^=0 can be severely ill-conditioned;
see also Section 2 for a discussion. Our implementation is a modification of this
scheme. We replace the scaled monomial bases by better conditioned bases of
Newton form. This change of bases eliminates the numerical difficulties encoun-
tered with the monomial bases.

We introduce notation necessary to describe our implementation. Let nm_!
denote the set of polynomials of degree at most m — \. The minimization problem
(1.9) is equivalent to the problem

min \\rj-Ap(A)r,\\ (1.9')

whose solution we denote by pf. Then (1.10) can be written as

(1.10')

We represent p e nm_! by bases of Newton form {crkYlk
=1(- - \,)}T=o, where

the uk > 0 are scaling factors and the parameters A , e C are chosen with the aim
of making these bases fairly well-conditioned. The choice of the X, is discussed in
detail in Section 2. We propose to let the A; be suitably ordered eigenvalues of the
Hessenberg matrix Hm defined by (1.8) and computed by Algorithm 1.1. We
remark that the matrix Hm and its spectrum only have to be computed once.

A NEWTON BASIS GMRES IMPLEMENTATION 567

Introduce the matrix

[m-\ -i

aorj, tn(A - A,/)r;>.., am^ f l (A - k,I)rt . (1.11)
1=1 J

Then for any p &Ylm-x we have p(A)rj = Bmd for some vector d e Cm. The
minimization problem (1.9') is equivalent to the problem

rf|| (1.9")

whose solution we denote by dr Then (1.10') becomes

x,+1:=x, + Bmdj. (1.10")

We are now in a position to outline our implementation of the cyclic GMREs(m)
algorithm: given an initial approximate solution x0, (i) choose m and compute xu

as well as the mX-m Hessenberg matrix Hm by Algorithm 1.1; (ii) determine the
eigenvalues of Hm and order them for numerical stability; and (Hi) solve (1.9) for
/52I by solving the equivalent problem (1.9") and updating the approximate
solution Xj of (1.1) by (1.10"). We solve (1.9") by computing a QR factorization of
the matrix ABm. Details of this implementation are presented in Section 3.
Computed examples are described in Section 4, and Section 5 contains a summary
and a brief discussion on possible extensions.

2. A Krylov subspace Newton basis

If the matrix ABm in (1.9") is severely ill-conditioned, then the corrections Bmdj to
Xj in (1.10") cannot be computed with sufficient accuracy. The vector Bmdj may be
less sensitive to ill-conditioning of ABm than the least-squares solution dj of (1.9")
is, but nonetheless, extreme ill-conditioning of ABm gives rise to poor accuracy in
the vector Bmdt. In the algorithm presented in Section 3 we determine the QR
factorization of ABm by first computing the QR factorization of

[m -1

aorh at(A - A,/)ry,..., <Jm]\ {A - A,/)r; . (2.1)
This section shows how the condition number

|fim+,c|!

* c | | <Z2>

where c = [y0, y\,-.., ym]T e Cm+i, can be related to the condition number of
polynomial bases. Results by Gautschi (1979,1984) and Reichel (1985) on the
conditioning of monomial bases, as well as on the conditioning of polynomial
bases in Newton form in Fischer & Reichel (1989) and Reichel (1990), are
suggestive for the choice of basis of Km+I(i4, /}•). It is the aim of this section to
provide a heuristic motivation for a basis of Newton form for Km+l(A, rj).

For simplicity we assume that the matrix A is normal and has distinct
eigenvalues. Let A = UAU* be a spectral decomposition with U unitary and A

568 Z. BAI, D. HU AND L. REICHEL

diagonal. Here and below * denotes transposition and complex conjugation. Let
A(/l) denote the spectrum and p = p(A) the spectral radius of A. We first study
the condition number x(6m+1) when all the A* in (2.1) vanish. To simplify the
analysis we assume that the vector ry in (2.1) is given by /} = Ue, with
e := N~i/2[l, 1,...,1]T, and we choose the scaling factors <rk := pk. Then the lengths
of the columns a-kA

krj of Bm+i are bounded by 1 «£ ||av4*ry|| ^Nm. We obtain
the inequalities

max | = max \\U*Bm+ic\\ l)-1/2max \\U*Bm+lc\U
l|clU=l

max (2.3)

and

min ||flm+1c|| = min \\V*Bm+lc
l|cll=l l|c||=l

1 m

2 ;)
(2.4)

where ||-||«, denotes the uniform norm.
Formulas (2.3) and (2.4) enable us to relate K(Bm+i) to the condition number

of a scaled monomial basis of Um. Following Gautschi (1979,1984), we let {<j)j}jL0

be a basis of IIm defined on a given compact set 5 <= C, and introduce the operator

