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Abstract

We present two theoretical results for the linear response eigenvalue problem. The first
result is a minimization principle for the sum of the smallest few positive eigenvalues. The
second result is a couple of Cauchy-like interlacing inequalities. Although the linear response
eigenvalue problem is a nonsymmetric eigenvalue problem, these results mirror the well-
known Courant-Fischer trace minimization principle and Cauchy interlacing inequalities for
the symmetric eigenvalue problem.
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1 Introduction

In this paper, we consider the eigenvalue problem of the form:

Hz= <z\04 Ig) <i> = (i) =)z, (1.1)

where K and M are n X n symmetric positive semi-definite matrices and one of them is definite.
We refer to it as a linear response (LR) eigenvalue problem for the reason to be explained later.
It can be seen that the eigenvalue problem (1.1) is equivalent to any one of the following product
eigenvalue problems

KMy = \?y, (1.2a)
MKz = Nz, (1.2b)

Theoretically, if any one of them is solved, the solutions to the other two can be constructed
from the solved one with little effort.

The LR eigenvalue problem (1.1) arises from computing excitation states (energies) of phys-
ical systems in the study of collective motion of many particle systems, ranging from sili-
con nanoparticles and nanoscale materials to analysis of interstellar clouds (see for example
[5, 11, 15]). In computational quantum chemistry and physics, the excitation states are de-
scribed by the random phase approzimation (RPA), a linear response perturbation analysis in
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the time-dependent Hatree-Fock and time-dependent density function theories. There are a
great deal of recent work and interests in developing efficient numerical algorithms and simula-
tion techniques for excitation response calculations of molecules for materials design in energy
science [7, 19, 20, 12].

The heart of (nonrelativistic) RPA calculation is to compute a few smallest positive eigen-
values and their corresponding eigenvectors of the following eigenvalue problem

(4 D)

. . . . B
where A and B are n X n real symmetric matrices such that the symmetric matrix ( B A)

is positive definite! [18, 23]. In physics and chemistry literature, it is this eigenvalue problem

that is referred to as the LR eigenvalue problem (see, e.g., [14]), or the RPA eigenvalue problem

(see e.g., [6, 22, 11]). The eigenvalue problem (1.3) is also a special case of the Hamiltonian

eigenvalue problem (see, e.g., [2, 3, 27]) because the matrix in (1.3) is a Hamiltonian matrix.
Define the symmetric orthogonal matrix

=l x) o

where I, is the n x n identity matrix. It can be verified that J*J = J? = I, and
A B 0 A—B
T _
J<—B _)J-( 4B 0 ), (1.5)

K=A-B, M=A+B. (1.6)

which is H in (1.1) with

Hence the Hamiltonian matrix in (1.3) and the matrix H in (1.1) with (1.6) are similar through
J, making it equivalent to solve the eigenvalue problem for one by the one for the other. In fact,
both have the same eigenvalues with corresponding eigenvectors related by

@ =7 @ ’ (Z) =7 <§;> (L.7)

B
Furthermore, the positive definiteness of the matrix ( B A) is equivalent to that both of K

and M are positive definite since

JT(g §>J=<AJ(SB AEB>. (1.8)

By the equivalence of the eigenvalue problems (1.3) and (1.1), in this paper, we also refer to the
eigenvalue problem (1.1) as the linear response eigenvalue problem.

When both K and M are symmetric positive definite, as in the case for RPA [17, 24, 26], it
can be shown that the Hamiltonian matrix in (1.3) and thus the matrix H in (1.1) have only
nonzero real eigenvalues and their nonzero eigenvalues come in +\ pairs (see section 2). In
this case, Thouless [24] showed that the smallest positive eigenvalue Api, admits the following
minimization principle:

Amin = min o(u, v), (1.9)

u,v

In this article we will focus on very much this case, except that the eigenvalue 0 is allowed, i.e., (1.3) has only
real eigenvalues.



where o(u,v) is defined by

BNtIe)

|uTu — vTo|

o(u,v) = (1.10)

and the minimization is taken among all vectors u, v such that «Tu —vTv # 0. By the similarity
transformation (1.5) and using the relationships in (1.7), we have

def 2T Ko +y"My
22Tyl 7

o(u,v) = p(z,y) (1.11)
and thus equivalently [26]

Amin = IIEIGIIID) p(xa y)v (112)
where the domain ID consists of all  and y such that either 2Ty # 0 or 27y = 0 but 2" Kz +
yT My > 0. This removes those 2 and y that annihilate both the numerator and the denominator
from the domain. In particular x = y = 0 is not in the domain D.

We will refer to both o(u,v) and p(x,y) as the Thouless functionals but in different forms.
Although o(u,v) = p(x,y) under (1.7), in this paper we primarily work with p(z,y) to develop
extensions of (1.12) and efficient numerical methods.

The theoretical part of our contributions in this paper are three-folds:

1. We extended the minimization principle (1.12) to include the case when one of K and M
is singular and thus Api, = 0 for which “min” needs to be replaced by “inf”.

2. We introduced and proved a subspace version of the minimization principle (1.9):

k
1

E Ni== inf trace(UTKU +VTMV), (1.13)

. 2 v,vernxk

i=1 uvTv=r,

where \; (1 <i < k) are the first k smallest positive eigenvalues? of H, and U,V € R"*,
Moreover, “inf” can be replaced by “min” if both K and M are definite.

Equation (1.13) suggests that
1
3 trace(UTKU 4+ VTMV)  subject to U,V € R"* and UTV = I, (1.14)

is a proper subspace version of the Thouless functional in the form of p(-,-). By exploiting
the close relation through (1.7) between p and p, we also obtained a subspace version of
the minimization principle (1.9) in Theorem 3.3 for the original LR eigenvalue problem
(1.3) and, at the same time, a proper subspace version of the Thouless functional in the
form of o(-,-).

3. We proved that the ith positive eigenvalue of a structure-preserving projection matrix Hgy
of H onto a pair of subspaces is no smaller than the corresponding \; of H. In many ways,
Hgy, plays the same role for the LR eigenvalue problem (1.1) as the Rayleigh quotient
matrix for the symmetric eigenvalue problem [16].

2H has an even number of eigenvalue 0, if any. For convenience, the plus sign is artificially assigned to half of
the Os and the negative sign to the other half. Although +0 = —0 in value, we regard +0 as positive. Doing so
allows us to say that H has n positive eigenvalues and n negative eigenvalues without causing any ambiguity.



These theoretical contributions mirror the well-known results for the symmetric eigenvalue prob-
lem, namely the minimization principle of the Rayleigh quotient, the trace minimization, and
Cauchy interlacing inequalities, see for examples [10, 16, 21].

This is the first paper of ours in a sequel of two. Here we focus on treating the theoretical
aspect of the LR eigenvalue problem. The numerical aspect will be the subject of study in
the second paper [1]. The rest of this paper is organized as follows. In section 2, we review
basic theoretical results about the eigenvalue problem (1.1) and then introduce the concept of
a pair of deflating subspaces and its approximation properties. In section 3, we extend the
minimization principle (1.12) by Thouless and Tsiper to include several eigenvalues and present
our Cauchy-like interlacing inequalities and more. We will also discuss the metric about the best
approximation from a pair of approximate deflating subspaces. For simplicity of exposition, most
proofs are deferred to appendix A. Concluding remarks are in section 4.

