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Abstract. In Part I of this paper we presented minimization principles and related theoretical
results for the linear response eigenvalue problem. Here we develop best approximations for the few
smallest eigenvalues with the positive sign via a structure-preserving subspace projection. Then we
present four-dimensional subspace search conjugate gradient-like algorithms for simultaneously com-
puting these eigenvalues and their associated eigenvectors. Finally, we present numerical examples
to illustrate convergence behaviors of the proposed methods with and without preconditioning.
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1. Introduction. This is the second paper of ours in the sequel. Building upon
the theoretical results in [2], here we will focus on the numerical aspect of the linear
response (LR) eigenvalue problem:

(1.1) Hz ≡
[
0 K
M 0

] [
y
x

]
= λ

[
y
x

]
≡ λz,

where K and M are n× n symmetric positive semidefinite matrices and one of them
is definite. It is an equivalent problem obtained from the original LR (a.k.a. random
phase approximation (RPA)) eigenvalue problem:

(1.2)

[
A B
−B −A

] [
u
v

]
= λ

[
u
v

]
by an orthogonal similarity transformation to give K = A−B and M = A+B, where
A and B are n× n real symmetric matrices such that the symmetric matrix [ A B

B A ] is
positive definite [36, 45].

It is easy to see that the eigenvalue problem (1.1) is equivalent to any one of the
following product eigenvalue problems:

(1.3) KMy = λ2y and MKx = λ2x.

Their equivalences have led to solving (1.1) through attempting to solve one of the
eigenvalue problems in (1.3). They also imply that the eigenvalues of H come in ±λ
pairs. As in [2], we will denote the eigenvalues with the positive sign1 of H by λi
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1Note our convention of assigning the positive sign to half of the eigenvalues 0 and the negative
sign to the other half in [2].
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LINEAR RESPONSE EIGENVALUE PROBLEM II: COMPUTATION 393

(1 ≤ i ≤ n) and

−λn ≤ · · · ≤ −λ2 ≤ −λ1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

An important minimization principle due to Thouless [44] is that when both K
and M are symmetric positive definite, we have

(1.4) λ1 = min
u,v

�(u, v),

where �(u, v) is defined by

(1.5) �(u, v) =

[
u
v

]T [
A B
B A

] [
u
v

]
|uTu− vTv| ,

and the minimization is taken among all vectors u, v such that uTu − vTv �= 0. For
H , as shown in [48], this minimization principle translates into

(1.6) λ1 = min
x,y

ρ(x, y),

where

(1.7) ρ(x, y) =
xTKx+ yTMy

2|xTy| ,

where the minimization is taken among all x and y such that either xTy �= 0 or
xTy = 0 but xTKx + yTMy > 0. This removes those x and y that annihilate both
the numerator and the denominator from the domain. In particular x = y = 0 is
excluded. In [2], the minimization principle (1.6) is extended to include the case
where K and M are symmetric positive semidefinite and one of them is definite.

Since the RPA and linear response theory was proposed by Bohm and Pines for
studying the collective motion of many particles in the early 1950s [6], the develop-
ment of numerical methods for solving the eigenvalue problem (1.2) and equivalently
(1.1) has been an active research subject in computational (quantum) physics and
chemistry for over four decades. In [10], it was suggested to solve the equivalent
product eigenvalue problems (1.3) instead by converting it to the symmetric eigen-
value problem of RTKR using the Cholesky decomposition of M = RTR. In [30, 41],
Davidson’s algorithm for the symmetric eigenvalue problem was extended to the large
scale eigenvalue problem (1.2). In [16, 17, 47, 48, 49], Lanczos-like algorithms were
proposed. Given the minimization principles (1.4) and (1.6), conjugate gradient (CG)
methods become natural choices for finding the smallest positive eigenvalue and in-
deed they have; see, e.g., [9, 26, 28].

Meanwhile, the eigenvalue problems in the forms of (1.1), (1.3), and (1.2) have
also attracted a great deal of attention in numerical analysis community over the
past four decades. As early as in the 1960s, Wilkinson discussed the product eigen-
value problems (1.3) and proposed the method of transforming them to the standard
symmetric eigenvalue problems by using the Cholesky decomposition [52, p. 35, p.
337]. Wilkinson’s method is implemented as LAPACK’s routine xSYGVD [1], where
the product eigenvalue problems in (1.3) are classified as the types 2 and 3 of the
generalized symmetric definite eigenvalue problems, respectively. Alternatively the
structure-preserving GR algorithm, a generalization of the well-known QR algorithm,
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394 ZHAOJUN BAI AND REN-CANG LI

can also be used for small to medium size problems [51, Chapter 8]. For large and
sparse cases, the Lanczos algorithm, Krylov–Schur algorithm and Jacobi–Davidson
algorithm all have been generalized to the product eigenvalue problems [19, 23, 50].
On the other hand, since the RPA eigenvalue problem (1.2) is a special case of the
Hamiltonian matrix eigenvalue problem, an extension of the QR algorithm made for
Hamiltonian matrix eigenvalue problems can be used to solve the problems of small
to medium sizes [5, 8, 13, 51]. In particular, the work [13] treated a more general lin-
ear response eigenvalue problem. Algorithms for large scale Hamiltonian eigenvalue
problems can be found in [4, 3] and the references therein. An RPA test case is given
in [4] to illustrate the computational efficiency of a Hamiltonian Krylov–Schur-type
algorithm.

A recent survey study [46] compared four numerical methods (namely Lanczos,
Arnoldi, Davidson, and CG) and discussed the limitations of each of these methods for
developing an efficient linear-scaling eigensolver for the RPA eigenvalue problem (1.2).
In the study, severe limitations were experienced for the Lanczos-type methods due
to the orthogonality constraints (also see [47]), for the CG type methods to compute
several eigenpairs simultaneously, and for incorporating preconditioning techniques
(see also [26]).

In [2], we obtained a trace (or subspace) version of (1.6):

(1.8)
k∑

i=1

λi =
1

2
inf

UTV =Ik
trace(UTKU + V TMV ),

as well as Cauchy-like interlacing inequalities for a structure-preserving projectionH
SR

of H . Based on this newly developed theory, we are presented with an opportunity to
develop efficient numerical methods for the LR eigenvalue problem (1.1) in much the
same way as the conjugate gradient and Lanczos methods for solving the large scale
symmetric eigenvalue problem. In this paper, we will show an important computa-
tional implication of the minimization principle (1.8) that is that it lends itself to seek
approximations to a cluster of smallest eigenvalues λi (1 ≤ i ≤ k) with the positive sign
simultaneously through minimizing the objective function trace(UTKU + V TMV )
subject to UTV = Ik and to that span(U) and span(V ) are restricted inside two
suitably built subspaces U and V , respectively:

(1.9)

k∑
i=1

λi ≈ 1

2
inf

UTV =Ik
span(U)⊆U, span(V )⊆V

trace(UTKU + V TMV ),

where span(U) denotes the subspace spanned by the column vectors of U .
The minimization problem in the right-hand side of (1.9) does not look easy to

solve at first sight. But we introduce a structure-preserving projection matrix H
SR

and show that the sum of its first k smallest eigenvalues with the positive sign is the
infimum. In this sense, H

SR
is the best projection matrix from the given subspaces

U and V , and solving its eigenvalue problem yields the best approximations to λi

(1 ≤ i ≤ k) and their associated eigenvectors. Moreover, H
SR

has the same block
structure as H . With these new developments, we will be able to construct efficient
numerical algorithms that can compute several smallest eigenvalues with the positive
sign ofH simultaneously. Indeed we will present our versions of locally optimal conju-
gate gradient type algorithms, including blocked versions for computing these smallest
eigenvalues simultaneously and preconditioned versions for speedy convergence. We
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LINEAR RESPONSE EIGENVALUE PROBLEM II: COMPUTATION 395

point out that these new algorithms are not straightforward applications of the stan-
dard steepest decent and nonlinear conjugate gradient algorithms, but improved ones
to take advantage of the best projection matrix H

SR
we have uncovered. All these are

made possible by our new theory, parallel to some of the well-known and important
results for the symmetric eigenvalue problem; see, for example, [33, 40].