We equip the domain of P with the norm || • Ho,, and the range with the norm
H/lls := maxzs5 | /(z)|. Let P'1 denote the inverse of P. We define the condition
number of P by

(2.5)

where the norms on the right are induced operator norms. Thus,

*s({<i>j}r=o) = m a x max min max

Let <f>j(\):=(\/py, O^j^m, and S:=A(/4). Then formulas (2.2)-(2.5) show
that there is a vector r; of unit length, such that

m) •
(2.6)

Gautschi (1979) has shown that if 5 is the interval [-p, p], then

A NEWTON BASIS GMRES IMPLEMENTATION 569

grows as (1 + V2)m with m. The case when 5 is an ellipse is discussed in Reichel
(1985). The condition number

grows exponentially with m for many compact sets 5 <= C, and in view of (2.6) this
suggests that K(Bm+1) grows exponentially with m (for m^N) for many matrices
A and certain vectors /}.

We now determine an upper bound for «(Bm+1), using the inequalities

1
*=0

= max max 2 »(;)' (2.7)

and

= (m
l|c|U=l

max
= l AeA(.4)

(2.8)

It follows from (2.5), (2.7) and (2.8) that

K(Bm+1)«iV1/2(m + l)1/2ic A(y0({^}7L0). (2.9)

Formulas (2.6) and (2.9) illustrate that the conditioning of Bm+1 can be studied
by determining the condition numbers of suitably chosen polynomial bases. Now
let Bm+1 be given by (2.1) with arbitrary parameters \k e C and r),= U*e. Then
inequalities analogous to (2.7) and (2.8) are valid, and we obtain, similarly with
(2.9), that

K(Bm+1) ^ Nll2(m + l)1 /

where the polynomials of Newton form

-A,), (2.10)

Theoretical and computational results in Reichel (1985,1990) show that a
polynomial basis of Newton form with a suitable choice of parameters A; can be
much better conditioned than a basis of power form. In particular, in Reichel
(1990) the Newton basis is found.to be fairly well-conditioned on a compact set
S a C when the \, are chosen to be Leja points (defined below) for 5. This
suggests that a good choice of parameters A, in (2.10) would be Leja points for
A(/l). However, A(A) is, in general, not explicitly known. We therefore choose \,
to be Leja points for A(//m), where Hm e UmXm is the upper Hessenberg matrix
defined by (1.8), and is computed by the Arnoldi process in Algorithm 1.1.

We note in passing that other choices of fairly well-conditioned polynomial

570 Z. BAI, D. HU AND L. REICHEL

bases are possible. For instance, Joubert & Carey (1991) and de Sturler (1991)
propose the use of a basis of Chebyshev polynomials associated with an ellipse
that contains \(A). The conditioning of Chebyshev polynomial bases are
investigated in Gautschi (1977) and Reichel (1985).

Let S be a compact set in C. A point set {£,-}/! i C 5 is said to be a set of Leja
points for S if

| (2.11a)

- £,| = max fl |£ - a j = \,2,...,m-\. (2.116)
S1=1

Note that the set of Leja points for a given set 5 might not be unique.
Asymptotic properties of Leja points for compact sets of infinite cardinality were
first studied by Edrei (1939) and Leja (1957). In particular, if S is an interval, then
the Leja points for 5 are distributed roughly like zeros of Chebyshev polynomials
for 5, and if instead S is a disk, then the Leja points for S are uniformly
distributed on the boundary of 5; see Edrei (1939), Leja (1957), Reichel
(1990,1991).

3. A new GMRES implementation

This section describes our implementation of the GMRES method. We first note
that the GMRES method does not require the matrix A to be stored. When using
the implementations by Saad & Schultz (1986) (Algorithm 1.1) or by Walker
(1988), it suffices to compute matrix-vector products Au for certain vectors
u e W. In many applications the vector 8(A — rl)u, where 8 and r are real
constants, can be evaluated almost as rapidly as the vector Au. Matrices A with
this property arise from the discretization of partial differential and integral
equations. This is illustrated by the matrices used in the computed examples of
Section 4. It is convenient in our implementation to introduce a vector-valued
function mult (8, A, x, u), whose value is 8(A - xl)u. We use this function to
evaluate Krylov subspace bases of Newton form.

