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Abstract The locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG) for the linear

response eigenvalue problem was proposed by Bai and Li (2013) and later was extended to the generalized linear

response eigenvalue problem by Bai and Li (2014). We put forward two improvements to the method: A shifting

deflation technique and an idea of extending the search subspace. The deflation technique is able to deflate

away converged eigenpairs from future computation, and the idea of extending the search subspace increases

convergence rate per iterative step. The resulting algorithm is called the extended LOBP4dCG (ELOBP4dCG).

Numerical results of the ELOBP4dCG strongly demonstrate the capability of deflation technique and effec-

tiveness the search space extension for solving linear response eigenvalue problems arising from linear response

analysis of two molecule systems.
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1 Introduction

Consider the linear response eigenvalue problem (LREP) of the form

Hz ≡

[

0 K

M 0

][

y

x

]

= λ

[

E+ 0

0 E−

][

y

x

]

≡ λEz, (1.1)

where K and M are n× n Hermitian and positive semidefinite and one of them is definite, E± are n× n

and nonsingular. In [4], minimization principles and Cauchy-type interlacing inequalities were obtained

for (1.1). As a result, a locally optimal block preconditioned 4-d conjugate gradient method (LOBP4dCG)

was designed to compute the first few positive eigenvalues and their associated eigenvectors of interest.
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Rigorously speaking, the LREP (1.1) is not quite the linear response eigenvalue problem in its original

form [8, 23, 24]:
[

A B

−B −A

][

u

v

]

= λ

[

Σ ∆

∆ Σ

][

u

v

]

, (1.2)

where A and B are n × n Hermitian matrices and Σ and ∆ are also n × n with Σ being Hermitian

while ∆ skew-Hermitian (i.e., ∆H = −∆). Additionally, [ A B
B A ] is symmetric positive definite and [ Σ ∆

∆ Σ ] is

nonsingular [26, 32]. Although (1.1) is not the same as (1.2), the two eigenvalue problems are equivalent

through an orthogonal similarity transformation [4]. In the case of (1.2), its equivalent (1.1) has the

property that both K = A − B and M = A + B are definite and E± = Σ ± ∆ are nonsingular with

EH
+ = E−. The linear response eigenvalue problem (1.1) includes the one in [2, 3] as a special case:

E = I2n. Therefore any developments in this paper apply to the LREP there.

There was little discussion in [4] on deflation as to how to effectively deflate away known or already

computed eigenpairs for numerical efficiency in the process of computing more eigenpairs while avoiding

the known ones. Although demonstrated feasible in [3], LOBP4dCG behaves delicately and can converge

slowly when one of K and M is singular because of the appearance of eigenvalue 0. Conceivably, in this

“singular” case, this known eigenvalue 0 should be deflated before applying LOBP4dCG.

The major goals of this paper are two-fold: to propose a deflation technique and an idea of extending

search subspace for fast convergence rate. For deflation, we will develop a shifting deflation technique by a

low-rank update to either K or M so that the resulting K or M performs at the about comparable cost as

the originalK orM when it comes to do matrix-vector multiplication operations. This deflation technique

also allows us to deflate away known eigenvalue 0 if any for better numerical efficiency. For search subspace

extension, we combine the inverse-free idea of Golub and Ye [10] (also known as augmented projection

subspace in [13, 34]) with our 4-d searching idea in [3, 4]. Both deflation and search subspace extension

techniques bring significant improvements to LOBP4DCG in numerical performance as our later examples

will show. The resulting algorithm is called the extended LOBPCG (ELOBP4dCG). Along the way, we

also propose a new implementation of the method to solve the projected eigenvalue problem having the

same form as (1.1) but of much smaller scale has to be solved. In the new implementation, the projected

eigenvalue problem is converted to a singular value problem of half the size and the latter can be solved

more efficiently and robustly, namely computed approximate eigenvalues are always real.

The rest of this paper is organized as follows. Section 2 reviews theoretical foundations of the LREP.

Section 3 presents the theory of deflation. The algorithmic framework and implementation remarks of the

new ELOBP4dCG method are in Section 4. Numerical examples are presented in Section 5. Concluding

remarks are given in Section 6.

Throughout this paper, Cn×m is the set of all n×m complex matrices, Cn = Cn×1, and C = C1, and

similarly Rn×m, Rn, and R are for their real counterparts. In (or simply I if its dimension is clear from

the context) is the n× n identity matrix, and ej is its j-th column. The superscripts “T” and “H” take

transpose and complex conjugate transpose of a matrix/vector, respectively. R(X) is the column space of

a matrix X . We shall also adopt MATLAB-like convention to access the entries of vectors and matrices.

Let i : j be the set of integers from i to j inclusive. For a vector u and a matrix X , u(j) is u’s j-th

entry, X(i,j) is X ’s (i, j)-th entry; X ’s submatrices X(k:ℓ,i:j), X(k:ℓ,:), and X(:,i:j) consist of intersections

of row k to row ℓ and column i to column j, row k to row ℓ, and column i to column j, respectively. For

A ∈ Cn×n, A ≻ 0 (A � 0) means that A is Hermitian and positive (semi-)definite, and A ≺ 0 (A � 0)

means −A ≻ 0 (−A � 0).

2 Theoretical foundations

We assume that K and M are n × n Hermitian and positive semidefinite and one of them is definite.

Without loss of generality, for the sake of presentation, in what follows we assume K � 0 and M ≻ 0,

unless explicitly otherwise. The interchangeable roles played by K and M make it rather straightforward
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to create a version for the case when K is definite by simply swapping K and M in each of their

appearances and E+ and E− in each of their appearances.

Decompose E± as

EH
− = E+ = CDH, (2.1)

where C, D ∈ Cn×n are nonsingular1). With (2.1), the LREP (1.1) is equivalent to

Hz ≡

[

0 K

M 0

][

y

x

]

= λ

[

y

x

]

, (2.2a)

where

K = C−1KC−H, M = D−1MD−H,

[

y

x

]

= ΓH

[

y

x

]

and Γ =

[

D 0

0 C

]

. (2.2b)

We now have two equivalent eigenvalue problems (1.1) and (2.2a) in the sense that both have the same

eigenvalues and their eigenvectors are related by the relation shown in (2.2b).

