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32 Z. Bai, R.-C. Li

1 Introduction

In [2,3,19,21], minimization principles and locally optimal 4-D conjugate gradient
methods are established for the eigenvalue problem of the form:

[
0 K
M 0

] [
y
x

]
= λ

[
y
x

]
, (1.1)

where K and M are n × n real symmetric positive semi-definite matrices and one
of them is definite. It is referred to as the linear response (LR) eigenvalue problem
because it is equivalent to the eigenvalue problem

[
A B
−B −A

] [
u
v

]
= λ

[
u
v

]
(1.2)

via a similarity transformation with the orthogonal matrix

J = 1√
2

[
In In

In −In

]
, (1.3)

where A and B are n×n real symmetric matrices such that the symmetric matrix

[
A B
B A

]

is symmetric positive definite1. The eigenvalue problem (1.2) is the computational
kernel in the response theory models for analyzing the response of a self-consistent-
field state to an external perturbation in computational physics and chemistry, e.g.,
see [9,14,16,20]. The eigenvalue problem (1.2) is also widely known as a random
phase approximation eigenvalue problem, e.g. see [17,18].

The generalized LR eigenvalue problem is of the form

[
A B
−B −A

] [
u
v

]
= λ

[
� �

� �

] [
u
v

]
, (1.4)

where A and B are as in (1.2), and � and � are also n×n with � being symmetric while

� skew-symmetric (i.e., �T = −�) such that

[
� �

� �

]
is nonsingular. The generalized

eigenvalue problem (1.4) arises from the study of transition properties and second and
higher order response properties using a response function approach [7,14,15].

The generalized LR eigenvalue problem (1.4) can be transformed via the orthogonal
matrix J to an equivalent eigenvalue problem that differs from (1.1) in the right hand
side. In fact, it is easy to verify that

J T
[

A B
−B −A

]
J J T

[
u
v

]
= λJ T

[
� �

� �

]
J J T

[
u
v

]

1 This condition is equivalent to that both A± B are positive definite. In [2,3] and this article, we focus on
very much this case, except that one of A ± B is allowed to be positive semi-definite.
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Generalized linear response eigenvalue problem 33

gives rise to

H z ≡
[

0 K
M 0

] [
y
x

]
= λ

[
E+ 0
0 E−

] [
y
x

]
≡ λEz, (1.5)

where

K = A − B, M = A + B, E± = � ±�, and

[
y
x

]
= J T

[
u
v

]
. (1.6)

Furthermore, the positive definiteness of

[
A B
B A

]
and the nonsingularity of

[
� �

� �

]
are

equivalent to that both K and M are positive definite, and E± are nonsingular2. Hence
the eigenvalue problems (1.4) and (1.5) are equivalent: both have the same eigenvalues
with corresponding eigenvectors related by

[
u
v

]
= J

[
y
x

]
. (1.7)

The imposed conditions on A, B, �, and � imply that both K and M are real symmetric
positive definite and E± are nonsingular and ET+ = E−. In the rest of this article, the
condition on K and M will be relaxed to that both are symmetric positive semi-definite
and one of them is definite, unless explicitly stated otherwise.

Later, we will see that the 2n eigenvalues of (1.5) are all real:

−λn ≤ · · · ≤ −λ1 ≤ +λ1 ≤ · · · ≤ +λn .

Our main contributions in this paper are as follows.

1. As an extension of Thouless’ minimization principle, we will prove

λ1 = inf
x,y

xT K x + yT My

2|xT E+y| . (1.8)

In the case when E± = I and both K and M are definite, (1.8) becomes Thouless’
minimization principle [19,21,2].

2. We will prove a subspace version of the minimization principle (1.8):

k∑
i=1

λi = 1

2
inf

U T E+V=Ik
U,V∈Rn×k

trace(U T KU + V T MV ). (1.9)

In the case when E± = I , (1.9) has already been proven in [2].

2 It suffices to assume one of E± is nonsingular since ET± = E∓.
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34 Z. Bai, R.-C. Li

3. Let U and V be n × � (where � < n) such that W
def=U T E+V is nonsingular, and

factorize W as W = W T
1 W2, where Wi are �×� (and thus necessarily nonsingular).

Define

HSR =
[

0 W−T
1 U T KU W−1

1
W−T

2 V T MV W−1
2 0

]
(1.10)

and denote the eigenvalues of HSR by −μ� ≤ · · · ≤ −μ1 ≤ +μ1 ≤ · · · ≤ +μ�.
We obtain Cauchy-like inequalities for λi and μi (see Theorem 3.4). In addition,
we also show that

k∑
i=1

μi = 1

2
inf

Û T E+ V̂=Ik
span(Û )⊆U , span(V̂ )⊆V

trace(Û T KÛ + V̂ T MV̂ ), (1.11)

where U = span(U ) and V = span(V ) are the column spaces of U and V ,
respectively.

4. Combining (1.10) and (1.11) with a variation of the classical conjugate gradient
method, we establish a locally optimal block 4-D preconditioned conjugate gradi-
ent method to simultaneously compute the several smallest eigenvalues with the
positive sign of the generalized LR eigenvalue problem (1.5).

The rest of this paper is organized as follows. In Sect. 2, we review basic theoretical
results about the eigenvalue problem (1.1) and then introduce the concept of a pair of
deflating subspaces and its approximation properties. In Sect. 3, we will prove a couple
of the minimization principles and Cauchy-like interlacing inequalities. In Sect. 4, we
discuss the metric about the best approximation from a pair of approximate deflating
subspaces. In Sect. 5, we apply newly established minimization principles to derive
CG type algorithms for computing the first few λi . In Sect. 6, we present numerical
results to illustrate the convergence behaviors of CG methods. Concluding remarks
are in Sect. 7.

2 Basic theory and pair of deflating subspaces

2.1 Basics

In this subsection, we discuss some basic theoretical results on the LR eigenvalue
problem (1.5). Mehl et al. [11] investigated the canonical forms of the same eigenvalue
problem (1.5) under a more general context, namely no assumptions on K and M
being positive (semi-)definite, except symmetry, and E± being nonsingular. The results
below in this section can essentially be derived from their more general setting, but
in our context they can also be easily derived (see [1] for details). For this reason, we
will leave out the proofs of the theorems in this subsection.

Decompose E± as
ET− = E+ = C DT, (2.1)

where C, D ∈ R
n×n are nonsingular. How this factorization is done is not mathemat-

ically essential. For example, we can simply let one of C and D be In .
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Generalized linear response eigenvalue problem 35

With (2.1), the LR eigenvalue problem (1.5) is equivalent to

Hw ≡
[

0 K
M 0

] [
y
x

]
= λ

[
y
x

]
, (2.2)

where

K = C−1 K C−T, M = D−1 M D−T,

[
y
x

]
= �T

[
y
x

]
, and � =

[
D

C

]
. (2.3)

We now have two equivalent eigenvalue problems (1.5) and (2.2) in the sense that both
have the same eigenvalues and their eigenvectors are related by the relation shown in
(2.3).