Let the components of x_x e IR̂ be uniformly distributed in [—1,1] and
determine a scaling factor j3_! e IR, such that

\\b - y4(j8_,jc_,)|| = min \\b - A(fix^)\\. (3.1)
PsR

We let xo:= fi-iX-! and ro:= b - Ax0 be input vectors for Algorithm 1.1, and
select the dimension m of the Krylov subspace Km(>t, r0), in which the algorithm
seeks a correction Zo of x0. The purpose of this choice of x0 is to obtain a fairly
good approximate solution that contains components of many eigenvectors of A.
Algorithm 1.1 yields a new improved approximate solution JC, and the mXm
upper Hessenberg matrix Hm defined by (1.8). The spectrum k(Hm) = {X$*=x of
Hm can be computed by standard numerical software; in the computed examples
of Section 4 we used EISPACK (Smith et al (1970)) subroutine HQR.

A NEWTON BASIS GMRES IMPLEMENTATION 571

Because A, B and x0 contain real components only, so does the matrix Hm. The
eigenvalues Ay of Hm are therefore real or appear in complex conjugate pairs. First
assume that A(//m) is real. We can then use formulas (2.11a) and (2.116) with
5 := \(Hm) to order the eigenvalues of Hm. If the spectrum A(//OT) is not real,
then we modify the ordering scheme (2.11a) and (2.116) so that for the ordered
eigenvalues Ay we have that Im (A ;)>0 implies Ay+1 = Ay, where the bar denotes
complex conjugation. This modification of (2.11a) and (2.116) allows us to work
with real vectors only.

ALGORITHM 3.1 (Modified Leja Ordering)
Input: set A(//m) consisting of m points that are real or appear in complex

conjugate pairs;

Output: ordered elements A1; A2,..., Am of A(//m);

Determine A! e A(//n) such that

|A,| = max |A|, Im(A0^0 ;
A«=A(Hm)

for; := 1, 2,...,m - 1 do
if Im (Ay) > 0 then

'V+l : = Ay

else
Determine A;+1 e k(Hm) such that

fI |Ay+1-A,|= max ft |A - A,|, Im(Ay+1)&0;
l=\ AeA(Hm)/=i

If the maximum vanishes, then perturb real parts of non-ordered
elements of A(//m) slightly and maximize product over the new set
A(//m) so obtained,

end if
end;; D

The above algorithm can be implemented so that only O(m2) floating-point
operations are required.

We are now in a position to describe the computation of the matrix Bm+, given
by (2.1). The following algorithm determines a matrix Bm+l = [bu 62,.., 6m+1] e
UjArxcm+i) a n d a diagonal matrix Dm+l = diag(5,, 82,...,8m+l), such that Bm+i : =
Bm+xDm+x has columns of unit length.

ALGORITHM 3.2 (Computation of Bm+l and Dm+X)
Input: m eigenvalues A,,A2,..., Am of Hm ordered by Algorithm 3.1, residual
rx :=b-Axx;

Output: matrices Bm+U Dm + 1 ;

JBl:=rl; 5, := 1/||6,||;
fory:= 1, 2,...,m do

if Im (Ay) = 0 then
6y+1 := mult (5y, A, k,, 6y); 8j+1 := l/||6y+1||;

572 Z. BAI, D. HU AND L. REICHEL

else
if Im (A,-) > 0 then

bJ+!: = mult (5, , A , Re (Ay), 5,);
bj+2 := mult (1 , A , Re (Ay), BJ+1) + Sj Im (Ay)

26y;
fil/||6ll 5 1/IIV II

end if
end if

end j ; O

Not counting the arithmetic operations required by the function 'mult', we see
that Algorithm 3.2 requires between 2(m + l)N + O(l) and 2(|m + 1)N + O(l)
floating-point operations. Here and below the O(l)-terms are independent of N.