The rest of this paper is organized as follows. Section 2 presents an algorithm to
construct approximate eigenpairs for H , given a pair of approximate deflating sub-
spaces {U ,V}. It is derived from the result in [2] for the case when the subspaces do
consist of a pair of deflating subspaces. Section 3 and the appendix discuss how to
construct the best approximations to some of the eigenpairs of H , given a pair of ap-
proximate deflating subspaces {U ,V}. The results in section 3 justifies the algorithm
in section 2 from a different perspective. In section 4, we apply newly established
minimization principles in [2] to derive CG type algorithms for computing a set of the
smallest eigenvalues with the positive sign. In section 5, we present numerical results
to illustrate the convergence behaviors of CG methods. Concluding remarks are in
section 6.

Notation. We will follow the notation as specified at the end of section 1 in
[2]. In particular, K, M ∈ Rn×n are assumed, by default, to be symmetric positive
semidefinite and one of them is definite, unless explicitly stated differently.

2. Approximate deflating subspaces. Recall that {U ,V} is a pair of deflating
subspaces of {K,M} if
(2.1) KU ⊆ V and MV ⊆ U .
Each such pair will yield a subset of H ’s eigenvalues and corresponding eigenvectors
associated with the eigenvalues in the subset [2, section 2.2]. But in practical compu-
tations, rarely pairs of exact deflating subspaces are known, only approximate ones.
The question then arises: how to compute approximate eigenpairs of H given a pair
of approximate deflating subspaces.

Let {U ,V} be a pair of approximate deflating subspaces with dim(U) = dim(V) =
� such that W

def
= UTV is nonsingular. In [2, section 2], we defined a structure-

preserving projection

(2.2) H
SR

=

[
0 W−T

1 UTKUW−1
1

W−T
2 V TMVW−1

2 0

]
of H onto the pair of the subspaces {U ,V}, where Wi ∈ R

�×� are from factorizing
W = WT

1 W2 and nonsingular. This H
SR

in many ways, as will become clear later,
plays the same role forH as the Rayleigh quotient matrix for the symmetric eigenvalue
problem.

Theorem 2.6 in [2] shows how to construct the eigenpairs of H from those of H
SR

when {U ,V} is a pair of deflating subspaces of {K,M}. The way of the construction
there naturally leads us to propose the following algorithm.

Algorithm 2.1. Given the basis matrices U and V of a pair of approximate
deflating subspaces {U ,V} of {K,M}, this algorithm returns approximate eigenvalues
and eigenvectors for H as follows.

1. Construct H
SR

as in (2.2) (assume UTV is nonsingular);

2. Compute the eigenpairs {λ̂, [ŷx̂]} of HSR
;

3. The computed eigenvalues λ̂ approximate some eigenvalues of H, and the

associated approximate eigenvectors are [
V W−1

2 ŷ

UW−1
1 x̂

].
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396 ZHAOJUN BAI AND REN-CANG LI

In view of [2, Theorem 2.6], as far as the eigenvalue problem of H is concerned, in
theory any one of H

SR
associated with a given pair of approximate deflating subspaces

is just as good as another. Numerically, however, we should pick basis matrices that
are sufficiently well-conditioned, like with orthonormal columns.

Remark 2.1. Algorithm 2.1 requires that W = UTV be nonsingular. This nec-
essarily entails dim(U) = dim(V). Conceivably, we may have a pair of approximate
deflating subspaces {U ,V} for which either dim(U) �= dim(V) or W = UTV is (numer-
ically) singular. When that happens, H

SR
cannot be defined as in (2.2). How then are

we going to find approximate eigenpairs of H within the approximate deflating sub-
spaces? This question will be answered in the appendix, where it is concluded that a
smaller eigenvalue problem for a different structure-preserving projection matrix Ĥ

SR

must be solved (see Theorem A.1).

3. Best approximations by a pair of subspaces. The two most important
aspects in solving a large scale eigenvalue problem are

1. building subspaces to which the desired eigenvectors (or invariant subspaces)
are close, and

2. seeking best possible approximations from the suitably built subspaces.
In this section, we shall address the second aspect for our current problem at hand, i.e.,
seeking best possible approximations to a few smallest eigenvalues with the positive
sign of H and their associated eigenvectors from given pair of subspaces. We will
prove that H

SR
provides best approximations. We leave the first aspect to the later

sections when we present our computational algorithms.
The concept of best possible comes with a quantitative measure as to what consti-

tutes best possible. There may not be such a measure in general. In [33, section 11.4],
Parlett uses three different ways to justify the use of the Rayleigh–Ritz procedure
for the symmetric eigenvalue problem. For the eigenvalue problem here, each of the
minimization principles we established in [2] provides a quantitative measure.

Recall the default assumption that K, M ∈ Rn×n are symmetric positive semi-
definite and one of them is definite. Let {U ,V} be a pair of approximate deflating
subspaces of {K,M} and dim(U) = �1 and dim(V) = �2. Motivated by the minimiza-
tion principles in [2], we will seek

1. the best approximation to λ1 in the sense of

(3.1) inf
x∈U , y∈V

ρ(x, y)

and its associated approximate eigenvector;
2. the best approximations to λj (1 ≤ j ≤ k) in the sense of

(3.2)
1

2
inf

span(Û)⊆U,span(V̂ )⊆V
ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ )

and their associated approximate eigenvectors.
To this end, we divide our investigation into two cases. Let U ∈ Rn×�1 , V ∈ Rn×�2

be the basis matrices of U and V , respectively, and set W = UTV . The two cases are
1. W = UTV is nonsingular. (Necessarily, �1 = �2. Set � = �i.)
2. W = UTV is singular or �1 �= �2.

For the first case, i.e., W = UTV is nonsingular, we factorize W = WT
1 W2,

where Wi ∈ R�×� are nonsingular. How this factorization is done is not essential
mathematically. But it is included to accommodate cases when such a factorization
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may offer certain conveniences. In general, simply taking W1 = WT and W2 = I� or
W1 = I� and W2 = W may just be good enough.

For the best approximation to λ1 by (3.1), we note that any x ∈ U and y ∈ V can
be written as x = Uû and y = V v̂ for some û, v̂ ∈ R� and vice versa. Therefore, we
have

ρ(x, y) =
ûTUTKUû+ v̂TV TMV v̂

2|ûTWv̂|

=
x̂TW−T

1 UTKUW−1
1 x̂+ ŷTW−T

2 V TMVW−1
2 ŷ

2|x̂Tŷ| ,(3.3)

where x̂ = W1û and ŷ = W2v̂. By (3.3) and [2, Theorem 3.1], we immediately
conclude that the quantity in (3.1) is the smallest eigenvalue with the positive sign of
H

SR
defined in (2.2).
Now turn to the best approximations to λj (1 ≤ j ≤ k) by (3.2). Note that any

Û and V̂ such that span(Û) ⊆ U , span(V̂ ) ⊆ V , and ÛTV̂ = Ik can be written as

Û = UW−1
1 X̂, V̂ = VW−1

2 Ŷ ,

where X̂, Ŷ ∈ R
�×k and X̂TŶ = Ik, and vice versa. Hence we have

ÛTKÛ + V̂ TMV̂ = X̂TW−T
1 UTKUW−1

1 X̂ + Ŷ TW−T
2 V TMVW−1

2 Ŷ

and thus

(3.4) inf
span(Û)⊆U,span(V̂ )⊆V

ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ )

= inf
X̂TŶ=Ik

trace(X̂TW−T
1 UTKUW−1

1 X̂ + Ŷ TW−T
2 V TMVW−1

2 Ŷ ).

By [2, Theorem 3.2], we know that the right-hand side of (3.4) is the sum of the k
smallest eigenvalues with the positive sign of H

SR
.

In summary, the best approximations to the first k eigenvalues with the positive
sign of H within the pair of approximate deflating subspaces are the eigenvalues of
H

SR
. Algorithmically, denote by μj (j = 1, . . . , �) the eigenvalues with the positive

sign of H
SR

in the ascending order and by ẑj the associated eigenvectors, i.e., 0 ≤
μ1 ≤ · · · ≤ μ�, and

(3.5) H
SR
ẑj = μj ẑj, ẑj =

[
ŷj
x̂j

]
.

It can be verified that

ρ(UW−1
1 x̂j , V W−1

2 ŷj) = μj for j = 1, . . . , �.

Naturally, according to Algorithm 2.1, we take λj ≈ μj and the corresponding ap-
proximate eigenvectors of H as

(3.6) z̃j ≡
[
ỹj
x̃j

]
=

[
VW−1

2 ŷj
UW−1

1 x̂j

]
for j = 1, . . . , �.

In practice, not all of the approximate eigenpairs (μj , z̃j) are equally accurate to the
same level. Usually the first few pairs are more accurate than the rest.
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For the ease of reference, we summarize the findings for the first case of nonsin-
gular W = UTV into the following theorem.