For the eigenvalue problem (2.2a), we know that K, M � 0 because K, M � 0. As argued in [2]

for (1.1), the eigenvalues for (2.2a) are real and come in ±λ pairs. More precisely, denote the eigenvalues

of KM by λ2
i (1 6 i 6 n) in the ascending order,

0 6 λ2
1 6 λ2

2 6 · · · 6 λ2
n, (2.3)

where 0 6 λ1 6 λ2 6 · · · 6 λn. The eigenvalues of MK are λ2
i (1 6 i 6 n), too. The eigenvalues of

H − λE are then ±λi for i = 1, 2, . . . , n with the ordering

−λn 6 · · · 6 −λ1 6 +λ1 6 · · · 6 +λn. (2.4)

For convenience, we shall associate half of eigenvalues 0, if any, with the positive sign and the other half

with the negative sign, as argued in [2]. Doing so legitimizes the use of the phrase “the first k smallest

eigenvalues with the positive sign of H − λE” to refer to λi for 1 6 i 6 k without ambiguity even when

λ1 = +0. Throughout this paper, we will stick to using ±λi for 1 6 i 6 n in the order of (2.4) to denote

the eigenvalues of H − λE.

In the case of K ≻ 0, M ≻ 0, and E+ = E− = In, Thouless [31] essentially proved the following

minimizing characterization2) for λ1,

λ1 = min
x,y

ρ(x, y) with ρ(x, y) :=
xHKx+ yHMy

2|xHy|
(2.5)

which is now known as Thouless’ minimization principle, and ρ(x, y) is known as Thouless’ functional.

But in general, K � 0 and without assuming E+ = E− = In, it is shown [4] that

λ1 = inf
x,y

ρ(x, y) with ρ(x, y) :=
xHKx+ yHMy

2|xHE+y|
, (2.6)

where “ inf” can be replaced by “min” if and only if K ≻ 0. In view of (2.6), naturally ρ(x, y) in (2.6)

should be regarded as a Thouless’ functional for the case. Without confusion, we still call it Thouless’

functional.

Theorem 2.1 (See [4]). Suppose that M ≻ 0, and define C and D by (2.1). Then the following

statements are true:

(1) There exist nonsingular Φ, Ψ ∈ Cn×n such that

K = CΨΛ2ΨHCH, M = DΦΦHDH, (2.7)

1) How this factorization is done is not mathematically essential. It is included for the case when such a factorization may

be naturally available and can be exploited for numerical gains. In general, we can simply let one of C and D be In.
2) Original Thouless’ minimization principle is for (1.2) with Σ = In and ∆ = 0. The form of (2.5) is obtained by the

equivalence between (1.1) and (1.2) (see [33]).
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where Λ = diag(λ1, λ2, . . . , λn) and Φ = Ψ−H.

(2) If K is also definite, then all λi > 0 and H − λE is diagonalizable:

HΥ = EΥ

[

Λ 0

0 −Λ

]

, (2.8)

where

Υ = Γ−H

[

ΨΛ ΨΛ

Φ −Φ

]

.

(3) H−λE is not diagonalizable if and only if λ1 = 0 which happens when and only when K is singular.

(4) The i-th column of Υ is the eigenvector of H − λE corresponding to λi, where 1 6 i 6 n, and it is

unique if

(i) λi is a simple eigenvalue of (1.1), or

(ii) i = 1, λ1 = +0 < λ2. In this case, 0 is a double eigenvalue of H − λE but there is only one

eigenvector associated with it.

(5) If 0 = λ1 = · · · = λn0 < λn0+1, then the Kronecker canonical form of H − λE is

[

0 0

1 0

]

⊕ · · · ⊕

[

0 0

1 0

]

︸ ︷︷ ︸

n0

⊕ diag(λn0+1,−λn0+1, . . . , λn,−λn)− λI2n. (2.9)

Thus H − λE has 0 as an eigenvalue of algebraic multiplicity 2n0 with only n0 linearly independent

eigenvectors which are the columns of

Γ−H

[

0

Φ(:,1:ℓ)

]

.

Set

I =

[

0 In

In 0

]

, IE =

[

0 E−

E+ 0

]

= ΓI ΓH, (2.10)

where Γ is given by (2.2b). Both are Hermitian but indefinite. The matrices IE and I induce indefinite

inner products on C2n,

〈z1, z2〉IE
:= zH1 IEz2 = 〈z1, z2〉I =: zH

1 I z2,

where zi = ΓHzi. The following two theorems tell us orthogonality properties among eigenvectors and

invariant subspaces of H − λE.

Theorem 2.2 (See [4]). (1) Let (α, z) be an eigenpair of H − λE, where

z =

[

y

x

]

6= 0

and x, y ∈ Cn. Suppose α 6= 0. Then α〈z, z〉IE
= 2αxHE+y > 0 which implies 〈z, z〉IE

= 2xHE+y 6= 0.

(2) Let (αi, zi) (i = 1, 2) be two eigenpairs of H − λE. Partition

zi =

[

yi

xi

]

6= 0,

where xi, yi ∈ Cn. The following statements are true:

(i) If α1 6= α2, then 〈z1, z2〉IE
= yH1 E−x2 + xH

1 E+y2 = 0.

(ii) If α1 6= ±α2 and α1 and α2 are nonzero, then yH1 E−x2 = xH
1 E+y2 = 0.



Bai Z J et al. Sci China Math August 2016 Vol. 59 No. 8 1447

Theorem 2.3. Let

Zi =

[

Yi

Xi

]

(conformally partitioned) be the basis matrices of two invariant subspaces of H − λE, i.e.,

HZi = EZiAi (2.11)

for some square matrices Ai for i = 1, 2.