We compute the QR factorization

Bm + 1 = Qm + lRm + l (3-2)

where Qm+l e Drx<m+1> is orthogonal, QT
m+1Qm+l =/ , and /?m + , e u(m+1)^m+1)

is upper triangular. We can choose an algorithm for computing the decomposition
(3.2) that is suitable for the computer at hand; see, e.g., Chu & George (1989a,b),
Dongarra et al (1986,1991), Luk (1986), Pothen & Raghavan (1989) and
references therein for a variety of algorithms. The standard sequential algorithm
for computing this factorization uses Householder transformations and requires
2(m + 1)2N + O(1) floating-point operations (see Golub & Van Loan (1989,
p 212)) and this is the computationally most demanding step in each iteration. In
the computed examples in Section 4 we compute the QR factorization (3.2) by
using Householder transformations, which are implemented with level 1 or level 2
BLAS (Golub & Van Loan (1989)).

The next step of our implementation is to compute a QR factorization of the
matrix ABm, where Bm is given by (1.11). This can be accomplished with fairly
little work, given the factorization (3.2). We use the fact that the columns bj of
Bm+1 satisfy a recursion relation. If A, e U then

Bl+1 = Sj(A - \,I)B, (3.3a)

and if Im (A,) > 0, then

bj+2 = Sj(A - \jI)(A Xl)b

where 5,- = 1/||5,-||. Let Qm+i:=[guq2,-,qm^] and Rm+i:=[f1,r2,...,rm+i] =
[pkj]TA- Then bY (3-2)> f o r 1 « / « / « + 1,

Sm + lC; = Bj = Qm + lfj = J QkPkj- (3-4)

First assume that Ay e U. Then, by (3.3a) and (3.4), for 1 «£/ « m,

+iej = ABm+lDm+1ej = SjAbj = bJ+1 + 8yAyFy

2
(3.5)

A NEWTON BASIS GMRES IMPLEMENTATION 573

Let
Pki - = Pit 1 + 1 "t" 8j\jPi,j, 1 =S K ^ 7

^ M y ^ * J + I i / ^ ' > (3 6)

Pj+ij •= Py+i,y+i-

Then (3.5) can be written
^^m + lCy = 2 9*P*y- (3-7)

If instead Im (A;) > 0 for 1 ̂ j « m - 1, then we obtain from (3.3*) and (3.4) that

ABm+let = ABm+iDm+1ej = SjAbj = bj+l + 8j Re (A,)6,

_
+ Sj Re (Ay)

= S qk(p~k,j+i + S; Re (A;)p"t,) + qJ+1pj+1J+i (3.8)

and

1ey+1 =ABm+lDm+iel+1 = 8j+lAbj+l

= 8i+1(bl+2 + Re (Ay)fo/+1 - 8; Im

= E 9k8,+i(pk,j+2 + Re {kj)pk,j+1 - 8j Im (\jfpki)
*=i

+ qj+l8j+l(pi+Uj+2 + Re (A,)py+lr;+1) + q]+28j+lpj+2,j+2- (3.9)
Let

P*y: = P*,y+i + S; Re (Ay)p ty, l^k^j

Pi+\.j'-~ Py+i,y+i

p \ / + 1 := f / + , (p * j + 2 + Re (AyJp/y-M - 5 ; Im (Ay)2p^), l*k*j (3.10)

Py+i,y+i := £y+i(py+i,y+2 + R e)

Py+2,y+i : = 8j+

Then we have

(3-11)

and it follows from (3.8) and (3.11) that the (m + l) X m matrix R = [pjk] satisfies

k (3.12)

where pjk:=0, if 1 < / + K/ :=sm +1. A QR factorization R = @R, where
Q e RC^+DX^ ^ T , 3 = / and /? e RmXm is upper triangular, can be determined
by using only m Givens rotations. This factorization and (3.12) are used to solve
(1.9"). We summarize our implementation.

5 7 4 Z. BAI, D. HU AND L. RE1CHEL

ALGORITHM 3.3 (A new GMRES implementation)
Choose initial vector x_x as described in the beginning of this section;

Solve minimization problem (3.1) for /3_, and form JC0 := /3_iJf_i;
ro:= b- Ax0;

Select the dimension m of the Krylov subspaces to be used;

Apply Algorithm 1.1 to determine a new approximation x, and a n m X m
Hessenberg matrix Hm;

Compute residual rl:= b - Axx;