Throughout this paper, R is the set of all n x m real matrices, R” = R"*! and R = R%.
I, (or simply I if its dimension is clear from the context) is the n x n identity matrix, and e; is
its jth column. The superscript “-1” takes transpose only. We shall also adopt MATLAB-like
convention to access the entries of vectors and matrices. ¢ : j is the set of integers from 7 to j
inclusive. For a vector u and an matrix X, u(;) is u’s jth entry, X(; ;) is X’s (i,7)th entry; X’s
submatrices X g.p.5), X(k:,:), and X(. ;.;) consist of intersections of row k to row £ and column

i to column j, row k to row £, and column 4 to column j, respectively. If X is nonsingular,

k(X)) o | X |2/l X Y2 is its spectral condition number, where || - || denotes the fo-norm of a

vector or the spectral norm of a matrix. For matrices or scalars X;, both diag(Xy,..., Xx) and
X1 @ ® X}, denote the same matrix

X1

X

The assignments in (1.1) will be assumed, namely H is always defined that way for given
K, M € R™"™ which are assumed by default to be symmetric positive semi-definite and one of
which is definite, unless explicitly stated differently. This assumption is essential to our main
contributions in this paper and its following one [1], although a few results do not require this.
We will point them out along the way.

2 Basic theory and pair of deflating subspaces

2.1 Basic theory

In this subsection, we discuss some basic theoretical results on the eigenvalue problem (1.1).
Most results are likely known, but cannot be found in one place. They are collected here for the
convenience of our later developments. As discussed in section 1, the eigenvalue problem (1.1)
of H and the eigenvalue problems (1.2) of KM and MK are all equivalent in the sense that if
any one of them is solved, the solutions to the other two can be constructed from the solved one
with little effort. Detail is given in Theorem 2.1 below.

Theorem 2.1. 1. If X is an eigenvalue of H and (1.1) holds for z # 0, then equations in
(1.2) hold, and N? is an eigenvalue of KM if y # 0 and \? is an eigenvalue of MK if
x # 0. In particular if X # 0, then both x # 0 and y # 0 and thus N\? is an eigenvalue of
both KM and MK.



2. Equation (1.2a) with y # 0 implies (1.1) for the nonzero z defined by

Y .
) A 07
(A‘lMy> A#
_ Yy ey _
z= (0>, if A=0 and My =0,
0 ifA=0 and My # 0
, ifA=0 an .
My Y

3. Equation (1.2b) with x # 0 implies (1.1) for the nonzero z defined by

AK
( m) iFA#£0,
x
0 .
z= (), if A=0 and Kz =0,
T
K
(OJJ), if A=0 and Kz # 0.

4. Each nonzero u = \* as an eigenvalue of KM (and MK ) leads to two distinct eigenvalues
of H and two corresponding eigenvectors z.

5. The number of zero eigenvalues of H is twice as many as the number of zero eigenvalues
of KM (or MK).

Proof. We note that (1.1) is equivalent to
Kz =)y, My=\z. (2.1)

1. Only the part for A # 0 needs a proof. For that, it suffices to show if A £ 0, then both
x # 0 and y # 0. Suppose to the contrary that A # 0 and y = 0. Then = # 0 since either = or
y or both must not be zero. Kz = 0 by (2.1), and thus A2z =0 = A =0 or 2 = 0 by (1.2b), a
contradiction. Similarly A # 0 and x = 0 cannot happen either.

2. and 3. can be verified straightforwardly.

4. For each = \? # 0, there are two distinct square roots A’s which yield two nonzero z’s
in 2. and 3. as corresponding eigenvectors.

5. It is well-known that KM and MK have the same eigenvalues. Since H and H? have the
same number of zero eigenvalues and

KM 0
2 _
H‘(o MK)’

the conclusion follows. O

REMARK 2.1. Our implicit assumption that K and M are real and symmetric positive semi-
definite and one of them is definite is not used in the proof. Thus Theorem 2.1 is actually valid
for all square matrices K and M. <&



Suppose that K and M are symmetric positive semi-definite. Since KM = K V2R2 g
has the same eigenvalues as KY/2MK'Y? which is also symmetric positive semi-definite, all
eigenvalues of KM are real and nonnegative. Denote these eigenvalues by )\% (1 <i<mn)in
ascending order, i.e.,

0< A2 <A< <A, (2.2)

where all \; > 0 and thus 0 < A\ < Ay < -++ < \,. The eigenvalues of MK are A} (1 <1i < n),
too. Theorem 2.1 implies the eigenvalues of H are

+\; fori=1,2,...,n. (2.3)

An immediate consequence of this is that the eigenvalues of H come in +\ pairs. In particular,
it has an even number of zero eigenvalues. As we mentioned in the footnote 2, for convenience,
we shall associate half of 0 eigenvalues with the positive sign and the other half with the negative
sign. Although 40 = —0 in value, we regard +0 as positive and doing so legitimizes the use of
the phrase “the first k smallest positive eigenvalues of H” to refer to \; for 1 < i < k without
ambiguity even when A; = +0. Throughout this paper, we will use )\12 (1 < i< n)in ascending
order as in (2.2) to denote the eigenvalues of K M.

Set
0o I,
I = <In 0> (2.4)

which is symmetric but indefinite. The matrix .# induces an indefinite inner product on R?":
def
(z1,22) 0 = 2L 7 2.

The following theorem tells us some orthogonality properties among the eigenvectors of H. It
does not require that one of K and M are definite.

Theorem 2.2. Suppose K and M are symmetric and positive semi-definite.

1. Let (X, z) be an eigenpair of H, i.e., Hz = Az and z = <i> %0, where x, y € R™. Then
Mz, 2) g =2 xVy > 0 if X\ # 0. In particular, this implies (z,2) ; = 2z y # 0 if A # 0.

2. Let (o, 2;) (i=1,2) be two eigenpairs of H. Partition z; = <il> £ 0, where x;, y; € R™.
K3
(a) If a1 # «va, then (z1,22) 9 = ylfazg + a:lTyg =0.

Proof. 1. Hz = \z gives Kz = Ay and My = Az. We then have 2TKz = \zTy and yT My =
MyTz. So AzTy > 0. It suffices to show 2Ty # 0 if A # 0. Suppose to the contrary that A # 0
but 2Ty = 0. Then

tty=0=2TKe=¢yTMy=0= Ke=My=0= dy= z=0=z=y=0,

contradicting z # 0.
2. Since

IH = (o K) =(sH)"

is symmetric and positive semi-definite, we have

ozt Iz = 2L F(Hzo) = 21 (FH)zg = 21 (I H) 20 = (H2)) Y I 2y = a2 I 29,



and therefore (ag — al)z?ﬂzg = 0, which implies that lesz = 0 if ay # «ag. Suppose that
a1 # tas. Note that —ag is an eigenvalue of H, too, with eigenvector (_32) By what we
2

just proved, we have
yiza+xiy2 =0, yloa+a](—y2) =0

which yield y?xg = m?yg = 0. O

More can be said when one of K and M is definite. For the sake of presentation, we shall
always either assume that M is definite or only provide proofs for definite M whenever one of
K and M is required to be definite. Doing so loses no generality because the interchangeable
roles played by K and M makes it rather straightforward to create a version for the case when
K is definite by simply swapping K and M in each of their appearances. The following theorem
is critical to our theoretical developments.

Theorem 2.3. Suppose that M is definite. Then the following statements are true:
1. There exists a nonsingular Y € R™ ™ such that
K=YA%Y" M=XxXxT, (2.5)
where A = diag(A1, A2, ..., ) and X =Y~ T,

2. If K is also definite, then all \; > 0 and H is diagonalizable:
YA YA YA YA\ (A
()00 )0 ) =

3. H is not diagonalizable if and only if \y = 0 which happens when and only when K is
singular.

4. The ith column of Z = <YA

Y ) are the eigenvector corresponding to A; and it is unique if

(a) A; is a simple eigenvalue of H, or

(b) i =1, A\i = +0 < Xo. In this case, 0 is a double eigenvalue of H but there is only
one eigenvector associated with it.

5. If0=X =+ = X < Apg1, then H’s Jordan canonical form is

0 0 0 0 .
<1 0) ®---bD <1 0> D dlag()\g+1, —>\[+1, ey )\n, _)\n) (27)

L

Thus H has 0 as an eigenvalue of algebraic multiplicity 2¢ with only ¢ linear independent
0

eigenvectors which are the columns of <X(:,1:e) .
6. The eigen-decompositions of KM and MK are
(KM)Y =Y A*, (MK)X = XA? (2.8)
respectively.