Theorem 3.1. Suppose that one of K, M ∈ Rn×n is definite. Let {U ,V} be a
pair of approximate deflating subspaces of {K,M} with dim(U) = dim(V) = �, and

let U, V ∈ Rn×� be the basis matrices of U and V, respectively. If W
def
= UTV is

nonsingular, then

k∑
j=1

μj =
1

2
inf

span(Û)⊆U,span(V̂ )⊆V
ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ ),

and the best approximations to λ1 in the sense of (3.1) or to λj (1 ≤ j ≤ k) in the
sense of (3.2) are the eigenvalues {μj} of HSR

defined in (2.2) with the corresponding
approximate eigenvectors given by (3.6).

We recall that even thoughH
SR

is not uniquely determined by the given subspaces
U and V , the approximate eigenpairs (μj , z̃j) are uniquely determined, as guaranteed
by [2, Theorem 2.9].

The second case for W being singular or �1 �= �2 is much involved, and we defer
its treatment to the appendix. The conclusion is similar in that both optimization
problems in (3.1) and (3.2) can still be solved through solving a smaller eigenvalue
problem for a structure-preserving projection matrix Ĥ

SR
to be defined in the ap-

pendix. Similar results to these in Theorem 3.1 can be found in Theorem A.1.
Remark 3.1. The best approximation technique so far is based on the minimiza-

tion principles in [2, Theorems 3.1 and 3.2]. Naturally one may wonder if a similar
technique could be devised using the minimization principles in [2, Theorem 3.4] for
the original LR eigenvalue problem (1.2). But that seems hard, if at all possible. The
difficulty lies in that there appears no good way to define a proper structure-preserving
projection matrix of [ A B

B A ] or of [ A B
−B −A ] onto the given subspaces.

4. 4D CG algorithms.

4.1. Partial gradients. The partial gradients of the Thouless functional ρ(x, y)
with respect to x and y will be needed later for minimization. To find the gradients,
we perturb x and y to x+ p and y+ q, respectively, where p and q are assumed to be
small in magnitude. Assuming xTy �= 0, up to the first order in p and q, we have

ρ(x + p, y + q) =
(x + p)TK(x+ p) + (y + q)TM(y + q)

2|(x+ p)T(y + q)|
=

xTKx+ 2pTKx+ yTMy + 2qTMy

2 |xTy|
(
1− pTy + qTx

xTy

)
= ρ(x, y) +

1

xTy
pT [Kx− ρ(x, y) y] +

1

xTy
qT [My − ρ(x, y)x] .

Therefore the partial gradients of ρ(x, y) with respect to x and y are given by

(4.1) ∇xρ =
1

xTy
[Kx− ρ(x, y) y] , ∇yρ =

1

xTy
[My − ρ(x, y)x] .

There is a close relation between these two partial gradients and the residual:

(4.2) Hz − ρ(x, y)z ≡
[
0 K
M 0

] [
y
x

]
− ρ(x, y)

[
y
x

]
= xTy

[∇xρ
∇yρ

]
.

Namely the block vector obtained by stacking∇xρ over∇yρ is parallel to the residual.
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4.2. 4D search. The line search is a common approach in the process of op-
timizing a function value. For our case, we are interested in solving infx,y ρ(x, y) in
order to compute λ1 and its associated eigenvector of H . From the theoretical point
of view, this task of minimizing ρ(x, y) may end up with no optimal arguments be-
cause possibly no x and y attend the infimum, unless both K and M are definite.
One may argue that in this case, λ1 is already known, i.e., +0, when the infimum
cannot be attained and it happens if one of K and M is singular. Naturally one can
compute corresponding eigenvectors (by, e.g., the inverse iteration) and deflate out
the eigenvalues 0. But in practice, that one of them is singular may not be known a
priori, except that both are semidefinite is usually known from the problem setup. A
likely scenario would be that one may still attempt to minimize ρ(x, y) anyway. What
would happen then? First numerically rarely a matrix is exactly singular. This means
that the singular K or M is not actually singular (even might be slightly indefinite).
With carefully written computer codes, one may safely regard the singular one barely
definite. We find from our numerical tests that with a preconditioner approximately
H−1, computations by minimizing ρ(x, y) can still yield meaningful numerical results:
the computed λ1 is very tiny, and one of x and y is negligible compared to the other.
Therefore, despite the implied theoretical impasse by [2, Theorem 3.1] when one of
K and M is singular, attempting to minimize ρ(x, y), with a suitable preconditioner,
is still a worthwhile thing to do in seeking λ1 and its associated eigenvector of H .

Given a search direction [ qp ] from the current position [ yx ], the basic idea of the
line search2 [26, 28] is to look for the best possible scalar argument t to minimize ρ:

(4.3) min
t

ρ(x + tp, y + tq)

on the line

(4.4)

{[
y
x

]
+ t

[
q
p

]
: t ∈ R

}
.

Recently, in [9], a dual-channel extension of the line search is introduced by solving
the minimization problem

(4.5) min
s,t

ρ(x + sp, y + tq),

where the search directions p and q are selected as the partial gradients ∇xρ and ∇yρ
as in (4.1). The minimization problem (4.5) is then solved iteratively by freezing one
of s and t and minimizing the functional ρ over the other in an alternative manner.

However, we did not pursue these ideas for reasons to be detailed in a moment.
Instead, we shall look for four scalars α, β, s, and t for the minimization problem

(4.6) inf
α,β,s,t

ρ(αx + sp, βy + tq) = min
u∈span(U), v∈span(V )

ρ(u, v),

where U = [x, p] and V = [y, q]. This no longer performs a line search (4.4) or dual
channel optimization (4.5), but a 4-dimensional subspace search (4D search for short)

2Since ρ is homogeneous of degree 0, i.e., ρ(tx, ty) ≡ ρ(x, y) for any scalar t, minimizing ρ along
the line (4.4) is in fact minimizing ρ in {α[ yx ] + αt[ qp ] : α, t ∈ R} which, in general, form a plan
in R2n spanned by [ yx ] and [ qp ], excluding the line {t[ qp ] : t ∈ R}. Therefore, the standard line
search becomes a defacto plane search for ρ. To be consistent with the standard terminology in
optimization, we still call it the line search.
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within the 4-dimensional subspace:

(4.7)

{[
βy + tq
αx+ sp

]
for all scalars α, β, s, and t

}
.

The right-hand side of (4.6) can be solved by the methods given in section 3 if UTV
is nonsingular (the common case) or in the appendix otherwise (the rare case).

We prefer our 4D search for the following reasons:
1. While we have no formal proof, it seems that the optimization problems (4.3)

and (4.5) cannot be recasted into a (much) smaller eigenvalue problem of a
matrix having the same block structure as H .

2. The line search and dual channel optimization are not readily extensible to the
subspace search, a crucial technique for our development in simultaneously
computing few smallest eigenvalues with the positive sign and corresponding
eigenvectors of H .

3. Both optimization problems (4.4) and (4.5) yield the best possible approx-
imation in a subspace that is contained in the 4 dimensional subspace over
which our 4D search minimizes. Starting with the same p and q, the solution
by our 4D search is and can be much better at about the same cost.

4. Although we restricted our developments so far on real K and M , they are
actually valid for Hermitian K and M after minor changes, i.e., replacing all
transposes (·)T by complex conjugate transposes (·)H. When K and M are
Hermitian and some of their entries are complex, our 4D search is truly a 4D
search over a 4 dimensional subspace in C2n (the 2n-dimensional Euclidean
vector space over the complex field), whereas the standard line search does
not minimize ρ over a straight line in C2n because t is restricted to be real.
Conceivably the standard line search solution could be even worse in the
complex case.

4.3. 4D CG algorithms. The minimization principle in [44, 48] and the newly
established one in [2, Theorem 3.2] make it tempting to apply memory-efficient non-
linear CG algorithms (see, e.g., [34, 29, 42]) to solve LR eigenvalue problems. Not
surprisingly, such applications had been attempted [9, 26, 28]. Conceivably when only
one eigenvalue and its associated eigenvector are requested, it matters little, if any,
to apply CG to (1.4) for the Hamiltonian matrix in (1.2) or to (1.6) for H in (1.1),
much like the CG method for symmetric eigenvalue problems [7, 39, 25]. But it is
a very different story if more than one eigenpair are requested, in which case block
algorithms are better options. It seems hard, if at all possible, to create a block CG
algorithm for the Hamiltonian matrix eigenvalue problem (1.2) directly, even with our
new minimization principle in [2, Theorem 3.3] for the same reason as we pointed out
in Remark 3.1. On the other hand, the developments in section 3 and the appendix
make it possible for us to design efficient block CG algorithms for H to compute its
first few smallest eigenvalues λj with the positive sign and their corresponding eigen-
vectors simultaneously, based on the minimization principle in [2, Theorem 3.2] and
the Cauchy-like interlacing inequalities in [2, Theorem 4.1]. This is the precise reason
we prefer to work with H .