Compute the spectrum A(//m) = {A;}?Li and order the A, with Algorithm 3.1;

for; := 1, 2,...until ||/)|| is sufficiently small, do
Compute columns of Bm+l by Algorithm 3.2;
Compute QR factorization of Bm+X = Qm+1Rm+1;
Compute the (m + 1) X m Hessenberg matrix R by (3.6) and (3.10), so that
ABm = Qm+lR;
Compute QR factorization of fi, solve (1.9") for d,;
Compute xJ+1 :=Xj + BmDmd, and rj+l := b - Axj+l;

end /. D

The number of matrix-vector products with the matrix A is the same for all
GMRES implementations available. We therefore ignore the arithmetic operations
required by the subroutine 'mult', which computes matrix-vector products with
matrix A. This leads to a count of between (2m2 + 8m + 5)N + O(l) and
(2m2 +7-5m + 5)N + O(1) floating-point operations for each iteration of Algo-
rithm 3.3. The corresponding operation count for the implementation by Saad
and Schultz (1986) (Algorithm 1.1) is (2m2 + 1m + 4)N + O(l). Walker's im-
plementation of the GMRES algorithm (Walker (1988,1989)) requires a factor 2-3
more arithmetic work than the implementation by Saad and Schultz (1986). We
refer to Walker (1988) for a detailed operation count for Walker's
implementation.

We remark that in Algorithm 3.3 we only reduce the given matrix A to an
upper Hessenberg matrix Hm once by the Arnoldi process (in Algorithm 1.1) and
compute the eigenvalues {Xj}^ of Hm, which after ordering are used to
determine the Newton bases that define columns of the matrices Bm+X generated
in the /'-loop. Numerous computed examples, some of which are presented in
Section 4, indicate that if we choose the initial vector x0 so that it contains
components of many eigenvectors, then the Ay so obtained yield Newton bases of
the Krylov_ subspaces Km(A, rf), j s= 1, that give rise to fairly well-conditioned
matrices Bm+l. In all computed examples we chose x0 to have randomly
generated uniformly distributed entries, as described at the beginning of this
section. With this choice of x0 we obtained eigenvalues A, of Hm that gave fairly
well-conditioned matrices Bm+i in the /-loop. However, it cannot be ruled out
that for certain initial vectors JC0 or for certain matrices A, some matrix Bm+l

generated in the /-loop of Algorithm 3.3 is ill-conditioned enough to affect the
convergence of the iterates xf. In this case, we have to return to Algorithm 1.1

A NEWTON BASIS GMRES IMPLEMENTATION 575

and again reduce A to an upper Hessenberg matrix. Let L be the union of the
eigenvalues of this Hessenberg matrix and the eigenvalues previously computed,
and apply Algorithm 3.1 to determine an ordering of the elements of L. Let
{\j}?Li denote the first m elements in the sequence so obtained. We now use
these A; to define subsequent Newton bases in the y-loop. This modification of
Algorithm 3.3 is easy to implement in a production code, but clutters the
presentation and has therefore been omitted from Algorithm 3.3. Our numerical
experience suggests that Algorithm 3.3 as presented is adequate for many
problems. The computed examples of Section 4 are based on Algorithm 3.3 as
stated above, i.e., in each experiment only one set of eigenvalues {A;}£Li is
computed.

4. Numerical examples

We describe some numerical experiments with two Newton basis GMRES im-
plementations and compare them with the GMRES implementation by Saad &
Schultz (1986) (Algorithm 1.1). The purpose of the examples is to illustrate the
stability of the Newton basis implementations, and to present some timings. The
stability and CPU timings were performed on an IBM RISC System/6000 model
550 workstation using single-precision arithmetic.

We derived our test problem by discretizing the boundary value problem

-Au + 2p1ux + 2p2uy-p3u=f in Q
(4.1)

u = 0 on 8Q

by finite differences, where Q is the unit square {(x, y) e IR2, 0 «s x, y «£ 1} and pu

p2, PT, are positive constants. The right-hand side function f(x, y) was chosen so
that u(x, y) = xexy sin (nx) sin (ny) solves (4.1). More precisely, (4.1) is discretized
by centred finite differences on a uniform {n + 2) x (n + 2) grid (including grid
points on the boundary) and we use the standard five-point stencil to approximate
the Laplacian. Let h := l/(n + 1). After scaling by h2, the algebraic linear system
of equations of order n2 obtained from (4.1) can be written as (1.1) with N = n2,
where a typical equation for the unknown «,-, == u(ih, jh) is given by

(4 - a)uu - (1 + 0) K , _ U - (1 - p)ul+lJ - (1 + 7K/-1 " (1 - 7K,+i = h%

Here /3:=p,/i, y: = p2h, a : = p3h
2 and f0: = f(ih,jh). No preconditioner was

used in order to keep the issues of interest clear. Generally, however, a
preconditioner should be used for the solution of linear systems of equations that
arise from the discretization of partial differential equations; see Anderson &
Saad (1989), Saad (1989), Saad & Schultz (1986), Walker (1988) for discussions
and illustrations.