(1) If eig(A1) ∩ eig(A2) = ∅, then

ZH
1 IEZ2 ≡ XH

1 E+Y2 + Y H
1 E−X2 = 0. (2.12)

(2) If eig(A1) ∩ [eig(A2) ∪ eig(−A2)] = ∅, then

XH
1 E+Y2 = Y H

1 E−X2 = 0. (2.13)

Proof. Let Zi = ΓHZi. Then HZi = ZiAi by (2.11). We have ZH
1 (IH)HZ2 = ZH

1 (IH)Z2 since

IH is Hermitian, and also

ZH
1 (IH)HZ2 = (HZ1)

H
IZ2 = AH

1 Z
H
1 IZ2,

ZH
1 (IH)Z2 = ZH

1 I (HZ2) = ZH
1 IZ2A2.

Therefore AH
1 Z

H
1 IZ2−ZH

1 IZ2A2 = 0 which, as a Sylvester equation in ZH
1 IZ2, has a unique solution

ZH
1 IZ2 = 0 since eig(A1) ∩ eig(A2) = ∅. Now notice

ZH
1 IZ2 = ZH

1 ΓI ΓHZ2 = ZH
1 IEZ2

to get (2.12). It can be verified that HẐi = EẐi(−Ai), where

Ẑi =

[

Yi

−Xi

]

.

Thus for the same reason eig(A1) ∩ eig(−A2) = ∅ gives XH
1 E+Y2 − Y H

1 E−X2 = 0, which together

with (2.12), yields XH
1 E+Y2 = Y H

1 E−X2 = 0.

The following theorem justifies the way we normalize the basis matrix of an approximate eigenspace

associated with positive eigenvalues of H − λE in our numerical implementation later.

Theorem 2.4. Suppose K ≻ 0 and M ≻ 0, and let Z be an eigenspace of H − λE associated with

its k positive eigenvalues. Then UHKU = V HMV for any basis matrix

Z =

[

V

U

]

(conformally partitioned) of Z.

Proof. Since H is diagonalizable, we start by letting

Z =

[

V

U

]

be the eigenvector matrix for the k positive eigenvalues. Then KU = E+V Ω and MV = E−UΩ, where

Ω = diag(µ1, µ2, . . . , µk). Therefore,

UHKU = UHE+V Ω, V HMV = V HE−UΩ.
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First consider the case when the k positive eigenvalues µi are distinct. Use Theorem 2.2 to conclude

that UHE+V is diagonal and thus real; so is V HE−U . Thus they commutes with Ω. Hence,

UHKU = (UHKU)H = (UHE+V Ω)H = Ω(V HE−U) = V HE−U Ω = V HMV, (2.14)

as expected. Consider now that the k positive eigenvalues µi are not all distinct. Without loss of gener-

ality, we may assume µi are labelled in such a way that any µi of equal value are labelled consecutively.

By Theorem 2.3, UHE+V = (V HE−U)H is block diagonal with each diagonal block corresponding to a µi

of equal value. Thus it still commutes with Ω. Hence the equations in (2.14) remain valid.

Finally any basis matrix of Z takes the form ZQ for some nonsingular Q. By what we just proved, we

have

(UQ)HK(UQ) = QHUHKUQ = QHV HMVQ = (V Q)HM(V Q),

as was to be shown.

3 Deflation

We first present the following theorem that lends itself to designing a deflation technique.

Theorem 3.1. Let Ψ be the one in (2.7), J = {ij : 1 6 j 6 k} ⊂ {1, 2, . . . , n}, and let V ∈ Cn×k with

rank(V ) = k satisfy

R(DHV ) = R(Ψ(:,J)), (3.1)

or equivalently DHV = Ψ(:,J)Q for some nonsingular Q ∈ Ck×k, where D is defined as (2.1). Let ξ > 0,

and define

H =

[

0 K + ξ(E+V )(E+V )H

M 0

]

.

Then H − λE and H − λE share the same eigenvalues ±λi for i 6∈ J and the corresponding eigenvectors,

and the rest of eigenvalues of H − λE are the square roots of the eigenvalues of Λ2
1 + ξQQH, where

Λ1 = diag(λi1 , . . . , λik )
3).

Proof. Let Jc be the complement of J in {1, 2, . . . , n}, and write

Φ1 = Φ(:,J), Φ2 = Φ(:,Jc), Ψ1 = Ψ(:,J), Ψ2 = Ψ(:,Jc), (3.2)

and Λ2 = diag(λi)i∈Jc . It follows from (2.7) and E+ = CDH that

K = C[Ψ1,Ψ2]

[

Λ2
1

Λ2
2

]

[Ψ1,Ψ2]
HCH,

M = D[Φ1,Φ2][Φ1,Φ2]
HDH,

K + ξ(E+V )(E+V )H = C[Ψ1,Ψ2]

[

Λ2
1 + ξQQH 0

0 Λ2
2

]

[Ψ1,Ψ2]
HCH.

Therefore ±λi for i ∈ Jc are part of eigenvalues of H − λE with the same eigenvectors as the ones for

H − λE associated with eigenvalues ±λi for i ∈ Jc.

In an optimization approach like LOBP4dCG and other variations in [4], usually the eigenvalues of

H − λE emerge in sequential order: From the smallest λ1 upwards λ2, etc. Once one or several of

them converge to a preset accuracy, they should be deflated so that they will not be re-computed in the

following iterations. Theorem 3.1 points to one deflation idea of doing this. Suppose we are interested in

computing λi for 1 6 i 6 ℓ and their associated eigenvectors, and suppose k of them have been computed,

3) The conclusion of this theorem is actually valid for any scalar ξ (real or complex). We specify ξ > 0 because this is

what we need later.
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where k < ℓ. If at the same time we have V ∈ Cn×k such that (3.1) holds with J being the collection of

the indices of the k computed eigenpairs and have chosen a sufficiently large ξ > 0 such that

λ2
1 + ξ[σmin(Q)]2 > λ2

ℓ+1, (3.3)

where σmin(Q) denotes the smallest singular value of Q, then we can apply the optimization approach to

H − λE, instead of the original H −λE, to compute the rest of the desired eigenvalues and eigenvectors.