7. The eigen-decomposition for the matriz pencil MKM — AM 1is

MKM = XA?°XT, M=XxXx"T. (2.9)



Proof. 1. Since M~! is symmetric and positive definite, it has a Cholesky decomposition
M~ = RTR, where R € R"*" is nonsingular. That R~ TK R™! is symmetric and positive semi-
definite implies that it has the eigen-decomposition R~ TKR™! = QA%2QT, where Q € R™ ™" is
orthogonal. Now take Y = RTQ to give (2.5).

2. Since X = Y~ 1, we have from (2.5)

KX =YA? MY =X. (2.10)
Rewrite (2.10) as
KX =(YAN)A, M{YA)=XA, (2.11)

YA YA
X -X
implies that H is diagonalizable when all A; > 0.

For items 3. to 5. we deduce from (2.10)

H<Y X>‘<Y X) (In Az)' (2.12)

. Y . . . . . . A2
Since < X> is always nonsingular, it suffices to investigate the same issues for ( I )
n

With the so-called perfect shuffle, we have

o )= e () ee )

where P = (e1, €nt1,€2,€n42,...,€n,€2,). The eigenvalues of each 2-by-2 matrix

A2
()
are +)\;, and such a matrix is diagonalizable if and only if A\; # O:
PEAWA VD AN O VERD AN OV
1 1 -1) \1 -1 =N}’

Therefore H is not diagonalizable if and only if A; = 0.
The verifications of items 6. and 7. are rather straightforward. O

which gives (2.6). It can be verified that > is nonsingular if all A\; > 0. So (2.6)

We note that Jordan canonical form of the matrix H in the previous theorem is a special
case of the canonical forms of doubly structured matrices in the work of Mehl, Mehrmann and
Xu [13].

2.2 Pair of deflating subspaces
Let U,V C R™ be subspaces. We call {U,V} a pair of deflating subspaces of {K, M} if

KUCY and MV CU. (2.13)

Let U € R™* and V € R™* be the basis matrices for the subspaces U and V, respectively, where
dim(U) = k and dim(V) = £. Then (2.13) implies that there exist K € R** and M, € RF*
such that

KU=VKy, MV =UM;s;. (2.14)



Given U and V, both Ky and My are uniquely determined by respective equations in (2.14),
but there are numerous way to express them. In fact for any left generalized inverses U~ and
V™ of U and V, respectively, i.e., UU = I;; and V'V = I,

K, =V'KU, M,=U'MV. (2.15)

There are infinitely many left generalized inverses U™ and V™. For example, two of them for U
are
U—| _ (UTU)—lUT
or
U= To)7lvT if (VTU) ! exists. (2.16)

But still K and My are unique. The second left generalized inverse (2.16) will become important
later in preserving symmetry in K and M.

Define
(0 Ky
Hy = <MR 0 ) . (2.17)

Then Hy is the restriction of H onto V @ U with respect to the basis matrix V @ U:

(J\O4 IO() (V U) N <V U> (z\2 IBR> (2.18)

This also says that V @ U is an invariant subspace of H. On the other hand, every invariant
subspace of H yields a pair of deflating subspaces of {K, M} as well.

Theorem 2.4. 1. If {U,V} is a pair of deflating subspaces of {K, M}, then ¥V @ U is an
invariant subspace of H.

2. Let Z be invariant subspace of H and let Z = <V be a basis matriz of Z, where Ve R™,

)
Then {span(U),span(V)} is a pair of deflating subspaces of {K, M }.

Proof. 1. That ¥V @ U is an invariant subspace of H is a consequence of (2.18).
2. There is a matrix D such that HZ = ZD which leads to KU = VD and MV = UD.
Thus (2.13) holds for U = span(U) and V = span(V). O

The following theorem says a subset of eigenvalues and eigenvectors of H can be recovered
from those of Hy.

Theorem 2.5. Let {U,V} be a pair of deflating subspaces of {K,M} and U € R™F and
V € R™ ! be the basis matrices for the subspaces U and V, respectively. Define Ky, My, and Hy
by equations in (2.14) and (2.17). Then

5 0 Ky Yy _ (0 — )3
e (5, %) ()2 ()

A~

implies (1.1) with = UZ and y = Vg, where Z = <:Zi{> conformably partitioned.

Proof. Hpz = Mz yields KrZ = Ay and Mpy = A&. Therefore KUz = VKyz = AVy and
MVy=UMyzy = AUz, as was to be shown. O



Hy in (2.17) inherits the block structure in H in (1.1): zero blocks remain zero blocks. But
when K and M are symmetric, as in the RPA case, in general Hy may lose the symmetry
property in its off-diagonal blocks K and My, not to mention positive semi-definiteness of K

and M. We propose a modification to Hy to overcome this potential loss, when W LTy s
nonsingular. Factorize W = WlT Wo, where W7 and Ws are nonsingular, and define

—TrrT -1
e _< 0 w; TUTKUW; ) (2.19)

Wy TvTMyvwy! 0

Note Hgy shares not only the block structure in H but also the symmetry and semi-definiteness
in its off-diagonal blocks. In defining Hgy here, it is assumed that UTV is nonsingular. For this,
we have the following lemma.

Lemma 2.1. Suppose that one of K and M is definite. Let {U,V} be a pair of deflating
subspaces of {K, M} with dim(U) = dim(V) = k, and let U € R™* and V € R™¥¥ be the basis
matrices of the subspaces U and V, respectively. Then UTV is nonsingular.

Proof. Equations in (2.14) hold for some Ky and Mjy. Thus
UTKU =U'W Ky, VIMV =VTU M,.

Suppose that M is definite. Then VT MYV is definite and thus nonsingular; so VU is nonsingular
from the second equation. O

Theorem 2.6. Let {U,V} be a pair of deflating subspaces of {K,M} and U € R™* and

V € R be the basis matrices for the subspaces U and V, respectively. Suppose that W def utv

is nonsingular and is factorized as W = W{ Wy with both Wy and Wy being nonsingular, and
define Hgg by (2.19). Then Hgy is the restriction of H onto V @& U with respect to the basis
matric VW, ' @ UW

" (VW;1

VWt
< 2 UW1_1> Hg. (2.20)

Consequently, Hgz2 = Az implies (1.1) with x = UWflzﬁ and y = VWQ_IZQ; where zZ = <z>

UW{1>

conformably partitioned.

Proof. Equations in (2.14) hold for some Ky and Mg. Thus
UTKU = (UTV)Ky = WWoK, and VIMV = (VIU)M, = W Wi M,
which gives
W TUTKUW Y = Wo KWt and Wy TVIMVWSE = Wy MW, L (2.21)
Now by (2.14) and (2.21), we have the identity (2.20) since

KUW ™ = VE W = (VW Y (Wo KW h)
= (vwyhwy TuTKuw ).

and
MVWyY = UMW, = UW (Wi MW, )
= (UWhH(wy TvTmvwsh.
Finally, apply Theorem 2.5 to conclude the proof. O

10



Equations in (2.21) imply that under the conditions of Theorem 2.6, Hy and Hsy are similar:

_ —1
_ 0 WoKyWi Y\ (Wa 0 Wy 0
Hen = (WlMRW;1 0 “\o w) 0 w) (2.22)

which is not at all obvious from (2.17) and (2.19).
A trivial pair of deflating subspaces {U,V} is when & = V = R™. In particular, for U, V €
R™" satisfying UTV = I,,, matrices

0 K 0 UTKU
= (5) (R 23

have the same eigenvalues. In fact, the two matrices in (2.23) are similar because of (2.18) and

for the current case .
\% B (U T
U N vt):

REMARK 2.2. For this subsection, our default assumption on K and M is not required, except
for Lemma 2.1. &

2.3 Invariance properties of Hg,

In the previous subsection, Hy; was introduced as a structure-preserving projection of H onto
a pair of deflating subspaces {U/,V}. But its definition in (2.19) does not require {{,V} being
a pair of deflating subspaces. In fact, it is well-defined so long as UTV is nonsingular, where
U,V € R™F are the basis matrices of U,V C R”, respectively. This observation will become
critically important in the second part of this paper [1] where Hgy is often defined for a pair of
approximate deflating subspaces and will play the same role in the LR eigenvalue computation
as the Rayleigh quotient matrix does for the symmetric eigenvalue problem.