The locally optimal CG algorithm [34, 21] was born as a result of the following:
1. the observation that the next approximation from applying a (classical) non-

linear CG algorithm to an optimization problem lies in the subspace spanned
by the most recent approximation, the most recent searching direction, and
the gradient at the most recent approximation, and

D
ow

nl
oa

de
d 

04
/2

9/
13

 to
 1

29
.1

07
.6

6.
15

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LINEAR RESPONSE EIGENVALUE PROBLEM II: COMPUTATION 401

2. that subspace is the same as the one spanned by the two most recent approxi-
mations and the gradient, and thus we could compute the next approximation
as the optimal solution within that subspace.

It has been noted that the locally optimal CG algorithm is often better suited for
solving large scale symmetric eigenvalue problems, especially with a proper precondi-
tioner, than the (classical) nonlinear CG algorithms [22, 31]. It converges fast, has no
parameters to tune, and is easy to implement. Inspired by this, we present in what
follows our locally optimal 4D search CG algorithms (with or without precondition-
ers).

For many nonlinear optimization problems, even solving simple line searches poses
challenges. But for the eigenvalue problem for H , thanks to Theorems 3.1 and A.1, the
optimal approximate solution within a pair of subspaces of dimension higher than one
is easily computed, very much like the case for the standard symmetric eigenvalue
problem for which Knyazev [22] proposed the locally optimal block preconditioned
conjugate gradient (LOBPCG) method.

Algorithm 4.1 summarizes four locally optimal 4D CG algorithms in one. We
attach 4D to them because of their relation to the 4D search idea in subsection 4.2.
Their creation follows the idea of “local optimality” in the locally optimal CG algo-
rithm in that each step the optimal solution is searched within the subspace spanned
by the two most recent approximations and the partial gradients. Each of the four al-
gorithms below is realized through setting its integer parameter k and preconditioner
Φ in Algorithm 4.1:

• Locally optimal 4D CG algorithm (LO4DCG):

(4.8) k = 1 and Φ =

[
0 In
In 0

]
.

• Locally optimal preconditioned 4D CG algorithm (LOP4DCG):
k = 1 and preconditioner Φ.
• Locally optimal block 4D CG algorithm (LOB4DCG):
k > 1 and Φ as in (4.8).
• Locally optimal block preconditioned 4D CG algorithm (LOBP4DCG):
k > 1 and preconditioner Φ.

The key iterative step in these locally optimal 4D CG algorithms is to seek the
best possible approximations in the subspace spanned by the two most recent ap-
proximations and the (preconditioned) gradients at the most recent approximations,
except for the first iterative step for which the search subspace is simply spanned by
the initial approximations and the (preconditioned) gradients at the approximations.
A straightforward application would be to search the next approximations within

(4.9) span
⋃

1≤j≤k

{[
y
(i)
j

x
(i)
j

]
,

[
y
(i−1)
j

x
(i−1)
j

]
,

[
qj
pj

]}
,

where the superscripts (i−1) and (i) indicate that they are for the (i − 1)st and ith
iterative steps, respectively, and

(4.10)

[
qj
pj

]
= Φ

[∇xρ
∇yρ

]∣∣∣∣
(x,y)=(x

(i)
j ,y

(i)
j )

and Φ is a preconditioner. For the first iterative step, the vectors in (4.9) with the
superscript (i−1) should be deleted from the list because they are not available yet.
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To utilize the best approximation methods in section 3 and the appendix, we modify
this approach by using the search space

span
⋃

1≤j≤k

{[
y
(i)
j

0

]
,

[
y
(i−1)
j

0

]
,

[
qj
0

]
,

[
0

x
(i)
j

]
,

[
0

x
(i−1)
j

]
,

[
0
pj

]}
.

Breaking each vector into two in such a way is a common technique today in developing
structure-preserving algorithms (see, e.g., [20, 14, 24]). We are now ready to give our
four locally optimal 4D CG algorithms collectively in one.

Algorithm 4.1.

0 Select initial approximations X0 and Y0 having k columns such that

columns of Z0 = [ Y0

X0
] are approximate eigenvectors of H associated

with λj , 1 ≤ j ≤ k.
1 for i = 0, 1, . . . until convergence:
2 ρj = ρ((Xi)(:,j), (Yi)(:,j)), 1 ≤ j ≤ k;
3 Pi = KXi − Yi diag(ρ1, . . . , ρk), Qi = MYi −Xi diag(ρ1, . . . , ρk);

3.1 [Qi

Pi
]← Φ[ Pi

Qi
] if the preconditioner Φ is given;

4.1 For i = 0: U = [Xi, Pi], V = [Yi, Qi];
4.2 For i > 0: U = [Xi, Xi−1, Pi], V = [Yi, Yi−1, Qi];
4.3 Orthogonalize the columns of U and V ;
4.4 W = UTV = WT

1 W2;
5 Construct H

SR
as in (2.2) (assume W is nonsingular);

6 Compute the k smallest eigenvalues with the positive sign of H
SR
,

and the associated eigenvectors as in (3.5);
7 Xi+1 = UW−1

1 [x̂1, . . . , x̂k], Yi+1 = VW−1
2 [ŷ1, . . . , ŷk];

8 Normalize each column of Zi+1 = [
Yi+1

Xi+1
].

9 end
A few comments are in order for Algorithm 4.1:
1. At line 2, evaluations of ρj are needed only for iterative step i = 0; for

i ≥ 1, they are the k smallest eigenvalues with the positive sign of H
SR

in the
previous iterative step.

2. For the convergence test, we can use the relative residual norm of the approx-

imate eigenpair (ρ(x
(i)
j , y

(i)
j ), z

(i)
j ) of H , where z

(i)
j = (Zi)(:,j) (see section 5).

3. U and V constructed at line 4.1 or line 4.2 may be ill-conditioned, especially
when near convergence because then the gradients tend to the zero vector
and some columns of Xi and/or Yi are almost converged. To ensure that
U and V are well-conditioned for better numerical stability, we may have to
orthogonalize their columns via, e.g., the (classical/modified) Gram–Schmidt
orthogonalization process. This is the reason we have line 4.3 there.
An idea presented in [22] and [18] can be adapted to alleviate the ill-conditioning
of the U and V in line 4.2. It computes different U and V without altering
their column spaces which are all that matter for the algorithm. It goes as
follows. Change the assignments to U and V at line 4.2 to U = [Xi, X̃i, Pi],

V = [Yi, Ỹi, Qi]. The needed X̃i and Ỹi are calculated in the previous iterative
step at line 7: besides Xi+1 and Yi+1, also compute

X̃i+1 = UW−1
1 X̂, Ỹi+1 = VW−1

2 Ŷ ,

where X̂ is [x̂1, . . . , x̂k] with its first k rows zeroed out and Ŷ is [ŷ1, . . . , ŷk]
with its first k rows also zeroed out. In order for this idea to work, we need to
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make sure that the orthogonalization at line 4.3 does not alter the subspace
spanned by the first k columns of U and the subspace spanned by the first k
columns of V . This requirement is easy to satisfy, however. But we emphasize
that with the newly proposed line 4.2, something like the orthogonalization
at line 4.3 is still necessary for the same reason as argued in [18]. We tested
this idea in our numerical examples in section 5 and found little difference
from Algorithm 4.1 as is.