Our first three examples compare the accuracy achieved by the GMRES

implementation of Saad & Schultz (1986), which uses the Arnoldi process
implemented by the MGS method, with the accuracy obtained with our Newton
basis implementation. We refer to the GMRES implementation by Saad & Schultz
(1986) as 'Arnoldi-GMREs'. We refer to our Newton basis implementation

576 Z. BAI, D. HU AND L. REICHEL

10 15 20 25

number of iterations

(a)

15 20 25

number of iterations

(b)

FIG. 1. (a) Convergence comparison of Arnoldi-GMRES (dotted curve), Newton-GMRES (solid curve)
and power-GMRES (dashed curve). The graphs for Arnoldi-GMRES and Newton-GMRES coincide, (b)
Condition numbers of the matrices fl_.

summarized by Algorithm 3.3 as 'Newton-GMRES'. If we choose all the Ay to be
equal to zero in the latter implementation, then the Newton basis becomes a
scaled power basis. We refer to the GMRES implementation using this power basis
as 'power-GMRES'.

EXAMPLE 4.1 In this example, we let n = 63, i.e., the order N of the linear system
is 3969, and we choose the constants px = 1, p2 = 1, Pi = 20 and m = 20. Fig. l(a)
shows the logarithm of the quotient of norms of residual vectors log10 (||rfc||/||r0||)
evaluated for k = 1, 2,..., 25 for Newton-GMRES (solid curve), Arnoldi-GMRES
(dotted curve), and power-GMRES (dashed curve). The Newton-GMRES and
Arnoldi-GMRES behave roughly the same (the curves are indistinguishable), but
clearly, the power-GMRES implementation is inferior. This is due to the fact that

A NEWTON BASIS GMRES IMPLEMENTATION 577

the columns of the matrix Bm for the power basis are numerically linearly
dependent. This is illustrated by Fig. l(b), which shows log10 K(Bm), where the
matrix Bm is defined by (1.11). The solid curve displays the condition number for
the Newton basis, and the dashed curve shows the condition number for the
power basis. We see that x(Bm) is significantly smaller for the Newton basis than
for the power basis. In this example all the Leja-sorted points for forming the
Newton basis are real.

EXAMPLE 4.2 This example differs from Example 4.1 only in that now m = 30.
Fig. 2(a) is analogous with Fig. l(a), and shows log,o(||rA||/||r0||) evaluated for
k = \, 2,..., 25 for Newton-GMRES (solid curve), Arnoldi-GMRES (dotted curve) and
power-GMRES (dashed curve). The Newton-GMRES and Arnoldi-GMRES

6 8 10 12

number or iterations

(a)

8
S

6 8 [0 12

number of iterations

(b)

FIG. 2. (a) Convergence comparison of Arnoldi-GMRES (dotted curve), Newton-GMRES (solid curve)
and power-GMRES (dashed curve). The graphs for Arnoldi-GMRES and Newton-GMRES almost
coincide, (b) Condition numbers of the matrices Bm.

578 Z. BAI, D. HU AND L. RE1CHEL

10 IS

number of iterations

(a)

10 IS

number of iterations

(b)

FIG. 3. (a) Convergence comparison of Arnoldi-GMRES (dotted curve), Newton-GMRES (solid curve)
and power-GMRES (dashed curve) implementations. The graphs for Arnoldi-GMRES and Newton-
GMRES coincide, (b) Condition numbers of the matrices Bm.

implementations yield residual vectors of nearly the same norm. Fig. 2(b) is
analogous with Fig. l(b) and shows the condition number of the matrix Bm for the
Newton basis (solid curve) and for the power basis (dashed curve).

EXAMPLE 4.3 We keep n = 63, but choose the constants pi = 2, p2 = 4, p3 = 30
and m = 25. Fig. 3(a) is analogous with Fig. l(a), and shows log10 (11^*II/II'oil)
evaluated for k = 1, 2,..., 25 for the Newton-GMRES implementation (solid curve),
Arnoldi-GMRES implementation (dotted curve) and power-GMRES implementation
(dashed curve). Fig. 3(b) shows the condition number of the matrix Bm for the
Newton basis (solid curve) and power basis (dashed curve). Some of the points A,
that define the Newton basis appear in complex conjugate pairs.