The problem (2.2) takes the same form as (1.1), making it possible for us to simply
adapt the results in [2,3] for (2.2) and then translate them for the generalized LR eigen-
value problem (1.5). However, we should note that for practical considerations, the
problem (2.2) should never be explicitly formed to avoid destroying. e.g., the sparsity
in K and M or other structural properties. Sometimes K , M , and E± simply may
not be available and their very existences are through matrix-vector multiplications.
In such cases, explicitly forming (2.2) just cannot be accomplished. For our purpose
in this paper, the significance of transforming (1.5) into (2.2) lies only in theoretical
developments and efficient algorithm derivations.

For the eigenvalue problem (2.2), we know that K, M � 0 because K , M � 0,
where X 	 0 (X � 0) means X is real symmetric positive (semi-)definite. As argued
in [2] for (1.1), the eigenvalues for (2.2) are real and come in±λ pairs. More precisely,
denote the eigenvalues of K M by λ2

i (1 ≤ i ≤ n) in the ascending order:

0 ≤ λ2
1 ≤ λ2

2 ≤ · · · ≤ λ2
n, (2.4)

where all λi ≥ 0 and thus 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn . The eigenvalues of MK are λ2
i

(1 ≤ i ≤ n), too. The eigenvalues of H − λE are then ±λi for i = 1, 2, . . . , n with
the ordering

− λn ≤ · · · ≤ −λ1 ≤ +λ1 ≤ · · · ≤ +λn . (2.5)

For convenience, we shall associate half of 0 eigenvalues with the positive sign and
the other half with the negative sign, as argued in [2]. Doing so legitimizes the use of
the phrase “the first k smallest eigenvalues with the positive sign of H − λE” to refer
to λi for 1 ≤ i ≤ k without ambiguity even when λ1 = +0. Throughout this paper,
we will stick to using±λi for 1 ≤ i ≤ n in the order of (2.5) to denote the eigenvalues
of H − λE .

Set

I =
[

0 In

In 0

]
, IE =

[
0 E−

E+ 0

]
= �I �T, (2.6)
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36 Z. Bai, R.-C. Li

where � is given in (2.3). Both are symmetric but indefinite. The matrices IE and I
induce indefinite inner products on R

2n :

〈z1, z2〉IE

def= zT
1 IE z2 ≡ 〈w1, w2〉I def= wT

1 I w2,

where wi = �Tzi . The following theorem tells us some orthogonality properties
among the eigenvectors for H − λE .

Theorem 2.1 1. Let (α, z) be an eigenpair of H − λE, where z =
[

y
x

]

= 0 and

x, y ∈ R
n. Then α〈z, z〉IE = 2α xT E+y > 0 if α 
= 0. In particular, this implies

〈z, z〉IE = 2xT E+y 
= 0 if α 
= 0.

2. Let (αi , zi ) (i = 1, 2) be two eigenpairs of H − λE. Partition zi =
[

yi

xi

]

= 0,

where xi , yi ∈ R
n.

a. If α1 
= α2, then 〈z1, z2〉IE = yT
1 E−x2 + xT

1 E+y2 = 0.
b. If α1 
= ±α2 
= 0, then yT

1 E−x2 = xT
1 E+y2 = 0.

For the sake of presentation, in what follows we either assume that M is definite or
only provide proofs for definite M whenever one of K and M is required to be definite.
Doing so loses no generality because the interchangeable roles played by K and M
make it rather straightforward to create a version for the case when K is definite by
simply swapping K and M in each of their appearances and E+ and E− in each of
their appearances.

Theorem 2.2 Suppose that M 	 0, and define C and D by (2.1). Then the following
statements are true:

1. There exist nonsingular X , Y ∈ R
n×n such that

K = CY�2YTCT, M = DXX T DT, (2.7)

where � = diag(λ1, λ2, . . . , λn) and X = Y−T.
2. If K is also definite, then all λi > 0 and H − λE is diagonalizable:

H Z = E Z

[
�

−�

]
, where Z = �−T

[Y� Y�

X −X
]

. (2.8)

3. H − λE is not diagonalizable if and only if λ1 = 0 which happens when and only
when K is singular.

4. The ith column of Z is the eigenvector of H − λE corresponding to λi , where
1 ≤ i ≤ n, and it is unique if
a. λi is a simple eigenvalue of (2.2), or
b. i = 1, λ1 = +0 < λ2. In this case, 0 is a double eigenvalue of H − λE but

there is only one eigenvector associated with it.
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Generalized linear response eigenvalue problem 37

5. If 0 = λ1 = · · · = λ� < λ�+1, then the Kronecker canonical form of H − λE is

[
0 0
1 0

]
⊕ · · · ⊕

[
0 0
1 0

]
︸ ︷︷ ︸

�

⊕ diag(λ�+1,−λ�+1, . . . , λn,−λn)− λI2n, . (2.9)

where X1 ⊕ · · · ⊕ Xk denote a block-diagonal matrix with i th diagonal block
Xi . Thus H − λE has 0 as an eigenvalue of algebraic multiplicity 2� with only �

linearly independent eigenvectors which are the columns of �−T
[

0
X(:,1:�)

]
.

2.2 Pair of deflating subspaces

Let U ,V ⊆ R
n be subspaces. We call {U ,V} a pair of deflating subspaces of H −λE

if
KU ⊆ E+V and MV ⊆ E−U . (2.10)

Let U ∈ R
n×k and V ∈ R

n×� be the basis matrices for the subspaces U and V ,
respectively, where dim(U) = k and dim(V) = �. Then (2.10) implies that there exist
KR ∈ R

�×k and MR ∈ R
k×� such that

KU = E+V KR, MV = E−U MR. (2.11)

Given U and V , both KR and MR are uniquely determined by respective equations
in (2.11), but there are numerous ways to express them. In fact for any left general-
ized inverses U� and V � of E−U and E+V , respectively, i.e., U�E−U = Ik and
V �E+V = I�,

KR = V �KU, MR = U�MV . (2.12)

There are infinitely many left generalized inverses U� and V �. For example,

U� = (U T E−U )−1U T if (U T E−U )−1exists,

V � = (V T E+V )−1V T if (V T E+V )−1exists

or, if U T E+V = (V T E−U )T is nonsingular, then

U� = (V T E−U )−1V T, V � = (U T E+V )−1U T. (2.13)

But still KR and MR are unique. The left generalized inverses in (2.13) will become
important later in preserving symmetry in K and M .