4. From line 5 to line 8, we leave out the case when UTV is singular or the
numbers of columns in U and V are different for simplicity. Actual imple-
mentation should include the case for which the optimal solution has been
given in detail in the appendix. Specifically, instead of H

SR
as in (2.2), we

compute Ĥ
SR

as in (A.5) and its min{k, r} smallest eigenvalues with the pos-
itive sign and the associated eigenvectors as in (A.7), and finally compute
Zi+1 =

[
z̃1, . . . , z̃min{k,r}

]
by (A.8)–(A.10), where r is the (numerical) rank

of W .
There are two factors that affect the (non)singularity of UTV : (1) the choices
of U and V as the basis matrices of U = span{Xi, Xi−1, Pi} and V =
span{Yi, Yi−1, Qi}, respectively, and (2) the angle ∠(U ,V) between the two
subspaces. The first factor can be alleviated by picking orthonormal bases as
suggested at line 4.3, albeit an expensive step. See our third comment above.
A similar issue came up in the LOBPCG [18, 22]. But the second factor is
an intrinsic one. That the numbers of columns in U and V may be different
is due to the fact that numerically dim(U) and dim(V) may be different, es-
pecially when some approximate eigenpairs have converged. Handling these
cases requires the technique detailed in the appendix. Even with the tech-
nique, a complete and robust implementation must confront the important
issue of deciding the numerical rank of UTV and the numerical dimensions
of U and V to balance convergence speed and numerical stability. This is one
of the issues that warrant further study.

5. At line 6, LAPACK’s routine xSYSVD can be used to solve the eigenvalue
problem of H

SR
because of its small size. In theory half of the eigenvalues of

H
SR

have the positive sign and the other half are opposite. But when the off-
diagonal blocks of H

SR
is semi- or barely definite, some of the tiny eigenvalues

with the positive sign may be computed by xSYSVD negative or even complex
with tiny magnitude. This can be easily detected and corrected by simple
postprocessing.

6. At line 8, we can simply scale each column of Zi+1 to be a unit vector in
some vector norm.

7. Sometimes it can be helpful to use a k that is somewhat bigger than the
actual number of requested eigenpairs for accelerating convergence.

8. Φ as in (4.8) gives the plain 4D CG algorithm (i.e., without preconditioning).
A generic preconditioner to compute the eigenvalues ofH close to a prescribed
point μ is Φ = (H − μI2n)

−1. Then the vectors pj and qj defined by (4.10)
can be computed through approximately solving a linear system with the
coefficient matrix H − μI2n. Note that the arrangement of the two blocks in
the matrix applied to by Φ is not mistaken. In fact each column of the matrix
is parallel to the corresponding residual vector as given by (4.2). The modified
directions are parallel to the ones obtained from one step of the inverse power
iteration on the residual. When μ is closer to the desired eigenvalues than any
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others, the preconditioned directions should have “larger” components in the
desired eigenvectors than the ones obtained without preconditioning. Since
we are particularly interested in the smallest eigenvalues with the positive
sign, μ = 0 is often an obvious choice. Then

(4.11) Φ

[∇xρ
∇yρ

]
=

[
0 M−1

K−1 0

] [∇xρ
∇yρ

]
=

[
M−1∇yρ
K−1∇xρ

]
=:

[
q
p

]
.

In this case, both p and q can be computed by using the linear conjugate
gradient method [11, 15]. The search direction in the x-component depends
only on ∇xρ while the search direction in the y-component depends only on
∇yρ. This, in part, also justifies the correct block ordering in the vector
applied to by Φ in (4.10).

5. Numerical examples. In this section, we present numerical results obtained
within the MATLAB environment to illustrate the essential convergence behaviors
of locally optimal 4D CG algorithms in section 4. The normalized residual norms

and relative eigenvalue errors for the jth approximate eigenpair (λ
(i)
j , z

(i)
j ) at the ith

iterative step to the exact jth eigenpairs (λexact
j , zj) are defined by

‖Hz
(i)
j − λ

(i)
j z

(i)
j ‖1

(‖H‖1 + λ
(i)
j )‖z(i)j ‖1

and
|λexact

j − λ
(i)
j |

|λexact
j | ,

respectively, where λexact
j are computed by the QR algorithm (via MATLAB’s function

eig) and considered to be the “exact” eigenvalues, and ‖ · ‖1 is the vector 1-norm or
the matrix �1-operator norm, depending on its argument.

Example 5.1. In this example, we use a pair of matrices K and M from linear
response analysis of silane (SiH4) compound generated by the turboTDDFT code
in QUANTUM ESPRESSO (QE), an electronic structure calculation code that im-
plements density functional theory (DFT) using plane-waves as the basis set and
pseudopotentials [12]. Such small molecules are often used as benchmark tests to
assess various simulation models, functionals, and methods (see, e.g., [27]). The or-
der of the symmetric positive definite matrices K and M is 5660. Consequently, the
dimension of the LR eigenvalue problem of H is 11320.

Our goal is to compute four smallest positive eigenvalues 0 < λ1 < λ2 < λ3 < λ4

and corresponding eigenvectors z1, z2, z3, z4 of H . The preconditioner is chosen to be
the generic one,

(5.1) Φ = H−1 =

[
0 M−1

K−1 0

]
.

The preconditioned search vectors qi and pi are computed by using the linear CG
method [11, 15] to solve the associated linear systems of equations (see (4.11)). Often
very crude approximations of qi and pi are good enough. In this example, the linear
CG iterations are set with the stopping tolerance 10−2 or maximal 20 iterations.

Figure 5.1 shows the normalized residual norms and the relative eigenvalue errors
of LOB4DCG and LOBP4DCG (Algorithm 4.1 with k = 4). The initial approximate

eigenvectors of zj are chosen as
[
eTj , e

T
j

]T
for j = 1, . . . , k. We observe the significant

improvement in the rate of convergence by using preconditioning. In terms of the
cost for applying the preconditioner at line 3.1 of LOBP4DCG iteration, there are k
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Fig. 5.1. The convergence behaviors of the locally optimal block 4D CG algorithms with and
without preconditioning for computing the four smallest positive eigenvalues (excitation states) of a
synthesized SiH4 compound: normalized residual norms (left) and relative eigenvalue errors (right).

linear systems with coefficient matrix K and k ones with M for applying the generic
preconditioner H−1. We recorded that there were a total of 1048 linear CG iterations
associated with the matrix K and 1010 associated with the matrix M over the 30
LOBP4DCG iterations to converge to the desired eigenpairs. Therefore, the total
number of matrix-vector multiplications for applying the preconditioner H−1 is 2058,
and the average number of inner linear CG iterations for each eigenpair is 8.575 per
LOBP4DCG iteration.

We should note that the generic preconditionerH is not the natural preconditioner
for this example. For the plane wave-based calculations, it is more natural to use a
proper scaled diagonal-like preconditioner proposed in [43]. Excellent performance of
such preconditioner in the the turboTDDFT code has been reported [37].

Example 5.2. We examine the convergence behavior of the the LOBP4DCG
algorithm (Algorithm 4.1) for a case where K is symmetric positive semi-definite
(i.e., K is singular) and M is definite. Specifically, K is a tridiagonal matrix such
that K(i,i+1) = K(i+1,i) = −1 for 1 ≤ i ≤ n − 1, K(i,i) = 2 for 2 ≤ i ≤ n − 1,
K(1,1) = K(n,n) = 1 and K(i,j) = 0 elsewhere. M = diag(1, 2, . . . , n). We use the
LOBP4DCG to compute the first four smallest eigenvalues with the positive sign
(including λ1 = +0) of H with n = 2000. The initial Z0 are chosen as a random
2n × k matrix. Figure 5.2 shows the normalized residual norms and the absolute

error in λ
(i)
1 (since λ1 = +0) and relative errors in λ

(i)
j (j = 2, 3, 4) by LOBP4DCG

with the generic preconditioner Φ = H−1, which is again implemented by the linear
CG method3 to solve the associated linear systems with stopping tolerance 10−2 or
maximal 50 iterations. Despite the singularity of K, as shown in Figure 5.2, we
still observe decent convergence rate towards the desired eigenvalues. Note for this
example, LOB4DCG, i.e., without the preconditioner Φ = H−1, does not converge.
This example shows that when one ofK and M is singular, the LR eigenvalue problem
(1.1) becomes very hard, though not impossible, for LOBP4DCG to solve. Perhaps
a better way would be deflated out the zero eigenvalues first before LOBP4DCG is

3Since M is diagonal, the linear systems with M are simple to solve. But we pretend not to know
this and use CG anyway for testing purpose.
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Fig. 5.2. The convergence behaviors of the locally optimal block preconditioned 4D CG algo-
rithms with preconditioning for computing the four smallest eigenvalues with the positive sign for
the artificially constructed H: normalized residual norms (left) and absolute or relative eigenvalue
errors (right).

applied. We will investigate this issue elsewhere.