There are two issues here for this deflation idea to work: (a) We know such a ξ exists, but precisely how

large ξ should be may not be known a priori. On the other hand, it is not necessary to know the precise

value so long that (3.3) is satisfied. In practice, some rough estimate of λℓ+1 may be available or guessed.

(b) We need a V ∈ Cn×k such that (3.1) holds with J.

We now prove two theoretical results about what V should be in order to satisfy (3.1). There are two

cases to consider, one for the eigenvalue 0, if any, and the other for nonzero eigenvalues.

There are eigenvalues 0 only if K is singular. In fact, if

n > r = rank(K) > 0, (3.4)

then λi = 0 for 1 6 i 6 n− r. How can we perturb K to move these eigenvalues 0 away without affecting

all nonzero eigenvalues?

By Theorem 2.1(5), 0 as an eigenvalue of H − λE has algebraic multiplicity 2(n − r) and geometric

multiplicity n− r. Now let us look for a basis of the invariant subspace associated with the eigenvalue 0.

To this end, we first seek the invariant subspace associated with the eigenvalue 0 for the eigenvalue

problem (2.2). By Theorem 2.1(5), the invariant subspace is the same as the null space of H2. So we

need to solve

H2z ≡

[

KM 0

0 MK

][

y

x

]

= 0⇒KMy = 0 and MKx = 0.

Since M ≻ 0, the second equation MKx = 0 is equivalent to Kx = 0 which has n − r linearly

independent solutions. Let U0 ∈ Cn×(n−r) be a basis solution matrix, i.e.,

rank(U0) = n− r, KU0 = 0. (3.5)

Such a U0 is not unique, but for our purpose any one of them is good enough. Now the equation

KMy = 0 is equivalent to My ∈ R(U0) which has n− r linearly independent solutions, too. Again for

our purpose any one set of n− r linearly independent solutions to My ∈ R(U0) is good enough; so we

may take the n− r columns of

V0 = M−1U0. (3.6)

It is not difficult to see that a basis of H ’s invariant subspace corresponding the eigenvalue 0 consists of

the columns of [

0

U0

]

,

[

V0

0

]

. (3.7)

Now we shall translate them back to for H − λE. Let U0 = C−HU0 and V0 = D−HV0. Equations (3.5)

and (3.6) become

U0 ∈ C
n×(n−r), rank(U0) = n− r, KU0 = 0, MV0 = E−U0, (3.8)

and a basis of the generalized invariant subspace corresponding the eigenvalue 0 for H − λE consists of

the columns of [

0

U0

]

,

[

V0

0

]

. (3.9)

Note it is implied that V0 ∈ Cn×(n−r) by (3.8).
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Theorem 3.2. Suppose (3.4) holds and let U0, V0 ∈ Cn×(n−r) be determined by (3.8), and 4)

J = {1, 2, . . . , n− r}.

Then (3.1) holds with k = n− r.

Proof. The equations in (3.8) yield

KU0 = CΨΛ2ΨHCHU0 = 0, MV0 = DΦΦHDHV0 = E−U0. (3.10)

Partition Φ and Ψ as in (3.2) with J = {1, 2, . . . , n− r}, and accordingly

Λ = diag(0, . . . , 0
︸ ︷︷ ︸

n−r

,Λ2) with Λ2 = diag(λn−r+1, . . . , λn).

We get

ΨH
2 C

HU0 = 0, DHV0 = Φ−HΦ−1D−1E−U0 = ΨΨHCHU0 = Ψ1Ψ
H
1 C

HU0.

Since n− r = rank(ΨHCHU0) = rank(ΨH
1 C

HU0), we conclude

R(DHV0) = R(Ψ1) = R(Ψ(:,1:n−r)),

as expected.

Next, we consider positive eigenvalues.

Theorem 3.3. Let Z = [ VU ] be a basis matrix of an eigenspace subspace Z of H − λE corresponding

to its k positive eigenvalues λij for 1 6 j 6 k, and let J, Jc, Φi, and Ψi be the ones in Theorem 3.1 and

its proof. Then (3.1) holds.

Proof. First consider the case when λi 6= λj for all i ∈ J and j ∈ Jc. Then the invariant subspace

associated with all λij is unique. By Theorem 2.1, Γ−H[Ψ1Λ1

Φ1
] is also a basis matrix of the invariant

subspace, where Λ1 = diag(λi1 , . . . , λik ). Therefore there exists a nonsingular Q ∈ Rk×k such that

Z =

[

V

U

]

= Γ−H

[

Ψ1Λ1

Φ1

]

Q, (3.11)

which implies V = D−HΨ1Λ1Q, i.e., DHV = Ψ(:,J)Λ1Q. Hence (3.1) holds because Λ1Q is nonsingular.

Now suppose some λi for i ∈ J are equal to certain λj for j ∈ Jc. If such a λi repeats s times among

{λi1 , . . . , λik}, then there are s linearly independent eigenvectors associated with this λi that live in Z

and we can always adjust the decompositions in (2.7) and thus (2.8) such that Γ−H[Ψ1Λ1

Φ1
] has s columns

that span the same subspace as the ℓ linearly independent eigenvectors associated with this λi. We

perform such an adjustment for every λi as such. At the end, (3.11) still holds. So does (3.1).

Combining Theorems 3.2 and 3.3, we propose the following deflation strategy. Assume, as usual, that

K � 0, M ≻ 0. Again, there are two cases.