Define

HR =
[

0 KR
MR 0

]
. (2.14)

Then HR is the restriction of H − λE onto V ⊕ U with respect to the basis matrix
V ⊕U :

H

[
V

U

]
= E

[
V

U

]
HR. (2.15)
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38 Z. Bai, R.-C. Li

HR in (2.14) inherits the block structure in H : zero blocks remain zero blocks. But
when K and M are symmetric, in general HR may lose the symmetry property in its
off-diagonal blocks KR and MR, not to mention positive semi-definiteness in K and
M . We propose a modification to HR to overcome this potential loss, when

W
def= U T E+V

is nonsingular. Factorize W = W T
1 W2, where W1 and W2 are nonsingular, and define

HSR =
[

0 W−T
1 U T KU W−1

1
W−T

2 V T MV W−1
2 0

]
. (2.16)

Note HSR shares not only the block structure in H but also the symmetry and semi-
definiteness in its off-diagonal blocks.

Theorem 2.3 Let HSR be defined by (2.16). Then

H

[
V W−1

2
U W−1

1

]
= E

[
V W−1

2
U W−1

1

]
HSR. (2.17)

Consequently, if (λ̂, ẑ) is an eigenpair of HSR, then z =
[

y
x

]
=

[
V W−1

2 ŷ
U W−1

1 x̂

]
is an

eigenpair of the LR eigenproblem H−λE, where ẑ =
[

ŷ
x̂

]
is conformally partitioned.

Proof Equations in (2.11) hold for some KR and MR. Thus

U T KU = (U T E+V )KR = W T
1 W2 KR,

V T MV = (V T E−U )MR = W T
2 W1 MR,

which gives

W−T
1 U T KU W−1

1 = W2 KRW−1
1 , W−T

2 V T MV W−1
2 = W1 MRW−1

2 . (2.18)

Now use (2.11) and (2.18) to get

K (U W−1
1 ) = E+V KRW−1

1

= E+(V W−1
2 )(W2 KRW−1

1 )

= E+(V W−1
2 )(W−T

1 U T KU W−1
1 ),

M(V W−1
2 ) = E−(U W−1

1 )(W−T
2 V T MV W−1

2 ).

They yield (2.17).
Multiply ẑ to the both sides of (2.17) from the right and use HSR ẑ = λ̂ẑ to conclude

the rest of the theorem. ��
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Generalized linear response eigenvalue problem 39

Note that the well-definedness of HSR as in (2.16) alone does not require
{span(U ), span(V )} be a pair of deflating subspaces of H − λE . For that, the non-
singularity of U T E+V is sufficient. HSR will play particularly important roles in the
rest of this article.

2.3 Approximate pair of deflating subspaces

In practical computations, rarely pairs of exact deflating subspaces are known, only
approximate ones. The question then arises: how to compute approximate eigenpairs
of H − λE given a pair of approximate deflating subspaces. Theorem 2.3 shed light
on how this can be done.

Let {U ,V} be a pair of approximate deflating subspaces. Pick basis matrices U
and V of U and V , respectively, and define HSR according to (2.16). The following
algorithm returns approximate eigenvalues and eigenvectors of H−λE from the given
approximate pair of deflating subspaces {U ,V}:
Algorithm 2.1 1. Construct HSR as in (2.16) if U T E+V is nonsingular;

2. Compute the eigenpairs

{
λ̂,

[
ŷ
x̂

]}
of HSR;

3. The computed eigenvalues λ̂ approximate some eigenvalues of H − λE , and the

associated approximate eigenvectors are

[
V W−1

2 ŷ
U W−1

1 x̂

]
according to Theorem 2.3.

Given two subspaces U and V , there are many ways to construct HSR due to the
factorization W = W T

1 W2 and basis matrices U and V are not unique. The argument
similar to the one in [3] can be used to argue that the approximations by Algorithm 2.1
are invariant with respect to how HSR is constructed. See also [1].

3 Minimization principles

Define the functional

ρ(x, y)
def= xT K x + yT My

2|xT E+y| , (3.1)

where yT E−x can be used in place of xT E+y due to the fact (xT E+y)T = yT E−x
for any x and y. Relating (1.5) to (1.4) through the transformation (1.7), we find

ρ(x, y) ≡ 
(u, v)
def=

[
u
v

]T [
A B
B A

] [
u
v

]
∣∣∣∣∣
[

u
v

]T [
� �

−� −�

] [
u
v

]∣∣∣∣∣
. (3.2)

Both 
(u, v) and ρ(x, y) were defined in [2] but only for the case E± = In and,
correspondingly, � = In and � = 0. We will call them, without distinction, the
Thouless functional (in different forms).
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40 Z. Bai, R.-C. Li

Several theoretical results for the case E = I2n were established in [2]. In this
section, we establish analogs of these results for the matrix pencil H − λE .

3.1 Minimization principles

Theorem 3.1 is actually a corollary of Theorem 3.2, it is presented here for its sim-
plicity.

Theorem 3.1 We have
λ1 = inf

x,y
ρ(x, y). (3.3)

Moreover, “inf” can be replaced by “min” if and only if both K , M 	 0. When both

K , M 	 0, the optimal argument pair (x, y) gives rise to an eigenvector z =
[

y
x

]
of

H − λE associated with λ1.

Proof It is easy to see that

ρ(x, y) = xTKx+ yTMy
2|xTy| ,

where x = CTx, y = DT y, and K and M are as given in (2.3). The theorem is then a
consequence of [2, Theorem 3.1]. ��

Owing to that (1.5) and (1.4) being equivalent through the transformation (1.7), we
have for the original LR problem (1.4)

λ1 = inf
u,v


(u, v). (3.4)

For the case � = In and � = 0 and when both K , M 	 0, this was established by
Thouless [19].

Theorem 3.2 We have

k∑
i=1

λi = 1

2
inf

U T E+V=Ik
U,V∈Rn×k

trace(U T KU + V T MV ). (3.5)

Moreover, “inf” can be replaced by “min” if and only if both K , M 	 0. When both
K , M 	 0 and if also λk < λk+1, then for any U and V that attain the minimum,
{span(U ), span(V )} is a pair of deflating subspaces of H−λE and the corresponding
HSR has eigenvalues ±λi for 1 ≤ i ≤ k.

Proof We notice that

U T KU + V T MV = UTKU + VTMV, U T E+V = UTV,
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Generalized linear response eigenvalue problem 41

where U = CTU and V = DTV . Therefore, the theorem is a consequence of
[2, Theorem 3.2], ��

Exploiting the close relation (3.2) between the two different functionals 
(·, ·) and
ρ(·, ·), we have by Theorem 3.2 the following theorem for the original LR eigenvalue
problem (1.4).