As we just pointed out, we need the non-singularity assumption on UV to define Hg,. We
note that this assumption is independent of the freedom in choosing basis matrices. Now we
present a necessary and sufficient condition in terms of canonical angles between subspaces for
this assumption. Recall that the canonical angles between U/ and V are defined to be

arccoso;, =1,2,...,k,

where o; (1 < i < k) are the singular values of (UTU)~Y2UTV(VTV)~1/2 [21]. Furthermore,
the angle Z(U,V) between U and V is defined to be

Z(U,V) = max arccos(o;) = arccos(min o;).
7 (2

Note the canonical angles arccos o; and the angle Z(U, V) are independent of the choices of basis
matrices [21].

Lemma 2.2. Let U,V € R™¥¥ be basis matrices of U C R™ and V C R™, respectively.
1. UV is nonsingular if and only if Z(U,V) < 7/2.

2. If ZU,V) < ©1/2, then R" = U @ V* =V @ UL, where U+ and V* are the orthogonal
complements of U and V, respectively.

Proof. Use the notations in the definition of Z(,V) above. UTV is nonsingular if and only if
all 1 > o; > 0 which is equivalent to all arccos(o;) < /2. This proves item 1.

11



Suppose Z(U,V) < /2 and thus UTV is nonsingular. Any z € R™ can be written as
x = Px + (I — P)x, where
pP=UuWVTu)"tvT, (2.24)

Evidently Px € U. It can be verified that V(I — P) = 0 which implies (I — P)z € V*. Hence
R"™ = U + V*. Furthermore, if x € Y and = € V*, then

r=Uz 0=V'e=V'Uz
which implies & = 0 and so must & = 0 because VU is nonsingular. This proves R” = U @ V.
Similarly R* =V @ U*. O
Each Hg, always corresponds uniquely to two subspaces:
U =span(U), V =span(V)

that satisfy Z(U,V) < 7/2. On the other hand, two subspaces U and V satisfying Z(U,V) < 7/2
lead to (infinitely) many Hgg, due to the following two non-unique choices:

1. Factorization W = W{ W5 is not unique.
(2.25)

2. Basis matrices U and V are not unique.

In the next theorem, we present two invariance properties of Hgz with respect to these two
non-unique choices. The properties are important in speaking about eigenvalue and eigenvector
approximations from a pair of approximate deflating subspaces in [1].

Theorem 2.7. Let U,V C R" be two subspaces of dimension k such that Z(U,V) < w/2. We
have the following invariance properties of Hgg.

1. The eigenvalues of Hsy defined by (2.19) are invariant with respect to any of the non-
uniqueness listed in (2.25);

2. For any invariant subspace £ of Hgy, the subspace

{(VW2_1 UW1_1> sise 5} (2.26)

is invariant with respect to any of the non-uniqueness listed in (2.25). By which we mean
for any two realizations Hég) and Hs(é) of Hgr and the subspace (2.26) obtained from an

invariant subspace & of Hég), there exists an invariant subspace &1 of Hs(é) which produces
the same subspace (2.26). In particular, if £ has dimension 1, this gives an invariance
property on the eigenvectors of Hgy.

Proof. We first show the invariant properties with respect to different factorizations W =
WIW,. To this end, we note that Hy % Hy, with W = WIW, and Hy &' Hy, with W = IT . W
are similar:

-1
wit wit (W wit _
< W1> Hl ( Wl — Wfl H1 W1 = H().

Next we verify the invariant properties with respect to different choices of basis matrices. To
this end, it suffices to verify the invariant properties under the following substitutions:

UR—U, VSV, Wi{R« W, WS« Ws, (2.27)
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where R, S € RF** are nonsingular because we have just proved the properties with respect to
different decompositions of W. The verification is straightforward because Hgy and

VWt
uw;!
do not change under the substitutions (2.27).
REMARK 2.3. For this subsection, our default assumption on K and M is not required. <&

3 Minimization principles and Cauchy-like interlacing inequali-
ties
We recall three well-known results for a symmetric matrix A € R™*"™. Denote by 6; (1 <i <n)

A’s eigenvalues in ascending order. The first well-known result is the following minimization
principle for A’s smallest eigenvalue 6;:

T
x Az
01 = mi . 3.1
! I;I;Bl Tz (3:1)
The trace (or subspace) version of (3.1), the second well-known result, is
k
201 = min trace(UT AU). (3.2)
prt UeRn*k UTU=I,,

Furthermore, given any U € R™*¥ such that UTU = I, denote by p; (1 < i < k) the eigenvalues
of the projection matrix UT AU in ascending order. We have Cauchy interlacing inequalities —
the third well-known result:

01’ < j2% < 91’+nfk for 1 < k. (3.3)

The proofs of these well-known theoretical results can be found, for example, in [4, 16, 21]. They
are crucial to the establishment of efficient numerical methods for the symmetric eigenvalue
problem, and largely responsible for why the symmetric eigenvalue problems are regarded as
nice eigenvalue problems in a wide range of applications.

In this section, we establish analogs of these results mainly for the LR eigenvalue problem
(1.1).

3.1 Minimization principles

Theorem 3.1 is an analog of the minimization principle (3.1) for the symmetric matrix A. It is
essentially (1.12) due to Tsiper [25, 26] who deduced it from (1.9) due to Thouless [24], except
we allow one of K and M to be singular. We note that Theorem 3.2 presents a subspace version
of Theorem 3.1. Although Theorem 3.1 is a corollary of Theorem 3.2, we decide to give a short
proof anyway because the proof of Theorem 3.2 is long and is deferred to appendix A.

Theorem 3.1. Suppose that one of K and M is definite. Then we have

A = inf . 3.4
1 I}&Dﬂ(m,y) (3.4)

Moreover, “inf” can be replaced by “min” if and only if both K and M are definite. When
they are definite, the optimal argument pair (x,y) gives rise to an eigenvector z = Ci) of H

associated with \1.
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Proof. Note p(z,y) > 0 for any = and y. If K is singular, then A\; = 0. Pick & # 0 such that
Kz =0. Then 2" Mz > 0 since one of K and M is assumed definite. We have

plz,ex) = |e|zTMz/(2)zTz]) -0 as e— 0.

This is (3.4) for the case. We now show that “inf” cannot be replaced by “min”. Suppose there
were x and y such that 2Ty # 0 and p(z,y) = 0. We note that p(x,y) = 0 and 'y # 0 imply
2T Kz = y" My = 0 which in turn implies Kz = My = 0, contradicting that one of K and M
is definite.

Suppose K and M are definite. Then A\; > 0 and Equations in (2.5) hold for some nonsingular
Y e R%" and X =Y~ T. We have

. 2T Ko +yTMy 2Ty A2y Ty 4Ty -Ty -1y
min = min
Y 2|z Ty| Y 2|zTYY —1y|
. Tt A%+ Ty
T~ &~
zy 2|2ty
> min 2> )\z’lv%(i)fj(i)’
g 20227
> A1, (3.6)

(3.5)

where 7 = YTz and § = Y !y. Suppose 0 < A\; = --- = A\ < A1 < -+ < \,.. Both equality
signs in (3.5) and (3.6) hold if and only if

5(1))\1 = ﬂ(l) for 1 <1 < n,
f(i)ZN(i):O for £ < i < n,

i.e., ¥y = AT and T(¢41.) = Y(¢41:n) = 0. So for their corresponding optimal argument pair (z,y),
Ke=KY T2 =KX7=YA’ZT=YAj =AY = \y,
and similarly My = A\x. O

REMARK 3.1. Equation (3.4) is actually true even both K and M are singular (but still positive
semi-definite, of course). They are two cases.