6. Concluding remarks. Based on the theoretical foundation laid out in [2]
for the LR eigenvalue problem (1.1), we developed a 4D search technique and devised
locally optimal CG methods that are capable of computing the first few smallest
eigenvalues with the positive sign and corresponding eigenvectors simultaneously. Two
numerical examples illustrate the effectiveness of the new algorithms, especially with
suitable preconditioners.

Recently, in [38] we developed a 4D block steepest descent (4DBSD) algorithm
and successfully solved the LR eigenvalue problems of dimension up to 2n = 5, 650, 410
for a fully converged first-principle calculation of the excitation states of the benzene
molecule. The 4DBSD algorithm is a variant of Algorithm 4.1, which is a block
implementation of the 4D search technique, similar to the simultaneous Rayleigh
quotient minimization method due to Longsine and McCormick [25].

We have applied the generic preconditioner Φ = (H − μI)−1 so far because of its
generality for the case when no special structural property of K and/or M are known
and can thus be exploited. When (1.1) is gotten from a plane-wave discretization,
K and M are not explicitly constructed but rather exist in their mixed physical and
frequency domain representations. Some natural “diagonal” preconditioners (similar
to the one in [43] for the ground state computations) that reduce the high-wave-
number components while leaving the low wave numbers untouched are emerging as
very promising [37]. These issues will be a subject of future study.

In both [2] and this paper, we have focused on the case where the LR (RPA)
eigenvalue problem has only real eigenvalues with eigenvalues 0 allowed. There are
cases in which imaginary eigenvalues do occur. For example, the positive-definiteness
condition of A+B and/or A−B is not met in [32, 35]. The development of efficient
numerical methods for treating such large scale problems needs to be investigated,
too.

Appendix. Best approximations: The singular/unequal dimension case.
This appendix continues the investigation in section 3 to seek best approximate eigen-
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LINEAR RESPONSE EIGENVALUE PROBLEM II: COMPUTATION 407

pairs of H for given {U ,V}, a pair of approximate deflating subspaces of {K,M} with
dim(U) = �1 and dim(V) = �2. In section 3, we have treated the case in which �1 = �2

and W
def
= UTV is nonsingular, where U ∈ Rn×�1 , V ∈ Rn×�2 are the basis matrices

of U and V , respectively.
What follows is for the most general case: �1 and �2 may or may not be the same

and W may or may not have full rank. Thus the case in section 3 is a special one
whose treatment, however, is much simpler than that below for the general case.

Factorize

(A.1) W = WT
1 W2, Wi ∈ R

r×�i , r = rank(W ) ≤ min
i

�i.

So both Wi have full row rank. Factorize4

(A.2) WT
i = Qi

[
Ri

0

]
for i = 1, 2,

where Ri ∈ Rr×r, Qi ∈ R�i×�i (i = 1, 2) are nonsingular.
Consider the best approximation to λ1 by (3.1). We still have (3.3):

(3.3) ρ(x, y) =
ûTUTKUû+ v̂TV TMV v̂

2|ûTWv̂| ,

where x = Uû and y = V v̂ for some û ∈ R
�1 , v̂ ∈ R

�2 . Note the correspondence
between x ∈ U and û ∈ R�1 and that between y ∈ V and v̂ ∈ R�2 are one-one. Let
x̂ = W1û ∈ Rr and ŷ = W2v̂ ∈ Rr. Since r ≤ �i, û may not be uniquely defined by x̂;
neither may v̂ by ŷ. But using (A.2), we see that5

û = Q−T
1

[
R−T

1 x̂
u

]
, v̂ = Q−T

2

[
R−T

2 ŷ
v

]
,

where u ∈ R�1−r, v ∈ R�2−r are arbitrary. Partition

Q−1
1 UTKUQ−T

1 =

[ r �1−r

r K11 K12

�1−r KT
12 K22

]
,(A.3a)

Q−1
2 V TMVQ−T

2 =

[ r �2−r

r M11 M12

�2−r MT
12 M22

]
.(A.3b)

We have

ûTUTKUû =

[
R−T

1 x̂
u

]T [
K11 K12

KT
12 K22

] [
R−T

1 x̂
u

]
,

v̂TV TMV v̂ =

[
R−T

2 ŷ
v

]T [
M11 M12

MT
12 M22

] [
R−T

2 ŷ
v

]
.

4Computationally, this can be realized by the QR decompositions of WT
i . For more generality

in presentation, we do not assume that they have to be QR decompositions.
5A vector block in a partitioned vector is an empty block if it has dimension 0. The same can

be said about a matrix block in a partitioned matrix if its row/column dimension is 0.

D
ow

nl
oa

de
d 

04
/2

9/
13

 to
 1

29
.1

07
.6

6.
15

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

408 ZHAOJUN BAI AND REN-CANG LI

Given x̂, ûTUTKUû is minimized at these u such that K22u = −KT
12R

−T
1 x̂. This

equation always has a solution because that Q−1
1 UTKUQ−T

1 is positive semidefinite
implies span(KT

12) ⊆ span(K22), and its solution is not unique if K22 is singular.
But the nonuniqueness does not matter as far as the minimal value of ûTUTKUû is
concerned. The same can be said about v̂TV TMV v̂. In fact,

min
u

ûTUTKUû = x̂TR−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1 x̂,(A.4a)

min
v

v̂TV TMV v̂ = ŷTR−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 ŷ,(A.4b)

where K†
22 and M †

22 are the Moore–Penrose inverses of K22 and M22, respectively.
The minimums in (A.4) are attained at those u and v satisfying

K22u = −KT
12R

−T
1 x̂, M22v = −MT

12R
−T
2 ŷ.

Finally, the quantity in (3.1) is

inf
x̂,ŷ

x̂TR−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1 x̂+ ŷTR−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 ŷ

2|x̂Tŷ|
which, by [2, Theorem 3.1], is the smallest eigenvalue with the positive sign of Ĥ

SR
:

(A.5)

Ĥ
SR

=

⎡⎣ 0 R−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1

R−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 0

⎤⎦ ∈ R
2r×2r.

Now we turn to the best approximations to λj (1 ≤ j ≤ k) by (3.2). Assume (A.1)

and (A.2). Any Û , V̂ ∈ Rn×k such that span(Û) ∈ U , span(V̂ ) ∈ V , and ÛTV̂ = Ik
can be written as

Û = UQ−T
1 Ũ , V̂ = V Q−T

2 Ṽ ,

where Ũ ∈ R�1×k, Ṽ ∈ R�2×k that make ÛTV̂ = Ik, and vice versa. We note that
necessarily

k = rank(Ik) = rank(ÛTV̂ ) ≤ rank(W ) = r.

We first look into what constraint is needed on Ũ and Ṽ in order to enforce ÛTV̂ = Ik.
To this end, we partition

Ũ =

[ k

r Ũ1

�1−r Ũ2

]
, Ṽ =

[ k

r Ṽ1

�2−r Ṽ2

]
.

We have

ÛTV̂ = ŨTQ−1
1 WT

1 W2Q
−T
2 Ṽ = ŨT

[
R1

0

] (
RT

2 , 0
)
Ṽ = ŨT

1 R1R
T
2 Ṽ1.

Let X̂ = RT
1 Ũ1, Ŷ = RT

2 Ṽ1 ∈ Rr×k. Then ÛTV̂ = Ik is equivalent to X̂TŶ = Ik which

will be enforced henceforth, while Ũ2 and Ṽ2 are arbitrary. Assume the partitioning
in (A.3). We have

ÛTKÛ = ŨTQ−1
1 UTKUQ−T

1 Ũ =

[
R−T

1 X̂

Ũ2

]T [
K11 K12

KT
12 K22

] [
R−T

1 X̂

Ũ2

]
,
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V̂ TMV̂ = Ṽ TQ−1
2 V TKVQ−T

2 Ṽ =

[
R−T

2 Ŷ

Ṽ2

]T [
M11 M12

MT
12 M22

] [
R−T

2 Ŷ

Ṽ2

]
.

Given X̂ and Ŷ , it can be verified that

min
˜U2

trace(ÛTKÛ) = trace(X̂TR−1
1 [K11 −K12K

†
22K

T
12]R

−T
1 X̂),(A.6a)

min
˜V2

trace(V̂ TMV̂ ) = trace(Ŷ TR−1
2 [M11 −M12M

†
22M

T
12]R

−T
2 Ŷ )(A.6b)

with the minimums attained at those Ũ2 and Ṽ2 satisfying

K22Ũ2 = −KT
12R

−T
1 X̂, M22Ṽ2 = −MT

12R
−T
2 Ŷ .