Theorem 3.3 Suppose that A, B, � ∈ R
n×n are symmetric and � ∈ R

n×n is anti-
symmetric, and that both A ± B � 0 and one of them is definite and � ± � are
nonsingular. Then we have

k∑
i=1

λi = 1

2
inf trace

([
U
V

]T [
A B
B A

] [
U
V

])
, (3.6)

where “inf” is taken over all U, V ∈ R
n×k subject to

[
U
V

]T [
� �

−� −�

] [
U
V

]
= 2Ik and

[
U
V

]T [
� �

−� −�

] [
V
U

]
= 0. (3.7)

Moreover, “inf” can be replaced by “min” if and only if both A ± B 	 0.

Proof Assume the assignments in (1.6) for K and M . We have

[
U
V

]T [
A B
B A

] [
U
V

]
=

[
V̂
Û

]T [
M

K

] [
V̂
Û

]
= Û T KÛ + V̂ T MV̂ ,

where
[

V̂
Û

]
= J T

[
U
V

]
= 1√

2

[
U + V
U − V

]
.

Therefore

inf
Û T E+ V̂=Ik

trace(Û T KÛ + V̂ T MV̂ )

= inf
(U−V )T E+(U+V )=2Ik

trace

([
U
V

]T [
A B
B A

] [
U
V

])
, (3.8)

where E± = � ±�. We claim

(U − V )T E+(U + V ) = 2Ik ⇔ (3.7). (3.9)

This is because (U − V )T E+(U + V ) = 2Ik and its transpose version give

U T E+U +U T E+V − V T E+U − V T E+V =2Ik, (3.10a)

U T E−U + V T E−U −U T E−V − V T E−V =2Ik . (3.10b)
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42 Z. Bai, R.-C. Li

Add both equations in (3.10) and subtract one from the other to get

U T�U +U T�V − V T�U − V T�V =2Ik,

U T�U − V T�U +U T�V − V T�V =0.

They are equivalent to (3.7). Equation (3.6) is now a consequence of Theorem 3.2,
(3.8), and (3.9). ��

3.2 Cauchy-like interlacing inequalities

The following theorem can be regarded as an extension of Cauchy’s interlacing
inequalities for the symmetric eigenvalue problem.

Theorem 3.4 Let U, V ∈ R
n×k such that W

def= U T E+V is nonsingular. Factorize
W = W T

1 W2, where Wi ∈ R
k×k are nonsingular, and define HSR by (2.16). Denote

by ±μi for 1 ≤ i ≤ k the eigenvalues of HSR, where 0 ≤ μ1 ≤ · · · ≤ μk . Then

λi ≤ μi ≤ β λi+n−k for 1 ≤ i ≤ k, (3.11)

where β = √min{κ(K), κ(M)}/cos 
 (CTU , DTV), κ(X)
def= ‖X‖2‖X−1‖2 is the

spectral condition number of the matrix X,U = span(U ) and V = span(V ), and

 (CTU , DTV) is the angle between CTU and DTV .

Furthermore, if λk < λk+1 and λi = μi for 1 ≤ i ≤ k, then

1. U = span(C−TX(1:k,:)) when3 M 	 0, where X is as in Theorem 2.2;
2. {U ,V} is a pair of deflating subspaces of H−λE corresponding to the eigenvalues
±λi for 1 ≤ i ≤ k of (1.5) when both K , M 	 0.

Proof Apply [2, Theorem 4.1] to the eigenvalue problem for H in (2.2). ��
The inequalities in (3.11) mirror Cauchy’s interlacing inequalities for the symmetric
eigenvalue problem. But the upper bound on μi by (3.11) is more complicated. The
factor [cos 
 (CTU , DTV)]−1 in general cannot be removed according to the example
in [2, Remark 4.2] for the case C = D = I .

Theorem 3.5 Under the assumptions of Theorem 3.4, if either E−U ⊆ MV when
M 	 0 or E+V ⊆ KU when K 	 0, then

λi ≤ μi ≤ λi+n−k for 1 ≤ i ≤ k. (3.12)

Proof Note that

E−U ⊆ MV ⇔ CTU ⊆MDTV, E+V ⊆ KU ⇔ DTV ⊆ KCTU

and then apply [2, Theorem 4.3] to the eigenvalue problem for H in (2.2). ��

3 A similar statement for the case in which K 	 0 but M � 0 can be made, noting that the decompositions
in (2.7) no longer hold but similar decompositions exist.

123



Generalized linear response eigenvalue problem 43

4 Best approximations by a pair of subspaces

Recall the default assumption that K , M � 0 and one of them is definite. Let {U ,V}
be a pair of approximate deflating subspaces of H − λE and dim(U) = �1 and
dim(V) = �2. Motivated by the minimization principles in Theorems 3.1 and 3.2, we
would seek the best approximations to λ j for 1 ≤ j ≤ k in the sense of

1

2
inf

Û T E+ V̂=Ik
span(Û )⊆U ,span(V̂ )⊆V

trace(Û T KÛ + V̂ T MV̂ ) (4.1)

and their associated approximate eigenvectors. Necessarily k ≤ �. To this end, we
divide our investigation into two cases. Let U ∈ R

n×�1, V ∈ R
n×�2 be the basis

matrices of U and V , respectively, and set W = U T E+V . The two cases are

1. W is nonsingular. Necessarily, �1 = �2. Set � = �1.
2. W is singular or �1 
= �2.

For the first case, i.e., W is nonsingular, let us factorize W = W T
1 W2, where Wi ∈ R

�×�

are nonsingular4. Note that any Û and V̂ such that span(Û ) ⊆ U , span(V̂ ) ⊆ V , and
Û T E+V̂ = Ik can be written as

Û = U W−1
1 X̂ , V̂ = V W−1

2 Ŷ ,

where X̂ , Ŷ ∈ R
�×k and X̂TŶ = Ik , and vice versa. Hence we have

Û T KÛ + V̂ T MV̂ = X̂TW−T
1 U T KU W−1

1 X̂ + Ŷ TW−T
2 V T MV W−1

2 Ŷ

and thus

inf
Û T E+ V̂=Ik

span(Û )⊆U ,span(V̂ )⊆V

trace(Û T KÛ + V̂ T MV̂ )

= inf
X̂TŶ=Ik

trace(X̂TW−T
1 U T KU W−1

1 X̂ + Ŷ TW−T
2 V T MV W−1

2 Ŷ ). (4.2)

By Theorem 3.2, we know that the right-hand side of (4.2) is the sum of the k smallest
eigenvalues with the positive sign of HSR defined earlier in subsection 2.2:

HSR =
[

0 W−T
1 U T KU W−1

1
W−T

2 V T MV W−1
2 0

]
∈ R

2�×2�. (2.16)

In summary, the best approximations to the first k eigenvalues with the positive sign
of H − λE within the pair of approximate deflating subspaces are those of HSR.