EXAMPLE 4.4 This example shows some timings comparing two Newton-GMRES

A NEWTON BASIS GMRES IMPLEMENTATION 579

TABLE 1
CPU times in seconds on an IBM RISC System/6000 model 550

workstation

N

3969
4900
6400
8100

10000

m

40
40
40
40
40

No of
iterations

30
30
30
30
30

Newton-1

44-81
55-15
72-23
91-63

119-83

Newton-2

37-93
46-21
61-38
77-50
96-25

Amoldi

41-65
51-27
66-88
84-80

108-72

implementations with the Arnoldi-GMRES implementation. The basic linear
algebra subprograms (BLAS) used for the computation of inner products of two
vectors and of matrix-vector products are optimized for the workstation. Table 1
displays CPU times required by the different GMRES implementations.

The first column of the table is the order of the matrix A, the second column is
the size of Krylov subspace. The number of iterations is shown in column 3.
Column 4 (Newton-1) displays the total CPU time in seconds required by a
Newton-GMRES implementation that uses a subroutine for QR factorization coded
with level-1 BLAS. Column 5 (Newton-2) shows the total CPU time in seconds
required by a Newton-GMRES implementation that uses a subroutine for QR
factorization coded with level-1 and level-2 BLAS. The last column (Arnoldi)
shows CPU times for the Arnoldi-GMRES implementation by Saad & Schultz
(1986). The accuracy achieved with the Newton-1 and Newton-2 implementations
is indistinguishable.

Table 1 illustrates that the performance of the subroutine for QR factorization
of the NX(m + 1) matrices Bm+l is crucial for the competitiveness of the
Newton-GMRES implementation. We found that nearly 85% of the total CPU time
required for the Newton-GMRES algorithm is spent computing QR factorizations
of these matrices. Our implementation that uses both level-1 and level-2 BLAS
(Newton-2) yields a 10% reduction in CPU time compared with the Arnoldi-
GMRES implementation. We expect future performance improvements by using a
more efficient scheme for the QR factorization of Bm+l.

5. Summary and extensions

This paper describes a new implementation of the popular GMRES method for
solving large sparse non-symmetric linear systems of equations. In the new
implementation the vector-vector operations of the MGS method used in the
GMRES implementation by Saad & Schultz (1986) are replaced by the task of
computing a QR factorization of a dense Nx(m + 1) matrix. The numerical
examples show the same numerical stability and accuracy of the new implementa-
tion as of the implementation in Saad & Schultz (1986).

Our new scheme allows more flexibility in the implementation of the GMRES
method, because it allows the use of a subroutine for computing a QR

5 8 0 Z. BAI, D. HU AND L. REICHEL

factorization that is tailored for the computer at hand. This part of the
computation is by far the most demanding in CPU time. The competitiveness of
our scheme depends on the availability of an efficient subroutine for the
computation of a QR factorization of a dense matrix of size N X (m + 1), where,
typically, N»m. We expect to be able to reduce the CPU time required by our
sequential implementation further in the future, by using a more efficient
subroutine for computing a QR factorization of dense matrices of this special
form.

The possibility of choosing a QR factorization scheme would appear to be of
particular value for a parallel implementation of the GMRES algorithm. Such an
implementation can be based on the QR factorization schemes of Chu & George
(1989a,b). In these schemes, the JVX(m + l) matrix 5 m + 1 is first partitioned into
p blocks

'8A «,
B2 \ n2

and the QR factorizations of the n, X (m +1) matrices Bh i = 1, 2,...,p, are
computed simultaneously. Then the triangular blocks are reduced to obtain the
desired QR factorization of Bm+V The latter computations can also be carried out
in parallel. Timings for a parallel implementation of the Newton-GMRES method
on an IBM 3090-600VF computer are presented in Calvetti et al (1993).

Acknowledgement

The authors would like to express thanks to the referees, whose comments led to
improvements in the presentation.

REFERENCES

ANDERSON, E., & SAAD, Y. 1989 Preconditioned conjugate gradient methods for general
sparse matrices on shared memory computers. Parallel Processing for Scientific
Computing (G. Rodrigue, ed). Philadelphia: SIAM, pp 88-92.