1. Both K and M are singular and their kernels are not orthogonal to each other, i.e., there
are nonzero vectors  and y such that Kz = My = 0 and 2Ty # 0. For such a case, we
have

A1 = min p(z,y). (3.7)
T,y

2. Both K and M are singular but their kernels are orthogonal to each other. For such a case,
we have (3.4) but “inf” cannot be replaced by “min”. Here is why. Since K is singular,
we pick x # 0 such that Ko = 0. Then Mz # 0 because the kernels of K and M are
orthogonal to each other. So 7™M = (Mz)T # 0 which says at least one of the columns
of M is not orthogonal to x, and take y to be one of such a column. Now we see

p(z,ey) = |e|ly" My/(2]z"y]) -0 as e— 0.

This gives (3.4) since p(-,-) > 0 always. To see “inf” cannot be replaced by “min”, we
assume there were 2 and y such that 2Ty # 0 and p(z,y) = 0. We note that p(z,y) = 0
and 2y # 0 imply 27 Kz = y" My = 0 which in turn implies K2 = My = 0, contradicting
the assumption that the kernels and K and M are orthogonal to each other. &

14



Our next theorem — Theorem 3.2 — presents a subspace version of Theorem 3.1. It is the
reason we mentioned in section 1 that the expression in (1.14) can be regarded as a proper
subspace version of the Thouless functional in the form of p(-,-).

Theorem 3.2. Suppose that one of K and M is definite. Then we have

1
> X\i=- inf trace(UTKU +VTMV). (3.8)
; 2 U, vernxk
=1 vTv=r,

Moreover, “inf” can be replaced by “min” if and only if both K and M are definite. When
they are definite and if also A\, < Agt1, then for any U and V that attain the minimum,
{span(U),span(V)} is a pair of deflating subspaces of {K, M} and the corresponding Hgg (and
Hy, too) has eigenvalues £X; (1 <i < k).

Proof. The proof is long and deferred to appendix A. ]

Corollary 3.1. Suppose that one of K and M is definite. Then

n
1
Y A=z inf trace(UTKU +VTMV). (3.9)
. 2 U,VE]R"X”
=1 uTv=I,

REMARK 3.2. In (3.2) which is for the symmetric eigenvalue problem of A, if k = n, then

Z 0; = trace(UT AU), (3.10)
i=1

regardless of U € R"*" so long as UTU = I,,. There is certainly a strong resemblance between
(3.9) and (3.10), but a fundamental difference, too. That is that “inf” has to be there in (3.9).
Without “inf”, (3.9) becomes

- 1
d i< 3 trace(UTKU + VIMV) (3.11)
i=1
for any two U, V € R™" satisfying UTV = I,,. O

Exploiting the close relation through (1.7) between the two different forms of the Thouless
functionals o(-,-) and p(, -), we have by Theorem 3.2 the following theorem. It suggests that

étrace(<‘(i)T <g i) (g))

UVeR>¥ UTu-vTW=2I, and UV =VTU

subject to

is a proper subspace version of the Thouless functional in the form of o(:,-).

Theorem 3.3. Suppose that A and B are n X n real symmetric matrices and that A+ B and
A — B are positive semi-definite and one of them is definite, and U,V € R™*¥. Then

k T
1 . U A B\ (U
Z N\ = 3 UTU—l\fleV:2Ik trace( <V> <B A) <V>) (3.12)
i=1 uTv=vTy
Moreover, “inf” can be replaced by “min” if and only if both A + B are definite.
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Proof. Assume the assignments in (1.6) for K and M. We have by (1.8)

A A~

() (G DO =0) (7 &) (7)o vmam

where )
Vi _ JT uy_ 1 (U+V
U V V2 \U-V)"~
Therefore
U\T (A B\ (U
. T - ST > _ .
0T13£Ik trace(U KU +V "MV) = (U_V)T%rl}iv):ﬂk trace( <V> (B A) <V>) (3.13)
We claim
U-WWIu+v)y=2, & U'U-VW =2, andUTV=V"U. (3.14)
This is because (U — V)T (U + V) = 21, and its transpose version give
vt +vtv —vtu —vtv =21, (3.15a)
vt +viu —uvtv —vTtv =21, (3.15b)

Add both equations in (3.15) to get UTU — VTV = 2I; and subtract one from the other to get
UV = VTU. That the right-hand side in (3.14) implies its left-hand side can be seen from any
of the equations in (3.15). Equation (3.12) is now a consequence of Theorem 3.2, (3.13), and
(3.14). O

3.2 Cauchy-like interlacing inequalities

In the following Theorem 3.4, we obtain inequalities that can be regarded as an extension of
Cauchy interlacing inequalities (3.3).

Theorem 3.4. Suppose that one of K and M is definite. Let U,V € R™* such that UTV is
nonsingular. Write W = UTV = W' Ws, where W; € R¥** are nonsingular, and define Hgy by
(2.19). Denote by +u; (1 <i < k) the eigenvalues of Hgy, where 0 < py < -+ < pug. Then

\/min{/q(K), K(M)}
= cos Z(U,V) Avtn—k

i < g for1<i<k, (3.16)

where U = span(U) and V = span(V'). Furthermore, if Ay, < Ap11 and N\; = p; for 1 <i <k,
then3

1. U = span(X(y.x,,)) when M is definite, where X is as in Theorem 2.3;

2. {U,V} is a pair of deflating subspaces of {K,M?} corresponding to the eigenvalues +\;
(1 <i<k)of Hwhen both K and M are definite.

Proof. The proof is long and deferred to appendix A. O

3 A similar statement for the case in which K is definite (but M is semi-definite) can be made, noting that the
decompositions in (2.5) no longer hold but similar decompositions exist.
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Corollary 3.2. Suppose that one of K, M € R™" is definite. Let K, and M, be k x k principal
submatrices of K and M, extracted with same row and column indices for both. Denote by +u;

(1 <i < k) the eigenvalues of (]\04 Ig”), where 0 < pp < -+ < ug. Then
p

i < i < V/min{r(K), k(M)} Nyn_p  for1 <i<k. (3.17)

Proof. Let i1,i2,...,1; be the row and column indices of K and M that give K}, and M), and
let U = (i, €igs---,¢i,,) € R®™F Then K, = UTKU and M, = UTMU. Apply Theorem 3.4
with V' = U to conclude the proof. O

Inequalities (3.16) and (3.17) mirror Cauchy interlacing inequalities (3.3). But the upper
bounds on y; by (3.16) and (3.17) are more complicated. The following example shows that the
factor [cos Z(U,V)]~! in general cannot be removed. Consider

2
k= (i ) w=nv=()e =),

where 0 < a < § and t = tan Z(U, V). Then the positive eigenvalue of Hgy is

VUT T — 3/ 2 _ s ‘
UTKUVTMV =61+t cos ZUY)

We suspect that \/min{x(K),x(M)} could be removed or at least be replaceable by something
that does not depend on the condition numbers, but we have no proof, except a special case as
detailed in the following theorem.