4 How this factorization is done is not essential mathematically. But it is included to accommodate cases
when such a factorization may offer certain conveniences. In general, simply taking W1 = W T and W2 = I�
or W1 = I� and W2 = W may be sufficient.
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Algorithmically, denote by μ j ( j = 1, . . . , �) the eigenvalues with the positive sign
of HSR in the ascending order, i.e., 0 ≤ μ1 ≤ · · · ≤ μ�, and by ẑ j the associated
eigenvectors:

HSR ẑ j = μ j ẑ j , ẑ j =
[

ŷ j

x̂ j

]
. (4.3)

It can be verified that

ρ(U W−1
1 x̂ j , V W−1

2 ŷ j ) = μ j for j = 1, . . . , �.

Naturally, according to Algorithm 2.1, we take λ j ≈ μ j and the corresponding approx-
imate eigenvectors of H − λE as

z̃ j ≡
[

ỹ j

x̃ j

]
=

[
V W−1

2 ŷ j

U W−1
1 x̂ j

]
for j = 1, . . . , �. (4.4)

In practice, not all of the approximate eigenpairs (μ j , z̃ j ) are equally accurate to the
same level. Usually the first few pairs are more accurate than the next few.

For the ease of reference, we summarize the above findings into the following
theorem.

Theorem 4.1 Let {U ,V} be a pair of approximate deflating subspaces of H − λE
with dim(U) = dim(V) = �, and let U, V ∈ R

n×� be the basis matrices of U and V ,

respectively. If W
def= U T E+V is nonsingular, then the best approximations to λ j for

1 ≤ j ≤ k in the sense of (4.1) are the eigenvalues μ j of HSR defined in (2.16) with
the corresponding approximate eigenvectors given by (4.4), and

k∑
j=1

μ j = 1

2
inf

Û T E+ V̂=Ik
span(Û )⊆U ,span(V̂ )⊆V

trace(Û T KÛ + V̂ T MV̂ ).

The next theorem turns the eigenvalue problem of HSR into a generalized eigenvalue
problem of the same kind as H − λE . We omit its proof because of its simplicity.

Theorem 4.2 Let U ∈ R
n×k and V ∈ R

n×k such that W
def= U T E+V is nonsingular,

and define HSR as in (2.16). Then the eigenvalues of HSR are same as those of the
matrix pencil

[
U

V

]T

(H − λE)

[
V

U

]
=

[
U T KU

V T MV

]
− λ

[
U T E+V

V T E−U

]
, (4.5)

and the eigenvectors ẑ of HSR and those ž of the pencil are related by ẑ = (W2⊕W1)ž.
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Remark 4.1 The best approximation technique so far is based on the minimization
principles in Theorems 3.1 and 3.2. Naturally one may wonder if a similar technique
could be devised using the minimization principles in Theorem 3.3 for the original LR
eigenvalue problem (1.4). But that seems hard if we seek to project each individual
matrices A, B, �, and � separately. Alternatively, we may resort to Theorem 4.2 by
recasting the projection in (4.5) back to the original LR eigenvalue problem (1.4). The
resulting scheme turns out to be the projection idea in [14], where Olsen, Jensen, and
Jørgensen [14] were simply aiming at producing a much smaller projected problem
of the same kind in the form of (1.4). Note that Theorem 3.3 was not yet known in
1988 and thus it was not possible in [14] to investigate any issue regarding the best
possible approximations in the sense of the theorem. What we are doing here is to not
only produce a much smaller projected problem of the same kind in form as (1.5) but
also make sure the projected problem to give the best possible approximations to the
desired eigenvalues. Despite that we seek our projection scheme to achieve multiple
goals, the end result is not essentially different from the one in [14]. That is remarkable.

♦

It turns out the second case (namely W is singular or �1 
= �2) is much more
complicated, but the conclusion is similar in that the optimization problem (4.1) can
still be solved through solving a smaller eigenvalue problem for a projection matrix
ĤSR to be defined in Appendix A, where Theorem 8.1 similar to Theorem 4.1 will be
presented.

5 Locally optimal 4-D CG algorithms

5.1 4-D search

Line search is a common approach in the process of optimizing a function value. For
our case, we are interested in solving

inf
x,y

ρ(x, y) = inf
x,y

xT K x + yT My

2|xT E+y| (5.1)

in order to compute λ1 and its associated eigenvector of H − λE .

Given a search direction

[
q
p

]
from the current position

[
y
x

]
, the basic idea of the

standard line search is to look for the best possible scalar argument t on the line

{[
y
x

]
+ t

[
q
p

]
: t ∈ R

}
(5.2)

to minimize ρ:
min

t
ρ(x + tp, y + tq). (5.3)
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For the steepest descent method, the search directions p and q are the gradients [1] of
ρ(x, y) with respect to x and y:

∇xρ = 1

xT E+y

[
K x − ρ(x, y) E+y

]
, ∇yρ = 1

xT E+y

[
My − ρ(x, y) E−x

]
.

(5.4)
Note that there is a close relation between these two gradients and the residual:

H z − ρ(x, y)Ez = xT E+y

[∇xρ

∇yρ

]
. (5.5)

Namely the block vector obtained by stacking∇xρ over∇yρ is parallel to the residual.
The idea of the dual-channel line search in [4] for the case E = I2n can be readily

extended to solve the minimization problem

min
s,t

ρ(x + sp, y + tq). (5.6)

It goes as follows: solve (5.6) iteratively by freezing one of s and t and minimize
the functional ρ over the other in an alternative manner. Choices of p and q in (5.6)
include the gradients ∇xρ and ∇yρ as well.

However we did not pursue these ideas for the reasons as discussed in [3]. Instead,
we look for four scalars α, β, s, and t to minimize ρ(αx + sp, βy + tq). This no
longer performs a line or dual search, but a 4-dimensional subspace search:

inf
α,β,s,t

ρ(αx + sp, βy + tq) = min
u∈span(U ), v∈span(V )

ρ(u, v), (5.7)

within the 4-dimensional subspace

{[
βy + tq
αx + sp

]
for all scalars α, β, s, and t

}
, (5.8)

where U = [x, p] ∈ R
n×2 and V = [y, q] ∈ R

n×2. The right-hand side of (5.7) can
be solved by the methods given in section 4 if U T E+V is nonsingular (the common
case) or in Appendix A otherwise.