Therefore the quantity in (3.2) is

inf
X̂TŶ=Ik

trace
(
X̂TR−1

1 [K11 −K12K
†
22K

T
12]R

−T
1 X̂ + Ŷ TR−1

2 [M11 −M12M
†
22M

T
12]R

−T
2 Ŷ

)
which, by [2, Theorem 3.2], is the sum of the k smallest eigenvalues with the positive
sign of Ĥ

SR
defined by (A.5).

In summary, the best approximations to some of the eigenvalues of H within the
pair of approximate deflating subspaces are the eigenvalues of Ĥ

SR
. Denote by μj

(j = 1, . . . , r) the eigenvalues with the positive sign of Ĥ
SR

in the ascending order and
by ẑj the associated eigenvectors:

(A.7) Ĥ
SR
ẑj = μj ẑj, ẑj =

[
ŷj
x̂j

]
.

Following the derivations above, we conclude

ρ(x̃j , ỹj) = μj for j = 1, . . . , r,

where

(A.8) x̃j = UQ−T
1

[
R−T

1 x̂j

uj

]
, ỹj = V Q−T

2

[
R−T

2 ŷj
vj

]
for uj and vj satisfying

(A.9) K22uj = −KT
12R

−T
1 x̂j , M22vj = −MT

12R
−T
2 ŷj.

Naturally the approximate eigenvectors of H should be taken as

(A.10) z̃j =

[
ỹj
x̃j

]
for j = 1, . . . , r.

For the ease of reference, we summarize our findings into the following theorem.

Theorem A.1. Suppose that one of K, M ∈ Rn×n is definite. Let {U ,V} be a
pair of approximate deflating subspaces of {K,M} with dim(U) = �1 and dim(V) = �2,
and let U ∈ Rn×�1 , V ∈ Rn×�2 be the basis matrices of U and V, respectively. Let Ĥ

SR

be defined by (A.5). Then the best approximations to λ1 in the sense of (3.1) or to
λj (1 ≤ j ≤ k) in the sense of (3.2) are the corresponding eigenvalues μj of Ĥ

SR
, with

the corresponding approximate eigenvectors given by (A.8)–(A.10).
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410 ZHAOJUN BAI AND REN-CANG LI

In [2, Theorem 2.9], we proved the approximate eigenpairs are unique for given
{U ,V} with nonsingular UTV , even though there are infinitely many different H

SR

associated with the pair of subspaces. We are faced with the same question for Ĥ
SR

in whose construction there are three nonunique choices:

(A.11)

⎧⎪⎪⎨⎪⎪⎩
1. Factorizations in (A.2) are not unique.

2. Factorization W = WT
1 W2 in (A.1) is not unique.

3. Basis matrices U and V are not unique.

The question would arise if different Ĥ
SR

could produce different approximate eigen-
pairs. This is addressed by the following theorem.

Theorem A.2. Suppose that one of K, M ∈ Rn×n is definite. Let U and V be
two subspaces of Rn with basis matrices U ∈ Rn×�1 , V ∈ Rn×�2 , respectively. Define
Ĥ

SR
by (A.5). Then
1. the approximate eigenvalues, i.e., the eigenvalues of Ĥ

SR
, are invariant with

respect to any of the nonuniqueness listed in (A.11) for constructing Ĥ
SR
;

2. the approximate eigenvectors by (A.8)–(A.10) are invariant with respect to
any of the nonuniqueness listed in (A.11) if and only if both K22 and M22

are definite.6

Proof. To see the first conclusion, we notice that the infimum (3.2) only depends
on {U ,V} and is invariant with respect to any of the nonuniqueness in (A.11) for
1 ≤ k ≤ r. Since the infimum is the sum of the first k smallest eigenvalues with the
positive sign of Ĥ

SR
, let k go from 1 to r to conclude that the eigenvalues with the

positive sign of Ĥ
SR

are invariant with respect to any of the nonuniqueness in (A.11);
so are all eigenvalues of Ĥ

SR
.

For the second conclusion, let us first select one choice for each of them in (A.11),
namely basis matrices U and V , a factorization W = WT

1 W2 in (A.1), and two

factorizations in (A.2). Let H0
def
= Ĥ

SR
with these selected choices, and suppose that

both K22 and M22 are definite. We shall now prove that the approximate eigenvectors
are invariant with respect to any variation to the selected ones. Along the way, we will
also see the definiteness of K22 and M22 does not change with the variations either.

1. Invariance with respect to different choices of factorizations in (A.2). Any
factorizations other than the given ones in (A.2) can be written as

(A.12) WT
i = Qi

[
Si1

Si2

] [
S−1
i1 Ri

0

]
,

for some nonsingular Si1 ∈ Rr×r, Si2 ∈ R(�i−r)×(�i−r). Denote by H1
def
= Ĥ

SR

with given U , V and (A.1), and (A.12). Perform substitutions

Qi

[
Si1

Si2

]
← Qi, S

−1
i1 Ri ← Ri, S

−1
1i KijS

−T
1j ← Kij , S

−1
2i MijS

−T
2j ←Mij

to see H0 = H1 and that the approximate eigenvectors for H by (A.8)–(A.10)
do not change. Also the definiteness of K22 and M22 does not change with
the variation in (A.12).

6Although K22 and M22 vary with the nonunique choices in (A.11), this condition is well-stated
because the ranks of K22 and M22 remain unchanged with respect to the choices. This will be
confirmed in the proof of this theorem as well.
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2. Invariance with respect to different choice of factorization W = WT
1 W2. Any

factorization other than the given one in (A.1), can be written as

(A.13) W = WT
1 SS−1W2 = (STW1)

T(S−1W2)

for some nonsingular S ∈ Rr×r. Define H1
def
= Ĥ

SR
with given U , V , and

(A.13) and

(A.14) (STW1)
T = Q1

[
R1S
0

]
, (S−1W2)

T = Q2

[
R2S

−T

0

]
.

Since we just proved the invariance with respect to different choices of factor-
izations in (A.2), it suffices to prove that the approximate eigenvectors ob-
tained through H0 and H1 are the same. Upon using substitutions R1S ← R1

and R2S
−T ← R2, we find

H1 =
(
S−1 ⊕ ST

)
H0

(
S−1 ⊕ ST

)−1
,

and thus the relationships between the eigenvectors for H0 and H1. It can
then be verified that the approximate eigenvectors obtained through H0 and
H1 via (A.8)–(A.10) are the same. Also, the definiteness of K22 and M22

does not change with the variation in (A.13).
3. Invariance with respect to different choices of basis matrices. Given basis

matrices U and V of U and V , respectively, any other basis matrices can be
written as UR and V S for some nonsingular R ∈ R�1×�1 , S ∈ R�2×�2 . Define

H1
def
= Ĥ

SR
with UR and V S, and

(A.15) W = (UR)T(V S) = RTUTV S = (W1R)T(W2S),

and

(A.16) (W1R)T = RTQ1

[
R1

0

]
, (W2S)

T = STQ2

[
R2

0

]
.

By the two invariance properties we just proved, it suffices to prove that the
approximate eigenvectors obtained throughH0 andH1 are the same. Perform
substitutions

UR← U, V S ← V, RTQ1 ← Q1, STQ2 ← Q2

to see H0 = H1 and that the approximate eigenvectors for H by (A.8)–(A.10)
do not change. Again the definiteness of K22 and M22 does not change with
the variation from U to UR and from V to V S.

Finally, if K22 is singular, then uj satisfying the first equation in (A.9) is not unique.
In fact, if uj is one, any uj + g is another, for any g in the kernel of K22. So the
defining equation in (A.8) for x̃j gives

(A.17) x̃j = UQ1

[
R−T

1 x̂j

−K†
22K

T
12R

−T
1 x̂j + g

]
,

leading to different approximate eigenvectors as g varies within the kernel of K22.
The same thing happens if M22 is singular.
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The proof of Theorem A.2 exposes the cause for the approximate eigenvectors by
(A.8)–(A.10) not to be uniquely determined, namely, one of the equations in (A.9)
may have infinitely many solutions.7 When that’s the case, we can either always take

uj = −K†
22K

T
12R

−T
1 x̂j , vj = −M †

22M
T
12R

−T
1 ŷj

or settle the nonuniqueness by

(A.18) min
g,h

{‖Kx̃j − μj ỹj‖22 + ‖Mỹj − μj x̃j‖22
}

over all g in the kernel of K22 and h in the kernel of M22, upon noticing (A.17) and

(A.19) ỹj = V Q−T
2

[
R−T

2 ŷj
−M †

22M
T
12R

−T
2 ŷj + h

]
.