Theorem 3.5. Under the assumptions of Theorem 3.4, if either U C MYV when M 1is definite
or V C KU when K is definite, then

Proof. We will prove (3.18), assuming M is definite and &/ C MV. Since M is definite,
dim(MV)* = n — k, where (MV)* is the orthogonal complement of MV. Let V| € R**(n—F)
be a basis matrix of (MV)L. Then VI MV =0 and also UTV, = 0 because U C MV. Let

U= (UW{l,MVL(VLTMVL)_W) . V= (VW;l,VL(VEMVL)_l/?) .
It can be verified that UTV = I,, (which implies VIU = I,, also) and

gy - (V)
n—k

Let K = UTKU. Notice that
cig(KM) = eig(MY2KMY?) = (X2, i=1,2,...,n},

where eig(-) is the set of eigenvalues of a matrix. The k x k leading principal matrix of
MY2KMY? is

Wy VI mvw, YWY 2w TuT kow Y (wy TV T v, )2
whose eigenvalues are 2, i = 1,2,..., k. Apply Cauchy interlacing inequalities [16] to get
N<pP <N, for1<i<k

which yield (3.18). O
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3.3 Minimization principle and deflation

Deflation is a commonly used technique in solving eigenvalue problems. The basic idea is to
avoid computing these eigenpairs that have been already computed to a prescribed accuracy, and
it is accomplished by orthogonalizing current vectors against all already converged eigenvectors.
Return to the symmetric eigenvalue problem for A we discussed at the beginning of this section.
Denote by z; (1 < i < n) the eigenvectors of A corresponding to 6;. We may assume x}z; = 0
for i # j. In (3.1), if “min” is restricted to all z that is orthogonal to z; (1 < i < /), then the
minimum becomes 6y, 1. Similarly, if U is restricted to those such that UTz; = 0 (1 < i < /),
then the minimum in (3.2) is Ef::l 0o+, and (3.3) becomes Opy; < pi < 0;4p—k. The next
theorem gives similar results for H.

Theorem 3.6. Suppose that K and M are symmetric positive definite. Denote by z; = (‘zl>
7

(1 < i < n) the eigenvectors of H corresponding to the positive eigenvalues \;, respectively,
where all x;, y; € R™. Supposet that (z;,2;)y = 21 F2; =0 fori#j. Set Y1 = (y1,y2,..., )
and X1 = (."L‘l,:L‘Q, ce ,l’g).

1. We have

2 vyvernxk uTy=r,
UTy;=0,vTx =0

k
1
Z Aoyi = inf trace(UT KU + VI MV). (3.19)
i=1

If also Moy < Aotk+1, then for any U and V' that attain the minimum, {span(U),span(V')}
is a pair of deflating subspaces of { K, M} corresponding to the eigenvalues £Ap1; (1 <1i <
k) of H.

2. Let U,V € R™F such that UTV s nonsingular, UTY; = 0 and VX, = 0. Write
W = UYW = WIWs,, where W; € R¥** are nonsingular, and define Hsx by (2.19).
Denote by +p; (1 <i < k) the eigenvalues of Hgr, where 0 < pg < --- < . Then

\/min{ﬁ(K), k(M)} )
cos Z(U, V)

)\g_;,_i < i < i+n—k fOT‘ 1 < 7 < k. (3.20)
If Mevre < Mgk and if ey = g for 1 < i < k, then {span(U),span(V)} is a pair of
deflating subspaces of {K, M} corresponding to the eigenvalues £Ap1; (1 <1 <k) of H.

Proof. See appendix A. O

4 Concluding remarks

We have uncovered new minimization principles and Cauchy-like interlacing inequalities for the
LR (a.k.a. RPA) eigenvalue problem arising from the calculation of excitation states of many-
particle systems in computational quantum chemistry and physics. In addition, we also obtained
a structure-preserving projection Hgz of H onto a pair of subspaces. The role of Hgy for the
LR eigenvalue problem (1.1) in many ways is the same as the Rayleigh quotient matrix for
the symmetric eigenvalue problem. These new results mirror the three well-known results for
the eigenvalue problem of a real symmetric matrix. They lay the foundation for our numerical
investigation in the second paper of this sequel where new efficient numerical methods will

4By Theorem 2.2, (z,2;) s = 28 #z; = 0 if \; # A;. In the case when ); is a multiple eigenvalue, H has an
invariant subspace whose dimension is the same as the algebraic multiplicity of A\; because H is diagonalizable by
Theorem 2.3. Ttem 1. of Theorem 2.2 guarantees that the invariant subspace has an (-, -) #-orthogonal basis.
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be devised for computing the first few smallest positive eigenvalues and their corresponding
eigenvectors simultaneously.

Although, throughout this paper and its following one, it is assumed both K and M are real
matrices, all results are valid for Hermitian positive semi-definite K and M with one of them
being definite after minor changes: replacing all R by C and all superscripts ()7 by complex
conjugate transposes (-)H.

The right inequalities in Theorem 3.4 and Corollary 3.2 that mirror Cauchy interlacing
inequalities for the standard symmetric eigenvalue problem are not as satisfactory as we would
like. We demonstrated that the factor [cos Z(U, V)] ™! is in general not removable, but the factor
vmin{x(K), (M)} could be an artifact of our proof and thus might be removed. No proof has
been found yet.
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A  Proofs of Theorems 3.2 — 3.6

Lemma A.1. Let w; € R for1 <1 < n be arranged in ascending order, i.e., w; < wy < -+ < wp,
and let a; € R for 1 <1 < n. Denote by a} (i=1,...,n) the rearrangement of o; (i=1,...,n)
in descending order, i.e., a% > 0> oz,ll. Then

n n
Zwiai > Zwia}. (A.1)
i=1 i=1
If (A.1) is an equality and if ap > agy1 and wg < wiy1 for some 1 < k < n, then
{af,j=1,....k} ={aj,j=1,....k}. (A.2)

Proof. Inequality (A.1) is well-known. See, for example, [4, (11.37) on p.49]. We now prove (A.2),
under the conditions that (A.1) is an equality, oet > alﬁ 410 and wg < wgy1. Suppose, to the
contrary, that (A.2) did not hold. Then there would exist

¢y <k and {3 > k such that oy, = aé,

71 < k and jo > k such that aél = Q.

Since
wey 0y + Wi Oy — (Wey gy +wjp ) = (g, — gy ) (Wi — wiy)
= (a, — o, )(wjy — wr,)
> (of — af ) (Wht1 — wi)
>0,
we have
n n
Zwiai = Z Wi + Wy, 0y + Wi,y > Z Wi + Wy, gy + Wi,y 2> Zwia},
=1 i#01,52 i#01,52 i=1
contradicting that (A.1) is an equality. This proves (A.2). O
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Lemma A.2. Let U € R™* and 2 = diag(wy,wa, . ..,wy), where w; <ws < -+ < wy,. Then

k
trace(UTQU) > Z o? wj, (A.3)
i=1
whereo; (i =1,...,k) are the k singular values of U in descending order, i.e., o1 > -+ > o > 0.

If (A.3) is an equality, wy, < wiy1, and o > 0, then Ugyim,y = 0, d.e., the last n — k rows of
U are zeros.

Proof. Write a; = (UUT)(M), the ith diagonal entry of UUT. By Lemma A.1,

trace(UTQU) = trace(UU T 2 Zwlaz > sz a;, (A.4)
where ozll (i=1,...,n) are defined as in Lemma A.1. Since UU? is symmetric posmve semidef-
inite, its diagonal entrles. a; (i =1,...,n) are majorized by its n eigenvalues: o2 (i = 1,...,k)
and 02 =0 (i=k+1,...,n) [4, (IL14) on p.35], meaning

def def o

€: e .
tj:Zoz]lAgs]—Zafforlgjgn—l,andtn:sn. (A.5)
i=1 =1

Therefore, by [10, Lemma 2.3],

n k
Z wia% > Z wio? (A.6)
i=1 i=1

which, combined with (A.4), lead to (A.3). But in order to characterize those matrices U that
make (A.3) an equality, we need to look into when (A.6) becomes an equality. To that end, we
still have to give a proof of (A.6), despite of [10, Lemma 2.3]. Let tp = so = 0. We have

sza _sz i — ti— 1
= wptn +Z —wz+1

> WpSp + Z - wz+1 (A7)

:Zwm?:Zwio—?. (0; =0 for i > k)
i=1 i=1

This is (A.6).