5.2 Algorithms

The minimization principle (3.3)/(3.4), and the one in Theorem 3.2 make it tempting to
apply steepest descent (SD) or nonlinear CG algorithms [13] to solve the LR eigenvalue
problem. For the case � = In and � = 0 (which corresponds to E = I2n), such
applications had been attempted in [10,12] to solve the LR eigenvalue problem (1.2).
Conceivably when only one eigenvalue and its associated eigenvector are requested, it
matters little, if any, to apply CG to ρ(x, y) based on (3.3) for the eigenvalue problem
(1.5) or to 
(u, v) based on (3.4) for the original eigenvalue problem (1.4). But it is
a very different story if more than one eigenpair are requested, in which case block
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algorithms are better options. As in [3] which is for the case E = I2n , we will present
locally optimal 4-D CG algorithms for the current case, based on the minimization
principle (3.5) and the Cauchy-like interlacing inequalities in Theorem 3.4. This is
Algorithm 5.1 below, collectively called the Locally Optimal Block Preconditioned
4-D CG Algorithm (LOBP4DCG), where k = 1 or k > 1 corresponds to a no-block
or block version, and


 =
[

0 In

In 0

]
(5.9)

or some nontrivial ones corresponds to a no-preconditioned or preconditioned version.

Algorithm 5.1 The locally optimal 4-D CG algorithms:

0 Given initial approximations X0 and Y0 having k columns

such that columns of Z0 =
[

Y0
X0

]
are approximate eigen-

vectors of H − λE associated with λ j , 1 ≤ j ≤ k.
1 for i = 0, 1, . . . until convergence:
2 ρ j = ρ((Xi )(:, j), (Yi )(:, j)), 1 ≤ j ≤ k;
3 Pi = K Xi − E+Yi diag(ρ1, . . . , ρk),

Qi = MYi − E−Xi diag(ρ1, . . . , ρk);

3.1

[
Qi

Pi

]
← 


[
Pi

Qi

]
if the preconditioner 
 is given;

4.1 For i = 0: U = [Xi , Pi ], V = [Yi , Qi ];
4.2 For i > 0: U = [Xi , Xi−1, Pi ], V = [Yi , Yi−1, Qi ];
4.3 Orthogonalize the columns of U and V ;
4.4 W = U T E+V = W T

1 W2;
5 Construct HSR as in (2.16) (assume W is nonsingular);
6 Compute the k smallest eigenvalues with the positive

sign of HSR, and the associated eigenvectors as in (4.3);
7 Xi+1 = U W−1

1 [x̂1, . . . , x̂k], Yi+1 = V W−1
2 [ŷ1, . . . , ŷk];

8 Normalize each column of Zi+1 =
[

Yi+1
Xi+1

]
.

9 end

Most comments we made for [3, Algorithm 4.1] there apply here (see also [1]). But
we will briefly discuss the choosing of a preconditioner 
. Taking 
 as in (5.9) means
no preconditioner. In general, a generic preconditioner to compute the eigenvalues of
H − λE near a prescribed point μ is


 = (H − μE)−1.

When μ is closer to the desired eigenvalues than any others, the preconditioned
directions should have “larger” components in the desired eigenvectors than the ones
obtained without preconditioning. Since we are particularly interested in the smallest
eigenvalues with the positive sign, μ = 0 is often an obvious choice. Then
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[∇xρ

∇yρ

]
=

[
0 M−1

K−1 0

] [∇xρ

∇yρ

]
=

[
M−1∇yρ

K−1∇xρ

]
≡

[
q
p

]
. (5.10)

In this case, both p and q can be computed by using the conjugate gradient
method [6,8].

6 Numerical results

In this section, we present some numerical results to illustrate the essential convergence
behaviors of locally optimal 4-D CG algorithms in Sect. 5. The matrices K , M 	 0
in the LR problem (1.5) are chosen from [5], and E+ is a sparse random matrix E+.
Specifically, n = 3, 600, K is bcsstk21, and M is the n × n leading principle
matrix of sts4098, E+ = sprandn(n,n,0.1) in MATLAB. Both K and M are
first symmetrically permuted through MATLAB’s symamd (symmetric approximate
minimum degree permutation) in attempt to reduce the numbers of fill-ins in their
respective incomplete Cholesky decompositions.

Our goal is to compute 4 smallest positive eigenvalues 0 < λ1 < λ2 < λ3 < λ4
and corresponding eigenvectors z1, z2, z3, z4 of H − λE . The initial approximate
eigenvectors of zi are randomly chosen. Two different preconditioners are used to
approximate

H−1 =
[

0 M−1

K−1 0

]
.

The first preconditioner 
1 is constructed through incomplete Cholesky decomposi-
tions of K and M :


1 =
[

0 (RT
M RM )−1

(RT
K RK )−1 0

]
,

where RK and RM are the incomplete Cholesky decomposition factors, respectively.
It turns out that both cholinc(K,′0′) and cholinc(M,′0′) with no fill-ins do not
exists; so we end up using

RK = cholinc(K,tol), RM = cholinc(K,tol) (6.1)

with a tolerance tol. Among various tol we tested, we found that for tol = 10−4

or smaller, 
1 works very well, but not so for tol = 10−3 or bigger. In the reported
results below, tol = 10−4.

The second preconditioner 
2 is via applying H−1 approximately by calculat-
ing the preconditioned vectors p and q as in (5.10) by the preconditioned linear CG
method [6,8] with stopping tolerance 10−2 on the associated normalized residual
norms or maximum 20 iterations. The preconditioners for calculating p and q are
(RT

K RK )−1 and (RT
M RM )−1, respectively, with again RK and RM as given by (6.1).

Note both K and M are very ill-conditioned: κ(K ) = 4.5 · 107 and κ(M) = 4.3 · 108.
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Fig. 1 The convergence behaviors of the locally optimal block 4-D preconditioned CG algorithms for
computing the 4 smallest positive eigenvalues of an made-up LR problem.

The plain (i.e., without a suitable preconditioner) linear CG iteration for comput-
ing p and q converges extremely slowly. But the preconditioners (RT

K RK )−1 and
(RT

M RM )−1 with modest fill-in tolerance 10−3 are sufficient for the linear CG itera-
tion.

Note that 
1 can be regarded as a 
2 with using just one step of the linear CG
to compute the preconditioned vectors p and q. This explains why a smaller tol in
(6.1) is needed for constructing 
1, while a larger tol in (6.1) for constructing 
2 is
fine so long as the associated linear systems are solved with adequate accuracy (recall
the stopping tolerance 10−2).

Figure 1 shows the normalized residual norms of a MATLAB implementation of
Algorithm 5.1 with the preconditioners 
1 and 
2. The normalized residual norms
for the j th approximate eigenpair (λ

(i)
j , z(i)

j ) at the i th iterative step are defined by

‖H z(i)
j − λ

(i)
j Ez(i)

j ‖1
(‖H‖1 + λ

(i)
j ‖E‖1)‖z(i)

j ‖1
,

where ‖ ·‖1 is the �1-norm of a vector or the �1-operator norm of a matrix. We observe
rather steady convergence towards the desired 4 eigenpairs. Other examples we have
run but not reported here show similar behavior.