CALVETTI, D., PETERSEN, J., & REICHEL, L. 1993 A parallel implementation of the GMRES
method. Numerical Linear Algebra (L. Reichel, A. Ruttan and R. S. Varge, eds).
Berlin: de Gruyter, pp 31-46.

CHRONOPOULOS, A., & KIM, S. K. 1990 S-step ORTHOMIN and GMRES implemented on
parallel computers. Department of Computer Science, University of Minnesota,
TR-90-15.

CHU, E., & GEORGE, A. 1989a QR factorization of a dense matrix on a shared memory
multiprocessor. Parallel Comput. 11, 55-71.

CHU, E., & GEORGE, A. 1989b QR factorization of a dense matrix on a hypercube
multiprocessor. SIAM J. Sci. Stat. Comput. 11, 990-1028.

DE STURLER, E. 1991 A parallel variant of GMRES(W). Proc. 13th World Congress on
Computation and Applied Mathematics (Dublin, IMACS'91) pp 682-3.

DONGARRA, J. J., DUFF, I. S., SORENSEN, D. C, & VAN DER VORST, H. A. 1991 Linear
System Solving on Vector and Shared Memory Computers. Philadelphia: SIAM.

A NEWTON BASIS GMRES IMPLEMENTATION 581

DONGARRA, J. J., SAMEH, A., & SORENSEN, D. C. 1986 Implementation of some
concurrent algorithms for matrix factorization. Parallel Comput. 3, 25-34.

EDREI, A. 1939 Sur les determinants r^currents et les singularity d'une fonction donned
par son deVeloppement de Taylor. Composito Math. 7, 20-88.

FISCHER, B., & REICHEL, L. 1989 Newton interpolation in Fej6r and Chebyshev points.
Math. Comput. 53, 265-78.

GAUTSCHI, W. 1977 The condition of orthogonal polynomials. Math. Comput. 26, 923-4.
GAUTSCHI, W. 1979 Condition of polynomials in power form. Math. Comput. 33, 343-52.
GAUTSCHI, W. 1984 Questions of numerical condition related to polynomials. Studies in

Numerical Analysis (G. H. Golub, ed). Mathematics Association of America.
GOLUB, G. H., & VAN LOAN, C. F. 1989 Matrix Computations (2nd edn). Baltimore, MD:

Johns Hopkins University Press.
HINDMARSH, A. C, & WALKER, H. F. 1986 Note on a Householder implementation of the

GMRES method. Report UCID-20899, Lawrence Livermore National Laboratory.
JOUBERT, W. D., & CAREY, G. F. 1991 Parallelizable restarted iterative methods for

nonsymmetric linear systems. Report CNA-251, Center for Numerical Analysis, The
University of Texas at Austin.

LEJA, F. 1957 Sur certaines suites liees aux ensemble plans et leur application a la
representation conforme. Ann. Polon. Math. 4, 8-13.

LUK, F. T. 1986 A rotation method for computing the QR decomposition. SIAM J. Sci.
Stat. Comput. 7, 452-9.

POTHEN, A., & RAGHAVAN, P. 1989 Distributed orthogonal factorization: Givens and
Householder algorithms. SIAM J. Sci. Stat. Comput. 10,1113-34.

REICHEL, L. 1985 On polynomial approximation in the complex plane with application to
conformal mapping. Math. Comput 44, 425-33.

REICHEL, L. 1990 Newton interpolation at Leja points. BIT 30, 332-46.
REICHEL, L. 1991 The application of Leja points to Richardson iteration and polynomial

preconditioning. Linear Algebra Appl. 154-156, 389-414.
SAAD, Y. 1989 Krylov subspace methods on supercomputers. SIAM J. Sci. Stat. Comput.

10, 1200-32.
SAAD, Y., & SCHULTZ, M. H. 1986 GMRES: a generalized minimal residual algorithm for

solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856-69.
SMITH, B. T., BOYLE, J. M., IKEBE, Y., KLEMA, V. C, & MOLER, C. B. 1970 Matrix

Eigensystem Routines: EISPACK Guide (2nd edn). New York: Springer.
WALKER, H. F. 1988 Implementation of the GMRES method using Householder transfor-

mations. SIAM J. Sci. Stat. Comput. 9,152-63.
WALKER, H. F. 1989 Implementations of the GMRES method. Comput. Phys. Commun. 53,

311-20.