Now if (A.3) is an equality and if wy < wgy1, then the equal sign in (A.7) must hold

and thus t; = si because wp — wr11 < 0. It follows from 02-2 =0 (¢ =~Fk+1,...,n) that

tk =5 = = 8, = tp; SO 04l = 0 for j > k by (A.5). Because (A.4) must be an equality,

O‘k >0 = a,tﬂ (since of > 0), and wy < wg41, we conclude by Lemma A.1 that (A.2) holds,
and thus o = (UUT )(j,j) = 0 for j > k which implies

(UU) 4z =0 for max{i,j} >k
because UUT is symmetric positive semi-definite. In particular

U(k—&—l:n,:)U(T]‘gJ,-l;n,;) = (UUT)(k+1:n,k+1:n) =0
which implies U4 1.,,.) = 0, as expected. O
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Proof of Theorem 3.2. Suppose that M is definite. Equations in (2.5) hold for some non-
singular Y € R®*" and X = Y~ T. We have by (2.5)

UTKU +VTMV =UTYA2YTU +VvTIXXTV
=UTA20 + VTV, (A.8)

where U = YTU and VA: XTV. It can be Veliiﬁed that UTV = UTV and that the correspon-
dences between U and U and between V and V are one-one. Therefore

inf trace(UTKU +VIMV) = inf trace(UTA2U +VTIV). (A.9)
UTV=I, UtV =1,
For any given U and V, denote their singular values, respectively, by «; (i = 1,...,k) and

Gi (i=1,...,k) in descending order. Then by Lemma A.2

k k
trace(UTA2U + VTV) > Z a?\? 4 Z 32 (A.10)
i=1 i=1

k
= Z(%‘Q}\? + Bi_is1)
i=1

k
> 2 Z Qi Br—it1 i (A.11)
=1
k
>2) A (A.12)
=1

The last inequality holds because of [8, (3.3.18) on p.178] which says a;/k_;+1 is greater or equal
to the kth largest singular value of UTV = I}, which is 1. Combine (A.9) and (A.12) to get

k

1 T T
5 it . trace(UT KU +VIMV) > Z; Ai- (A.13)

Now if all A; > 0 (i.e., K is also definite), then it can be seen that picking U and V' such that

(diag(0 ", ) [diag(\, . %)

S U N U

gives $trace(UTKU + VTMV) = S°F_ A which, together with (A.13), yield (3.8) with “nf”
replaced by “min”.
When K is singular, \; = 0 and (A.11) is always a strict inequality. So

k
1
5 trace(UTKU +VIMV) > Z N\ for any UTV = I}, (A.14)
i=1
Suppose 0 = A} =+ = XAp < Apyp1 < -+ < Ap. We pick U and V such that

E_IIg‘ GIE‘
: ~1/2 —1/2 : /2 /2
i ‘dlag()\eﬂ,...,)\k ) Cp= ‘dlag()\eﬂ,...,)\k ) ‘
k 0 ) K 0 )
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Then i trace(UTKU + VIMV) = Zle i o€ which goes to Zle Ai as e — 0. So we have
(3.8) by (A.14), and “inf” cannot be replaced by “min”.
Now suppose 0 < A1 and Ay < Ap4+1 and suppose that U and V' attain the minimum, i.e.,

k
1
B trace(UTKU + VIMV) = Z i

i=1

For this to happen, all equal signs in (A.10), (A.11), and (A.12) mu st take place. For the equality
sign in (A.10) to take place, by Lemma A.2 we have U(k+1 m,;) = 0. Partition

’”

~_(th - (Vi S
U = V=[x Ui, Vi € R¥7F,
(0). v=(3). o

We claim Vi = 0, too. Here is why. For the equahty sign in (A.12) to take place, we have
Qifk—ir1 = 1 for 1 < i < k. Now [ = UtV = U V1 implies a;vk—i+1 > 1 [8, (3.3.18) o

D 178] where ; (i = 1,...,k) are the singular values of V; in descending order. Since VTV =
V V1+V2 Vg, Wehawefyl<ﬁZ for 1 <4 < k and thus

1 < aiVp—iv1 < ifp—it1 =1

which implies v; = ; for 1 <4 < k. So Vo =0. Now use U = XU and V = YV to conclude that
{span(U), span(V')} is the pair of deflating subspaces of { K, M} corresponding to the eigenvalues
) (1<i<k)of H. 0

Proof of Theorem 3.4. Assume that M is definite. Without loss of generality, we may
simply assume ULV = I}, and W, = Wy = I; otherwise substitutions:

U—UWY Ve VW, LWy, Iy« W,

will give new U and V with UTV = I;, and at the same time the same Hgpy.
Equations in (2.5) hold for some nonsingular Y € R"*" and X = Y~ 7T. Then

UTKU = UTY A2YTU = UT %0, (A.15a)
VIMYy =vIXXTy = VTV, (A.15Db)

where U = YTU and V = XTV. Still UTV = UTV = I.. Decompose V as

v QTV = <‘(/)1> ., Q"Q =1, Vi nonsingular. (A.16)

This can be proved, for example, using SVD of V. Then VTy = 171T1~/1. Partition

U QT = (?) . U; € RF*k, (A.17)
2

Then UV = (QT0)TQTV = (71T‘~/1 = I}, which implies (7? = ‘71_1. Set
A=QTA%Q, E=0UV" (A.18)
to get

OT 20 = OTAT, UVT = @j) . (A.19)
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By Theorem 2.1, u? (1 < i < k) are all the eigenvalues of
(UTKU)(VTMV) = (UTA220)(VTV) = (UTAD) (V") (A.20)

whose eigenvalues are the same as 171((7 TAU )171T, a real symmetric positive semi-definite matrix.
Set .

P=UV\'(I,+ETE)"/2,
Then PTP = I, by (A.19). Denote by v; (1 < i < k) the eigenvalues of PTAP in ascending

order. We have
N <y <M, for1<i<k (A.21)

by Cauchy interlacing theorem [16, 21]. For any @ € R¥, letting u = (I}, + ETE)'/24 gives

T(pT aT (MOTAUWVE a1 pT
(1+”EH%)U (P*AP)u > [ - 1 > u (P*AP)u
uTu aTa uTu

(A.22)

since
it <uwluw=a a4+ o ETEL < 1+ ||E||3)at .

Denote by U; and U; subspaces of R* of dimension i. Using the Courant-Fisher min-max principle
(see [16, p.206], [21, p.201]), we have

) ar VI(ﬁTAﬁ)VlT} a

pi = minmax T
i WEU,; u-u
T(pTap
> min maxu(Ti)u (by (A.22))
U;=(Ix+ET E)/24; u€lU; usu
. uT(PTAP)u
= minmax —————
U ueld; uTu
=v; > A7, (by (A.21))
T(PTAP)u
2<(1+||E|2 min maﬁi by (A.22
OB omin IOy (a22)
= (1+[ElI3) v:
< (L + IEIB) Xk (by (A.21))
It remains to bound 1 + ||E|3. We have from (A.16) — (A.19)
V1FIEIS = 10V Iz < TV )12
= [[U1I21Vllz = 1Y U2 XV |12
<Y Y UV ]2 = VEL) [TV ]2 (A.23)

In Theorem 2.7, we proved that the eigenvalues of Hgz do not changes with respect to the
choices of basis matrices. Which means, in proving this theorem, we can use Hgy constructed
from different basis matrices for &/ and V. What we are going to do is to pick new U and V
such that the right hand side of (A.23) is

k(M)
cos Z(U, V)

To this end, we compute QR decompositions

U=Q1R1, V =0Q2Rs,

23



where Q1, Q2 € R™** have orthonormal columns. By [21, Theorem 5.2 on p.40], there are orthog-
onal matrices P € R™*™ and S;, So € R¥** such that

k k
k 1 k r
PQ151 = 0|, PQ2Ss = X if 2k < n, (A.24a)
n—2k \ 0 n—2k \ 0
n—k 2k—n n—k 2k-n
n—k I 0 n—k r 0
PQ1S1= 2k—n| 0 I |,PQ2So= oxn| 0o 1 |if2k>n, (A.24b)
n—k 0 0 n—k X

where I' = diag(vi,...,7) and X = diag(o1,...,0¢), { = k or n — k, all v;, 0; > 0 and
72 + 0% = 1. With (A.24), we pick new U and V to be

r—1 r

Pl o |, PT | ® if 2k < m,
0 0
r-t o r 0

P 0 ILnx|, P10 Ly_i| if2k>n,
0 0 Yy 0

respectively. These new U and V span the same space as the old U and V and satisfy UTV = I,
and ||U]|2]|V]l2 = [cos Z(U, V). The proof of (3.16) is completed for the case when M is
definite.