Case 1. Deflate eigenvalue 0. Let r = rank(K) which either is known a priori in which case a

U0 satisfying the first three requirements in (3.8) may or may not be known, or has to be numerically

determined. The latter case and the first case without the knowledge of a U0 satisfying the first three

requirements in (3.8) entail an efficient numerical way to determine r and/or a U0. An (adaptive)

symmetric block Lanczos method or a variation on K can be used to see if its smallest eigenvalues are

zeros. The use of a block version is to make sure the multiplicity n − r of 0 as an eigenvalue of K is

correctly found if K is singular. For this to happen, the block size has to be no smaller than n− r, and

therefore some adaptive strategy in updating block size may have to be used [35]. The symmetric Lanczos

methods are usually very fast in computing extreme eigenpairs [18,29,36]. Once a U0 satisfying the first

4) We know 0 = λ1 = λ2 = · · · = λn−r < λn−r+1 6 · · · 6 λn.
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three requirements in (3.8) is computed, the last equation there can be solved for V0 by the linear CG

method.

In any case, we have r = rank(K), and in the case 0 < r < n (the usual case is n − r is small, like

under 10) we have U0 and V0 that solve (3.8). Let

Vcvgd be an empty array if r = n or V0 if 0 < r < n, (3.12)

and symbolically, let

K = K + ξ(E+Vcvgd)(E+Vcvgd)
H, H =

[

0 K

M 0

]

, (3.13)

where ξ > 0 is selected sufficiently large. By “symbolically”, we mean K should never be explicitly

computed, but it exists in this form through K, E+, and Vcvgd.

Case 2. Deflate positive eigenvalue. Now we work with H − λE to compute its few smallest positive

eigenvalues and associated eigenvectors. Anytime, a new computed eigenpair (µ,zzz) is determined to

converge within a preset tolerance, Vcvgd is expanded as

Vcvgd ← [Vcvgd, vvv]

and update K and H accordingly as in (3.13), where vvv is the first half of zzz.

4 Extended LOBP4dCG

4.1 Projection subspace extension

In [3,4], we proposed the locally optimal block preconditioned 4-d CG method (LOBP4dCG) for simultane-

ous computation of the first few smallest eigenpairs of H−λE with positive sign. In what follows, we will

introduce a variation of it through incorporation of the idea of augmented subspaces introduced in [10]

(see also [17,22,25,34]). This new variation will be called the extended locally optimal block preconditioned

4-d CG (ELOB4dCG) algorithm.

Recall K � 0 and M ≻ 0. We shall first deflate away eigenvalue 0, if any, of H − λE, and then set

Vcvgd as in (3.12). We update K to K and H to H as in (3.13), accordingly. Now and from this point

forward, both K ≻ 0 and M ≻ 0 hold.

To explain the ELOBP4dCG method, we switch the LREP (1.1) to the equivalent eigenvalue prob-

lem for

AAA− λBBB ≡

[

M 0

0 K

]

− λ

[

0 E−

E+ 0

]

. (4.1)

This is a positive semidefinite pencil in the sense that AAA − λ0BBB � 0 for λ0 = 0 [19, 20] since we assume

K � 0 and M ≻ 0. When convenient, we will turn to AAA− λBBB in our later development.

The key idea for the i-th iterative step in the LOBP4dCG method is to seek the best possible approx-

imations in the subspace

span

{[

y
(i)

j

0

]

,

[

y
(i−1)

j

0

]

,

[

qj

0

]

,

[

0

pj

]

,

[

0

x
(i)
j

]

,

[

0

x
(i−1)
j

]

for 1 6 j 6 nb

}

, (4.2)

where nb is the block size, the superscripts (i − 1) and (i) indicate that they are for the (i − 1)-th and

i-th iterative steps, respectively, and

[

qj

pj

]

= Πj

[

∇yρ

∇xρ

]∣
∣
∣
∣
∣
(x,y)=(x

(i)
j

,y
(i)
j

)

, (4.3)
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and Πj is a preconditioner that aims at speeding up the convergence for j-th eigenpair of H − λE, ∇xρ

and ∇yρ are partial gradients of ρ(x, y):

∇xρ =
1

xHE+y
[Kx− ρ(x, y)E+y], ∇yρ =

1

xHE+y
[My − ρ(x, y)E−x]. (4.4)

But for the first iterative step (i.e., i = 0), those vectors with the superscript (i − 1) = −1 must be

removed from the list in (4.2) as they are not available yet.

There is a close relation between these two partial gradients and the residual,

AAAz − ρ(x, y)BBBz ≡

[

M 0

0 K

] [

y

x

]

− ρ(x, y)

[

0 E−

E+ 0

][

y

x

]

= xHE+y

[

∇yρ

∇xρ

]

. (4.5)

Namely the block vector obtained by stacking ∇xρ over ∇yρ is parallel to the residual. Write

z
(i)
j =

[

y
(i)
j

x
(i)
j

]

.

The spanning vectors in (4.2) are basically obtained by “breaking” up each vector of the following vectors

z
(i)
j , Πj [AAA− ρ(x

(i)
j , y

(i)
j )BBB]z

(i)
j , z

(i−1)
j for 1 6 j 6 nb (4.6)

into two “half” vectors. Observe that the first two vectors are the spanning vectors of Krylov subspace

K2(Πj [AAA− ρ(x
(i)

j , y
(i)

j )BBB], z
(i)

j ) of order 2. This is an important observation because it points to a natural

way to expand the search subspaces: using a higher order Krylov subspace [10, 17]. The ELOBP4dCG

follows the framework of LOBP4dCG [3,4] but replace the searching subspace (4.2) by the one spanned

by the vectors obtained by “breaking” up each vector in

the spanning vectors of Krylov subspace Km(Πj [AAA− ρ(x
(i)

j , y
(i)

j )BBB], z
(i)

j )

of order m, and z
(i−1)
j for 1 6 j 6 nb (4.7)

into two “half” vectors, where m > 2 is a parameter to be selected.