Finally it can be seen that (A.18) is a least squares problem in g and h.
The next theorem too says that there are Cauchy-like interlacing inequalities for

Ĥ
SR
, similarly to [2, Theorem 4.1].
Theorem A.3. Assume the conditions of Theorem A.1. Then

(A.20) λi ≤ μi ≤ λi+2n−(�1+�2) for 1 ≤ i ≤ r,

where we set λi+2n−(�1+�2) =∞ if i+ 2n− (�1 + �2) > n.
Proof. Suppose for the moment that both K and M are positive definite. Recall

the equivalence between the eigenvalue problem (1.1) and the one for

(A.21) AAA− λBBB ≡
[
M 0
0 K

]
− λ

[
0 In
In 0

]
.

AAA is symmetric positive definite if K and M are. Let

Z =

[
V Q−T

2 (R−T
2 ⊕ I�2−r)

UQ−T
1 (R−T

1 ⊕ I�1−r)

]
,

which has full column rank. It can be verified, upon using (A.3), that

ZTAAAZ =

[
M̂ 0

0 K̂

]
, ZTBBBZ =

[
0 Î T

Î 0

]
,

where

M̂ =

[
R−1

2

I�2−r

] [
M11 M12

MT
12 M22

] [
R−T

2

I�2−r

]
,

K̂ =

[
R−1

1

I�1−r

] [
K11 K12

KT
12 K22

] [
R−T

1

I�1−r

]
,

Î =

[
Ir

0

]
∈ R

�1×�2 .

ZTAAAZ is positive definite because AAA is. Note the eigenvalues of BBB−λAAA are ±λ−1
i and

−λ−1
1 ≤ −λ−1

2 ≤ · · · ≤ −λ−1
n < λ−1

n ≤ · · · ≤ λ−1
2 ≤ λ−1

1 .

7By default, one of K and M is definite. Thus at most one of K22 and M22 is singular.
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Denote the nonzero eigenvalues8 of ZTBBBZ − λZTAAAZ by ±σi ordered as

−σ1 ≤ · · · ≤ −σr < σr ≤ · · · ≤ σ1.

All the rest �1 + �2 − 2r eigenvalues of ZTBBBZ − λZTAAAZ are 0s. Now apply Cauchy’s
interlacing inequalities (extended for the generalized eigenvalue problem) to BBB − λAAA
and ZTBBBZ − λZTAAAZ to get for 1 ≤ i ≤ r,

λ−1
i ≥ σi ≥

{
λ−1
i+2n−(�1+�2)

if i+ 2n− (�1 + �2) ≤ n,

0 otherwise.

Equivalently, λi ≤ σ−1
i ≤ λi+2n−(�1+�2) for 1 ≤ i ≤ r. It remains to show that

μi = σ−1
i for 1 ≤ i ≤ r. To this end, we let

Z1 =

[
Ir 0

−K−1
22 KT

12R
−T
1 I�1−r

]
, Z2 =

[
Ir 0

−M−1
22 MT

12R
−T
2 I�2−r

]
.

It can be verified that ZT
1 ÎZ2 = Î and

ZT
1 K̂Z1 =

[
R−1

1 K̂11R
−T
1 0

0 K22

]
, K̂11 = K11 −K12K

−1
22 KT

12,

ZT
2 M̂Z2 =

[
R−1

2 M̂11R
−T
2 0

0 M22

]
, M̂11 = M11 −M12M

−1
22 MT

12.

The eigenvalues of ZTBBBZ − λZTAAAZ are the same as these of

(Z1 ⊕ Z2)
T
(
ZTBBBZ − λZTAAAZ

)
(Z1 ⊕ Z2)

which is a 4×4 block matrix pencil and becomes, after switching its second and third
row and its second and third column,[
0 Ir
Ir 0

]
⊕ 0(�1+�2−2r)×(�1+�2−2r)−λ

[
R−1

2 M̂11R
−T
2 0

0 R−1
1 K̂11R

−T
1

]
⊕
[
M22 0
0 K22

]
.

Thus the nonzero eigenvalues of ZTBBBZ − λZTAAAZ are the same as these of[
0 Ir
Ir 0

]
− λ

[
R−1

2 M̂11R
−T
2 0

0 R−1
1 K̂11R

−T
1

]
,

which in turn are the same as the reciprocals of the eigenvalues of Ĥ
SR
, i.e., σi = μ−1

i ,
as expected.

Consider now that K is singular. We seek to perturb K to a positive definite
K(ε) for all ε > 0 in such a way that the resulting Ĥ

SR
(ε) → Ĥ

SR
as ε → 0+ and

then use the limiting argument. In (A.3a) since span(KT
12) ⊆ span(K22), there exists

orthogonal P ∈ R(�1−r)×(�1−r) such that

(A.22) PTKT
12 =

[ r

r1 K̃T
12

0

]
, PTK22P =

[ r1

r1 K̃22 0
0 0

]
8These nonzero eigenvalues are the same as those of (ZTAAAZ)−1/2(ZTBBBZ)(ZTAAAZ)−1/2 =

[ 0 C
CT 0

], where C = ̂M−1/2̂I ̂K−1/2. Thus σi are the nonzero singular values of C.
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and K̃22 is positive definite and diagonal. Let E = UQ−T
1 (Ir ⊕ P ) ∈ Rn×�1 . It can

be seen that rank(E) = �1, and hence there exists E⊥ ∈ Rn×(n−�1) such that [E,E⊥]
is invertible. Let G = [E,E⊥]−1 and set

K(ε) = K + εGTG

which is positive definite. Define accordingly H(ε) and denote its eigenvalues by

±λi(ε), and define Ĥ
SR
(ε) and denote its eigenvalues by ±μi(ε) as well. Using (A.3a)

and ETGTGE = I�1 , we have

ETK(ε)E =

⎡⎣K11 K̃12 0

K̃T
12 K̃22 0
0 0 0

⎤⎦+ εI�1 ,

Q−1
1 UTK(ε)UQ−T

1 =

[
K11 K12

KT
12 K22

]
+ εI�1 .

Let K11(ε) := K11 + εI and K22(ε) := K22 + εI. We have by (A.22)

[K22(ε)]
−1KT

12 =

(
P

[
K̃22 0
0 0

]
PT + εI

)−1

P

[
K̃T

12

0

]
= P

[
(K̃22 + εI)−1K̃T

12

0

]
→ P

[
K̃−1

22 K̃T
12

0

]
= K†

22K
T
12

as ε→ 0+. Recall how Ĥ
SR

is constructed, we can see that the resulting Ĥ
SR
(ε) as the

result of the perturbation is the same as Ĥ
SR
, except in its (1, 2) block which is

R−1
1

(
K11(ε)−K12[K22(ε)]

−1KT
12

)
R−T

1 → R−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1

as ε→ 0+. That is Ĥ
SR
(ε)→ Ĥ

SR
as ε→ 0+. Therefore, by the eigenvalue continuity

with respect to a matrix’s entries [40], we have μi(ε) → μi as ε → 0+. For the same
reason, λi(ε) → λi, too, as ε → 0+. Finally, since K(ε) and M are positive definite,
by what we just proved, we have

(A.23) λi(ε) ≤ μi(ε) ≤ λi+2n−(�1+�2)(ε) for 1 ≤ i ≤ r.

Now letting ε→ 0+ in (A.23) leads to the desired inequalities in (A.20).
Remark A.1. Noticeably, the treatment above is much more involved than the

nonsingular case in section 3. Certainly an argument can be made to not use {U ,V}
with a singular W at all, since by [2, Lemma 2.7], we know that W is nonsingular if
{U ,V} is exact and if dimU = dimV . But, in practice, especially at the beginning
of an iterative process, it is hard to guarantee this is so at all times. The treatment
presented here, albeit involved, shows that the optimums in (3.1) and (3.2) can still
be realized. An alternative and simpler treatment for the singular case at a tradeoff
of achieving only suboptimal approximations to (3.1) and (3.2) is as follows. Suppose
(A.1) and (A.2). We have

(R−1
1 , 0)Q−1

1 UTV Q−T
2

[
R2

0

]
= Ir.

After substitutions

U ← UQ−T
1

[
R1

0

]
, V ← V Q−T

2

[
R2

0

]
,
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two new subspaces U and V with dimension r are born with new basis matrices U
and V satisfying UTV = Ir, returning to the nonsingular W case in section 3.
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