7 Concluding remarks

We have presented minimization principles and Cauchy-like interlacing inequalities
for the generalized LR eigenvalue problem. These new results mirror the three well-
known results for the eigenvalue problem of a real symmetric matrix, and enable
us to devise new efficient numerical methods for computing the first few smallest
eigenvalues with the positive sign and corresponding eigenvectors simultaneously.
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Although, throughout this paper, it is assumed K , M , and E± are real matrices,
all results are valid for Hermitian positive semi-definite K and M with one of them
being definite after minor changes: replacing all R by C and all superscripts (·)T by
complex conjugate transposes (·)H.

The numerical results in Sect. 6 demonstrates the effectiveness of the new algo-
rithms. Although they are for an artificial generalized LR problem. we argue that
its numerical behavior is rather suggestive. In the future, we would like to test the
proposed method on realistic LR eigenvalue problems arising from the excited states
calucation in computational quantum physics [14].

Acknowledgments We thank the referees for valuable comments and suggestions to improve the pre-
sentation of the paper Bai is supported in part by NSF grants DMR-1035468 and DMS-1115817. Li is
supported in part by NSF grant DMS-1115834.

Appendix: Best approximations: the singular/unequal dimension case

This appendix continues the investigation in Sect. 4 to seek best approximate eigenpairs
of H − λE for given {U ,V}, a pair of approximate deflating subspaces of H − λE
with dim(U) = �1 and dim(V) = �2. In Sect. 4, we have treated the case in which

�1 = �2 and W
def= U T E+V is nonsingular, where U ∈ R

n×�1, V ∈ R
n×�2 are the

basis matrices of U and V , respectively. In what follows, we will focus on the general
case: �1 and �2 are not necessarily equal or W may be singular.

The case is much more complicated than the one in section 4, but it can be handled
in the similar way as in [3] which is for E = I2n . So we will simply summarize the
results and the reader is referred to [1, Appendix A] for detail.

Factorize

W = W T
1 W2, Wi ∈ R

r×�i , r = rank(W ) ≤ min
i

�i . (8.1)

Both Wi have full row rank. Factorize5

W T
i = Qi

[
Ri

0

]
fori = 1, 2, (8.2)

where Ri ∈ R
r×r , Qi ∈ R

�i×�i (i = 1, 2) are nonsingular. Partition

Q−1
1 U T KU Q−T

1 =
[ r �1−r

r K11 K12

�1−r K T
12 K22

]
, (8.3a)

Q−1
2 V T MV Q−T

2 =
[ r �2−r

r M11 M12

�2−r MT
12 M22

]
. (8.3b)

5 Computationally, this can be realized by the QR decompositions of W T
i . For more generality in presen-

tation, we do not assume that they have to be QR decompositions.
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Set

ĤSR =
[

0 R−1
1 K11 R−T

1
R−1

2 M11 R−T
2 0

]
∈ R

2r×2r , (8.4)

where K †
22 and M†

22 are the Moore-Penrose inverses of K22 and M22, respectively, and

K11 = K11 − K12 K †
22 K H

12, M11 = M11 − M12 M†
22 MH

12. (8.5)

Denote by μ j for j = 1, . . . , r the eigenvalues with the positive sign of ĤSR in the
ascending order and by ẑ j the associated eigenvectors:

ĤSR ẑ j = μ j ẑ j , ẑ j =
[

ŷ j

x̂ j

]
. (8.6)

It can be verified that ρ(x̃ j , ỹ j ) = μ j for j = 1, . . . , r, where

x̃ j = U Q−T
1

[
R−T

1 x̂ j

u j

]
, ỹ j = V Q−T

2

[
R−T

2 ŷ j

v j

]
(8.7)

for any u j and v j satisfying

K22u j = −K T
12 R−T

1 x̂ j , M22v j = −MT
12 R−T

2 ŷ j . (8.8)

Naturally the approximate eigenvectors of H − λE should be taken as

z̃ j =
[

ỹ j

x̃ j

]
for j = 1, . . . , r. (8.9)

Theorem 8.1 Let {U ,V} be a pair of approximate deflating subspaces of H−λE with
dim(U) = �1 and dim(V) = �2, and let U ∈ R

n×�1 , V ∈ R
n×�2 be the basis matrices

of U and V , respectively. Let ĤSR be defined by (8.4). Then the best approximations
to λ j for 1 ≤ j ≤ k in the sense of (4.1) are the corresponding eigenvalues of ĤSR,
with the corresponding approximate eigenvectors given by (8.7)–(8.9).

Despite much more complicated appearance of ĤSR compared to HSR in Sect. 4, our
next theorem surprisingly unifies both.

Theorem 8.2 The eigenvalues of ĤSR in (8.4) are the same as the finite eigenvalues
of

Ȟ − λĚ : =
[

U 0
0 V

]T

(H − λE)

[
V 0
0 U

]

=
[

0 U T KU
V T MV 0

]
− λ

[
U T E+V

V T E−U

]
(8.10)
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and the eigenvector ẑ =
[

ŷ
x̂

]
of ĤSR and the eigenvector ž =

[
y̌
x̌

]
of the pencil (8.10)

associated with a finite eigenvalue are related by

x̌ = Q−T
1

[
R−T

1 x̂
−K †

22 K T
12 R−T

1 x̂ + g

]
, y̌ = Q−T

2

[
R−T

2 ŷ
−M†

22 MT
12 R−T

2 ŷ + h

]
, (8.11)

where g is any vector in the kernel of K22 and h is any vector in the kernel of M22. In
particluar, if �1 = �2 = r , the relation in (8.11) is simplified to ẑ = (W2 ⊕ W1)ž as
in Theorem 4.2.

Proof Let Pi = Q−T
i (R−T

i ⊕ I�i−r ) for i = 1, 2 and both are nonsingular. It can be
verified that

(P1 ⊕ P2)
T(Ȟ − λĚ)(P2 ⊕ P1) =

[
0 K̂
M̂ 0

]
− λ

[
Î
0 Î T

]
,

where

M̂ =
[

R−1
2

I�2−r

] [
M11 M12

MT
12 M22

] [
R−T

2
I�2−r

]
, (8.12)

K̂ =
[

R−1
1

I�1−r

] [
K11 K12

K T
12 K22

] [
R−T

1
I�1−r

]
, (8.13)

Î =
[

Ir

0

]
∈ R

�1×�2 , (8.14)

and Ki j and Mi j are defined by 8.3. Since K and M are positive (semi)definite, we
have span(K T

12) ⊆ span(K22) and span(MT
12) ⊆ span(M22) and consequently

K22 K †
22 K T

12 = K T
12, M22 M†

22 MT
12 = MT

12. (8.15)

Let

Z1 =
[

Ir 0
−K †

22 K T
12 R−T

1 I�1−r

]
, Z2 =

[
Ir 0

−M†
22 MT

12 R−T
2 I�2−r

]
.