To seek the best possible approximations in the extended subspace, we first compute a basis matrix

[ V1

U1
] of

nb⋃

j=1

Km(Πj [AAA− ρ(x
(i)
j , y

(i)
j )BBB], z

(i)
j ), (4.8)

and then compute two basis matrices V and U for the subspaces

V = R(V1) ∪ span{y
(i−1)
j , for 1 6 j 6 nb}, (4.9a)

U = R(U1) ∪ span{x
(i−1)

j , for 1 6 j 6 nb}, (4.9b)

respectively, and finally solve the projected eigenvalue problem for

HSR − λESR : =

[

U 0

0 V

]H

(H − λE)

[

V 0

0 U

]

=

[

0 UHKU

V HMV 0

]

− λ

[

UHE+V 0

0 V HE−U

]

(4.10)

to construct new approximations [4, Theorem 8.2]. For small m and modest nb, the major cost in

computing new approximation lies in computing the basis matrix V and U and the projected matrices

HSR and ESR.
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4.2 The projected eigenvalue problem

In [3, 4], the eigenvalue problem (4.10) is solved as follows. Suppose that W = UHE+V is square and

nonsingular, and factorize W = WH
1 W2, where Wi are nonsingular for i = 1, 2. Compute the eigenvalues

of 5)

ĤSR =

[

0 W−H
1 UHKUW−1

1

W−H
2 V HMVW−1

2 0

]

(4.11)

as the new approximations for some eigenvalues of H − λE, and construct approximate eigenvectors

accordingly. This is done by calling, e.g., LAPACK’s subroutine xSYGVD [1]. As assured by [4, Theo-

rem 8.2], computed eigenvalue and eigenvector approximations this way are the same as those from (4.10)

in the case when W = UHE+V is square and nonsingular. There is a complicated procedure to deal with

the case when W = UHE+V is either not square or singular in [3, 4], too. It turns out the resulting

approximations are also the same as would be obtained from working with (4.10).

But here we propose to solve the eigenvalue problem (4.10) differently. We make the basis matrix U

with K-orthonormal columns and the basis matrix V with M -orthonormal columns. This can be done by

the modified Gram-Schmidt orthogonalization in the K-inner product and M -inner product, respectively.

Generically, dim(U) = dim(V) = mnb for i = 0 and (m + 1)nb for i > 0, and thus U and V make

UHKU = V HMV = I. There is actually a good reason to enforce UHKU = V HMV as suggested by

Theorem 2.4. But in general, possibly

k := dim(U) 6= dim(V) =: ℓ.

In what follows, we make no assumption on whether k = ℓ or not.

The next approximations are then computed by solving the eigenvalue problem for

H
SR
− λESR : =

[

U 0

0 V

]H

(H − λE)

[

V 0

0 U

]

=

[

0 UHKU

V HMV 0

]

− λ

[

UHE+V

V HE−U

]

=

[

0 Ik

Iℓ 0

]

− λ

[

UHE+V 0

0 V HE−U

]

. (4.12)

The eigenvalue problem for (4.12) is equivalent to the eigenvalue problem for

Iℓ+k − λ

[

0 V HE−U

UHE+V 0

]

,

which can be solved through the singular value decomposition (SVD) of V HE−U ∈ Cℓ×k. Let the SVD

of V HE−U be

V HE−U = V̂ ΩÛH, Ω = diag(ω1, ω2, . . .),

where V̂ ∈ Cℓ×ℓ and Û ∈ Ck×k is unitary, Ω ∈ Cℓ×k is a leading diagonal matrix, where ω1 > ω2 > · · ·

are the singular values. It is reasonable to assume

min{ℓ, k} > nb (4.13)

under which ωnb
> 0. Write V̂ = [v̂1, v̂2, . . . , v̂ℓ] and Û = [û1, û2, . . . , ûk]. Then the first nb smallest

positive eigenvalues of H
SR
− λESR are

0 < ω−1
1 6 ω−1

2 6 · · · 6 ω−1
nb

5) This is inconsistent with what we did in [2–4], where this is HSR which we have used in (4.10) for something (subtly)

different.
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with corresponding eigenvectors
[

v̂j

ûj

]

for 1 6 j 6 nb.

Consequently, the new approximate eigenvalues for H − λE are ω−1
j with corresponding approximate

eigenvectors

ẑj =

[

V 0

0 U

][

v̂j

ûj

]

=

[

V v̂j

Uûj

]

for 1 6 j 6 nb. (4.14)

The deflation strategy discussed in Section 3 can be implemented to deflate away any converged

eigenpairs (ω−1
j , ẑj) by appending to Vcvgd the first “half” of all converged ẑj and updating K and H

accordingly as in (3.13) symbolically. Now there is another important decision to be made anytime a

deflation is completed. That is to either reduce the block size nb by the number of eigenpairs deflated or

append vectors to {y
(i)
j } and to {x

(i)
j } to maintain the block size nb the same as before deflation. But

what vectors should we use for appending? There are natural choices: if s is the number of converged

eigenpairs at the current iterative step, we should use the top half and bottom half of ẑj in (4.14) for

nb + 1 6 j 6 nb + s to append {y
(i)

j } and {x
(i)

j }, respectively.

4.3 Algorithm

Algorithm 1 presents the framework of ELOBP4dCG, with the shifting deflation technique included. A

few comments on implementation details are in order.

1. Often K is known to be positive definite as those from applications [27]. Otherwise, at line 1, as we

mentioned in Section 3, an (adaptive) block symmetric Lanczos method on K is usually rather efficient

for the purpose. It will compute r = rank(K) and, in the case r < n, U0 as well. For numerical stability,

we can make U0 to have orthonormal columns. The linear equation MV0 = E−U0 can be solved by the

linear conjugrate gradient method.