Now if Ay < Agr1 and \; = p; for all i = 1,2,...,k, then v; = \? for all i = 1,2,..., k since
p2 > v; > A2, In particular, trace(PTAP) = Zi-c:l A2, Apply [10, Theorem 2.2] or [9, Theorem 4]
on —A = QT (—~A?)Q to conclude that (QP) (1., is orthogonal and (QP) 1.5,y = 0. Write

O= (U, v= (), 0, erRM, A2 = diag(X2,...,\0).
Us Va

Since QP = U‘N/IT(I;C+ETE)_1/2 by (A.17), we conclude that Us = 0 and thusU = span(X(1.;,:))-
Use UTV = I, to get U{Fﬂ = I}, or equivalently U{F = f/l_l. Note, by (A.20),
(UTKUY(VTMV) = U 20, VTV
which has the same eigenvalues as A3U;VTVU] which has the same eigenvalues as
MOWVTVUT A = A2 + AUV BUT A,
Since by assumption the eigenvalues of (UTKU)(VIMV) are A\? (1 <i < k), we have

k k
Z )\3 = trace(/l% + /11[71‘7;‘72[7?/11) = Z )\12 + trace(/hf]lVQTVQf]{f/ll)
i=1 1=1

which implies trace(Alﬁl%T%U{FAl) = 0 and thus if Ay > 0, then VgﬁlT =0= V1, = 0.
Therefore R R ) A
U=XU= Xk U1, V=YV=Yus,)W,

as expected. ]
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Proof of Theorem 3.6. Equations in (2.5) holds for some nonsingular Y € R"*" and X =
Y~T. Since the columns of Z = (i;l
1,2,...,n) and the eigenvectors corresponding to a multiple \; can be picked as any (,-) s-
orthogonal basis vectors of the associated invariant subspace, we may assume that z; is parallel
to Z(. ), the ith column of Z. Now for any UTX; = 0 and V'Y; =0, UTA?U and V'V in (A.8)
and (A.15) become

> are the eigenvectors of H corresponding to \; (i =

UTA2U = U5 A30s, VTV = Vs,

where

A ¢ 0 R ¢ 0 .
U_n_g(U2>’ V—n_f(%) Ay = diag(Aps1, -5 An).

The rest of the proof are the same as the corresponding parts in the proofs of Theorems 3.2 and
3.4. O

References

[1] Z. Bai and R.-C. Li. Minimization principles for the linear response eigenvalue problem II:
Computation. submitted, 2011.

[2] P. Benner, H. Falbender, and M. Stoll. A Hamiltonian Krylov-Schur-type method based
on the symplectic Lanczos process. Report 09/32, Oxford Centre for Collaborative Applied
Mathematics, September 2009.

[3] P. Benner, V. Mehrmann, and H. Xu. A numerically stable structure preserving method
for computing the eigenvalues of real Hamiltonian or symplectic pencils. Numer. Math.,
78:329-357, 1998.

[4] R. Bhatia. Matriz Analysis. Springer, New York, 1996.

[5] M. E. Casida. Time-dependent density-functional response theory for molecules. In D. P.
Chong, editor, Recent advances in Density Functional Methods, pages 155-189, World Sci-
entific, Singapore, 1995.

[6] B. E. Chi. The eigenvalue problem for collective motion in the random phase approximation.
Nuclear Physics, A146(2):449-456, 1970.

[7] M. Gruning, A. Marini, and X. Gonze. Exciton-plasmon states in nanoscale materials:
breakdown of the Tamm-Dancoff approximation. Nano Letters, 9:2820-2824, 2009.

[8] R. A. Horn and C. R. Johnson. Topics in Matriz Analysis. Cambridge University Press,
Cambridge, 1991.

[9] J. Kovac-Striko and K. Veseli¢. Some remarks on the spectra of Hermitian matrices. Linear
Algebra Appl., 145:221-229, 1991.

[10] R.-C. Li. Accuracy of computed eigenvectors via optimizing a Rayleigh quotient. BIT,
44(3):585-593, 2004.

[11] M. J. Lucero, A. M. N. Niklasson, S. Tretiak, and M. Challacombe. Molecular-orbital-
free algorithm for excited states in time-dependent perturbation theory. J. Chem. Phys.,
129(6):064114, 2008.

25



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. T. Lusk and A. E. Mattsson. High-performance computing for materials design to
advance energy science. MRS Bulletin, 36:169-174, 2011.

C. Mehl, V. Mehrmann, and H. Xu. Canonical forms for doubly structured matrices and
pencils. The Electronic Journal of Linear Algebra, 7:112—151, 2000.

J. Olsen, H. J. Aa. Jensen, and P. Jgrgensen. Solution of the large matrix equations which
occur in response theory. J. Comput. Phys., 74(2):265 — 282, 1988.

G. Onida, L. Reining, and A. Rubio. Electronic excitations: density-functional versus
many-body Green’s-function approaches. Rev. Mod. Phys, 74(2):601-659, 2002.

B. N. Parlett. The Symmetric Eigenvalue Problem. STAM, Philadelphia, 1998.

P. Ring, Z.-Y. Ma, N. Van Giai, D. Vretenar, A. Wandelt, and L.-G. Gao. The time-
dependent relativistic mean-field theory and the random phase approximation. Nuclear
Physics A, 249:249-268, 2001.

P. Ring and P. Schuck. The Nuclear Many-Body Problem. Springer-Verlag, New York, 1980.

D. Rocca, D. Lu, and G. Galli. Ab initio calculations of optical absorpation spectra: solution
of the Bethe-Salpeter equation within density matrix perturbation theory. J. Chem. Phys.,
133:164109-10, 2010.

Y. Saad, J. R. Chelikowsky, and S. M. Shontz. Numerical methods for electronic structure
calculations of materials. SIAM Rev., 52:3-54, 2010.

G. W. Stewart and Ji-Guang Sun. Matriz Perturbation Theory. Academic Press, Boston,
1990.

R. E. Stratmann, G. E. Scuseria, and M. J. Frisch. An efficient implementation of time-
dependent density-functional theory for the calculation of excitation of large molecules. J.
Chem. Phys., 109:8218-8824, 1998.

D. J. Thouless. The quantum mechanics of many-body systems. Academic, 1972.

D.J. Thouless. Vibrational states of nuclei in the random phase approximation. Nuclear
Physics, 22(1):78 — 95, 1961.

E. V. Tsiper. Variational procedure and generalized Lanczos recursion for small-amplitude
classical oscillations. JETP Letters, 70(11):751-755, 1999.

E. V. Tsiper. A classical mechanics technique for quantum linear response. J. Phys. B: At.
Mol. Opt. Phys., 34(12):L401-1.407, 2001.

D. S. Watkins. The Matriz Eigenvalue Problems: GR and Krylov Subspace Methods. STAM,
Philadelphia, 2007.

26