It can be verified that ZT
1 Î Z2 = Î and, after using (8.15),

ZT
1 K̂ Z1 =

[
R−1

1 K11 R−T
1 0

0 K22

]
, ZT

2 M̂ Z2 =
[

R−1
2 M11 R−T

2 0
0 M22

]
,
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where K11 and M11 are defined in (8.5). Hence (P1 Z1 ⊕ P2 Z2)
T(Ȟ − λĚ)(P2 Z2 ⊕

P1 Z1) is

⎡
⎢⎢⎣

r �2−r r �1−r

r 0 0 R−1
1 K11 R−T

1 0
�1−r 0 0 0 K22

r R−1
2 M11 R−T

2 0 0 0
�2−r 0 M22 0 0

⎤
⎥⎥⎦− λ

⎡
⎢⎢⎣

r �2−r r �1−r

r Ir 0 0 0
�1−r 0 0 0 0

r 0 0 Ir 0
�2−r 0 0 0 0

⎤
⎥⎥⎦ (8.16)

whose finite eigenvalues are the eigenvalues of

[
0 R−1

1 K11 R−T
1

R−1
2 M11 R−T

2 0

]
− λI2r = ĤSR − λI2r . (8.17)

Now we turn to look for the eigenvector relation. Given an eigenvector ẑ =
[

ŷ
x̂

]
of

ĤSR, we conclude by comparing (8.16) and (8.17) that the corresponding eigenvector
of the matrix pencil (8.16) is

⎡
⎢⎢⎣

ŷ
h
x̂
g

⎤
⎥⎥⎦ ,

where g is any vector in the kernel of K22 and h is any vector in the kernel of M22.

Therefore the corresponding eigenvector ž =
[

y̌
x̌

]
of Ȟ − λĚ is given by

x̌ = P1 Z1

[
x̂
g

]
, y̌ = P2 Z2

[
ŷ
h

]

which, after simplification, yields (8.11). ��

The next theorem says that there are Cauchy-like interlacing inequalities for ĤSR, too.
We omit its proof because its similarity to [3, Theorem 8.3] (see also [1, Appendix
A]).

Theorem 8.3 Assume the conditions of Theorem 8.1. Then

λi ≤ μi ≤ λi+2n−(�1+�2) for1 ≤ i ≤ r, (8.18)

where λi+2n−(�1+�2) = ∞ if i + 2n − (�1 + �2) > n.

123



54 Z. Bai, R.-C. Li

References

1. Bai, Z., Li, R.C.: Minimization principle for linear response eigenvalue problem iii: general case.
Technical Report 2013–01, Department of Mathematics, University of Texas at Arlington (2011).
Available at http://www.uta.edu/math/preprint/

2. Bai, Z., Li, R.C.: Minimization principles for the linear response eigenvalue problem I: theory. SIAM
J. Matrix Anal. Appl. 33(4), 1075–1100 (2012)

3. Bai, Z., Li, R.C.: Minimization principles for linear response eigenvalue problem II: Computation.
SIAM J. Matrix Anal. Appl. 44(2), 392–416 (2013)

4. Challacombe, M.: Linear scaling solution of the time-dependent self-consisten-field equations. e-print
arXiv:1001.2586v2 (2010)

5. Davis, T., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1),
1:1–1:25 (2011)

6. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
7. Flaschka, U., Lin, W.W., Wu, J.L.: A KQZ algorithm for solving linear-response eigenvalue equations.

Linear Algebra Appl. 165, 93–123 (1992)
8. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore

(1996)
9. Grüning, M., Marini, A., Gonze, X.: Exciton-plasmon states in nanoscale materials: breakdown of the

Tamm-Dancoff approximation. Nano Lett. 9, 2820–2824 (2009)
10. Lucero, M.J., Niklasson, A.M.N., Tretiak, S., Challacombe, M.: Molecular-orbital-free algorithm for

excited states in time-dependent perturbation theory. J. Chem. Phys. 129(6), 64–114 (2008)
11. Mehl, C., Mehrmann, V., Xu, H.: On doubly structured matrices and pencils that arise in linear response

theory. Linear Algebra Appl. 380, 3–51 (2004)
12. Muta, A., Iwata, J.I., Hashimoto, Y., Yabana, K.: Solving the RPA eigenvalue equation in real-space.

Prog. Theor. Phys. 108(6), 1065–1076 (2002)
13. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)
14. Olsen, J., Jensen, H.J.A., Jørgensen, P.: Solution of the large matrix equations which occur in response

theory. J. Comput. Phys. 74(2), 265–282 (1988)
15. Olsen, J., Jorgensen, P.: Linear and nonlinear response functions for an exact state and for an MCSCF

state. J. Chem. Phys. 82(7), 3235–3264 (1985)
16. Ring, P., Schuck, P.: The nuclear many-body problem. Springer, New York (1980)
17. Rocca, D., Bai, Z., Li, R.C., Galli, G.: A block variational procedure for the iterative diagonalization

of non-Hermitian random-phase approximation matrices. J. Chem. Phys. 136, 034–111 (2012)
18. Stratmann, R.E., Scuseria, G.E., Frisch, M.J.: An efficient implementation of time-dependent density-

functional theory for the calculation of excitation of large molecules. J. Chem. Phys. 109, 8218–8824
(1998)

19. Thouless, D.J.: Vibrational states of nuclei in the random phase approximation. Nucl. Phys. 22(1),
78–95 (1961)

20. Thouless, D.J.: The Quantum Mechanics of Many-Body Systems. Academic Press, New York (1972)
21. Tsiper, E.V.: Variational procedure and generalized Lanczos recursion for small-amplitude classical

oscillations. JETP Lett. 70(11), 751–755 (1999)

123

http://www.uta.edu/math/preprint/
http://arxiv.org/abs/arXiv:1001.2586

	Minimization principles and computation for the  generalized linear response eigenvalue problem
	Abstract
	1 Introduction
	2 Basic theory and pair of deflating subspaces
	2.1 Basics
	2.2 Pair of deflating subspaces
	2.3 Approximate pair of deflating subspaces

	3 Minimization principles
	3.1 Minimization principles
	3.2 Cauchy-like interlacing inequalities

	4 Best approximations by a pair of subspaces
	5 Locally optimal 4-D CG algorithms
	5.1 4-D search
	5.2 Algorithms

	6 Numerical results
	7 Concluding remarks
	Acknowledgments
	Appendix: Best approximations: the singular/unequal dimension case
	Appendix: Best approximations: the singular/unequal dimension case
	References