2. Line 2 is about processing the initial input

Z0 =

[

Y0

X0

]

with X0 ∈ Cn×nb ;

(a) K-orthogonalize the columns of X0 and M -orthogonalize the columns of Y0 to get X and Y ,

respectively;

(b) compute W = (XHY + Y HX)/2,

R =

[

M

K

][

Y

X

]

W −

[

E−

E+

]

;

the rationale to justify using this W at line 4 is the fact that

argmin
W

∥
∥
∥
∥
∥

[

M

K

][

Y

X

]

W −

[

E−

E+

] [

Y

X

]∥
∥
∥
∥
∥
F

=
1

2
(XHY + Y HX),

where ‖ · ‖F is the matrix Frobenius norm, assuming XHKX = Y HMY = I;

(c) precondition R; Since R is the residual corresponding to a subspace, not individual eigenpairs, using

a single preconditioner is recommended such as one of those mention in the next comment: R← ΠR;

(d) calculate a K-orthonormal basis matrix U ∈ Cn×k of R([X,R(n+1:2n,:)]) and M -orthonormal basis

matrix V ∈ Cn×ℓ of R([Y,R(1:n,:)]) such that R(U(:,1:nb)) = R(X) and R(V(:,1:nb)) = R(Y );

(e) complete the rest as in lines 6–15.

3. At line 4, these preconditioners Πj in the most general way are also dependent upon the iterative

index i, but they are suppressed for the sake to presentation. But having a different preconditioner for each
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Algorithm 1: The ELOBP4dCG method

Input: Z0 ∈ C
2n×nb with rank(Z0) = nb such that R(Z0) approximates the eigenspace of H − λE associated

with its first nb smallest positive eigenvalues with positive sign, sufficiently large ξ > 0 for use in deflation;

Output: the first nneed smallest nonnegative eigenpairs (λj , zj) for 1 6 j 6 nneed (usually nneed > nb).

1: if K is not singular, set ncvgd = 0, Λcvgd = [ ], and Zcvgd = [ ] (empty arrays);

or if K is singular, then solve (3.8) for U0 and V0, and set

ncvgd = n− r, Λcvgd = [0, . . . , 0
︸ ︷︷ ︸

n−r

], Vcvgd = V0, Zcvgd =




V0

U0





and update K to K in form and accordingly H to H in form as in (3.13);

2: preprocess initial approximation Z0 by one step steepest descent method to give new approximations Z,

Ω = diag(ω1, ω2, . . .), “difference” Ẑ between Z and Z0 (see detail in Comment 2);

3: for i = 0, 1, . . . while ncvgd < nneed do

4: compute a basis matrix [ V1
U1

] of
⋃nb

j=1Km(Πj [AAA− ω−1
j BBB], Z(:,j)) such that the first nb columns of the basis

matrix span the same subspace as the one by the columns of Z;

5: calculate a K-orthonormal basis matrix U ∈ C
n×k of R([U1, Ẑ(1:n,:)]) and M -orthonormal basis matrix

V ∈ C
n×m of R([V1, Ẑ(n+1:2n,:)]) such that R(U(:,1:nb)) = R([U1](:,1:nb)) and R(V(:,1:nb)) = R([V1](:,1:nb));

6: compute SVD V HE−U = V̂ΩÛH, where Ω = diag(ω1, ω2, . . .) and ω1 > ω2 > · · · ;

7:

Z ←




V V̂(:,1:nb)

UÛ(:,1:nb)



 , Ẑ ←




V(:,nb+1:ℓ)V̂(nb+1:ℓ,1:nb)

U(:,nb+1:k)Û(nb+1:k,1:nb)



 ;

8: R = AAAZ −BBBZ diag(ω−1
1 , . . . , ω−1

nb
);

9: test convergence and let s be the number of converged eigenpairs (ω−1
j , Z(:,j));

10: if s > 1 then

11: lock up the converged, and update Λcvgd ← [Λcvgd, [· · ·ω
−1
j · · · ]], Zcvgd ← [Zcvgd, [· · ·Z(:,j) · · · ]], and

Vcvgd ← [Vcvgd, [· · ·Z(1:n,j) · · · ]], and accordingly K and H as a result;

12: drop the s converged columns from Z, and replace the dropped columns in Z by




V V̂(:,nb+1:nb+s)

UÛ(:,nb+1:nb+s)



 ;

(These replacing columns are approximate eigenvectors associated with approximate eigenvalues ω−1
j for

nb + 1 6 j 6 nb + s.)

13: drop the converged ωj from Ω and relabel the remaining ωj to match well with the columns of the

updated Z;

14: ncvgd ← ncvgd + s;

15: end if

16: end for

17: return ncvgd approximate eigenpairs as extracted from Λcvgd and Zcvgd.

targeted eigenpairs may not be the most numerically efficient way, not to mention letting preconditioners

vary from one iterative step to the next, because effective preconditioners can be expensive to construct.

A generic preconditioner to compute the eigenvalues of H−λE, or equivalentlyAAA−λBBB, near a prescribed

point µ is Π = (AAA− µBBB)−1, where AAA and BBB are given by (4.1) and AAA is AAA with K replaced by K. Since

we are particularly interested in the smallest eigenvalues with the positive sign, µ = 0 is often an obvious

choice. Then

Π

[

q

p

]

=

[

M−1 0

0 K−1

][

q

p

]

=

[

M−1q

K−1p

]

(4.15)
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which can be computed by using the linear conjugate gradient method [7, 11] on M and K separately.

For 0 < µ < (the smallest positive eigenvalue of H − λE), Π ≻ 0 (see [15,16,20]), Π[qH, pH]H can still be

computed by the conjugate gradient method. Since we are updating K at line 11, the preconditioner Π

actually changes automatically every time an eigenpair converges.

4. With all preconditioners Πj being the same, there is a compact way to express the subspace at

line 4. Define the linear operator

R : Z ∈ C
n×nb → R(Z) =AAAZ −BBBZΛ̂ ∈ C

n×nb ,

where

Λ̂ = diag(ω−1
1 , . . . , ω−1

nb
).

Then the subspace can be compactly written as

Km(ΠR, Z) = span{Z,ΠR(Z), . . . , (ΠR)m−1(Z)}, (4.16)

where (ΠR)i( · ) is understood as successively applying the operator ΠR i times, e.g.,

(ΠR)2(Z) = ΠR(ΠR(Z)).

In our preliminary testing, we use only modest m, say m 6 5, and compute V1 and U1 without do-

ing any orthogonalization for speed consideration, i.e., simply as the top and bottom half submatrices

of [Z,ΠR(Z), . . . , (ΠR)m−1(Z)], respectively. This is the similar notion of the recent work [5, 6] on

communication-avoiding Krylov subspace methods.

5. At line 5, U and V can be computed by the modified Gram-Schmidt orthogonalization process in

the K- and M -inner product, respectively. This action is justified by Theorem 2.4.

6. Ẑ at line 7 is a kind of difference of the newly computed approximation Z from the very previous

approximation. This idea is borrowed from [12,14].

7. Testing convergence at line 11 can be done by computing the normalized residual norms

ǫj :=
‖Hzj − ω−1

j Ezj‖1

(‖H‖1 + ω−1
j ‖E‖1)‖zj‖1

≡
‖R(:,j)‖1

(‖AAA‖1 + ω−1
j ‖BBB‖1)‖zj‖1

with zj = Z(:,j),

where ‖ · ‖1 is the ℓ1-norm of a vector or the ℓ1-operator norm of a matrix, and R is the one at line 8. If

ǫj 6 rtol (a preset relative tolerance), then we claim (ω−1
j , zj) is converged.

5 Numerical examples

In this section, we present numerical results obtained within the MATLAB environment to illustrate

the essential convergence behaviors of ELOBP4dCG. We show two testing examples: one from linear

response analysis for Na2 and the other for silane (SiH4) compound, generated by the turboTDDFT

code in QUANTUM ESPRESSO (QE), an electronic structure calculation code that implements density

functional theory (DFT) using plane-waves as the basis set and pseudopotentials [9]. Both examples have

E± = I. Such small molecules are often used as benchmark tests to assess various simulation models,

functionals and methods (see [21]). For Na2, the order of the symmetric positive definite matrices K

and M is 1,862. Consequently, the dimension of H is 3,724. For SiH4, the order of the symmetric positive

definite matrices K and M is 5,660. Consequently, the dimension of H is 11,320.

Our goal is to compute ten smallest positive eigenvalues 0 < λ1 6 λ2 6 · · · 6 λ10 and corresponding

eigenvectors z1, z2, . . . , z10 of H , with block size nb = 4, with or without a preconditioner, and m = 2

(simply LOBP4dCG) or 3. When with a preconditioner, we simply use the generic one

Π = AAA−1 =

[

M−1 0

0 K−1

]

. (5.1)
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The preconditioned search vectors qi and pi are computed by using the linear CG method [7,11] to solve

the associated linear systems of equations (see (4.15)). Often very crude approximations of qi and pi
are good enough. In this example, the linear CG iterations are set with the stopping tolerance 10−2 or

maximal 20 iterations.

We should note that the generic preconditioner Π is not the natural preconditioner for these examples.

For the plane wave-based calculations, it is more natural to use a proper scaled diagonal-like precon-

ditioner proposed in [30]. Excellent performance of such preconditioner in the the turboTDDFT code

has been reported [28]. But K and M in our test were outputted unnaturally from turboTDDFT runs

because K and M were not needed explicitly and they only existed in certain structural form to allow

matrix-vector products with them be performed at very fast speed. The scaled diagonal preconditioner

in [30], however, is only possible when K and M live in the structural form which is lost once K and M

are outputted explicitly as matrices. It will be a future work of ours to implement our solver here with

a scaled diagonal-like preconditioner similar to the one in [30].

Figures 1 and 2 show iterative history plots of LOBP4dCG and ELOBP4dCG on Na2 and SiH4

problems, respectively. We see dramatic reductions in the numbers of iterations required in going from

“without preconditioning” to “with preconditioning” and in going from m = 2 to m = 3. The powers of

using a preconditioner and extending the searching subspace are in display prominently.
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Figure 1 Na2 linear response eigenvalue problem. (a) LOB4dCG (m = 2, without preconditioning); (b) LOBP4dCG

(m = 2, with preconditioning); (c) ELOB4dCG (m = 3, without preconditioning); (d) ELOBP4dCG (m = 3, with

preconditioning). For each iteration i, there are 4 normalized residuals which move down as i goes. As soon as one

reaches 10−8, the corresponding eigenpair is deflated and locked away, and a new residual shows up at the top



1458 Bai Z J et al. Sci China Math August 2016 Vol. 59 No. 8

Iteration i
0 100 200 300 400 500 600

N
o
rm

a
li
ze

d
 r

es
id

u
a
l

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

LOB4dCG with deflation (no preconditioner, m=2)

(a)

Iteration i
100 120 140 160 180 200

N
o
rm

a
li
ze

d
 r

es
id

u
a
l

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

LOBP4dCG with deflation (m=2)

806040200

(b)

Iteration i

100 150 200 250 300

N
o
rm

a
li
ze

d
 r

es
id

u
a
l

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ELOB4dCG with deflation (no preconditioner m=3)

500

(c)

Iteration i

N
o
rm

a
li
ze

 r
es

id
u
a
l

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ELOBP4dCG with deflation (m=3)

0 908070605040302010

(d)

Figure 2 SiH4 linear response eigenvalue problem. (a) LOB4dCG (m = 2, without preconditioning); (b) LOBP4dCG

(m = 2, with preconditioning); (c) ELOB4dCG (m = 3, without preconditioning); (d) ELOBP4dCG (m = 3, with

preconditioning). For each iteration i, there are 4 normalized residuals which move down as i goes. As soon as one

reaches 10−8, the corresponding eigenpair is deflated and locked away, and a new residual shows up at the top

6 Conclusions

Deflation techniques are ways to remove already computed eigenpairs from being possibly recomputed.

It is critical for an efficient eigensolver. In order to preserve fast matrix-vector multiplications in large

scale eigenvalue computations, a common framework is some kind of low-rank modification to the original

matrix so as to displace the computed eigenvalue while keeping unknown eigenvalues unchanged or shifted

in an explicitly known way. There are two major contributions in this paper that improve our earlier

LOBP4dCG for the linear response eigenvalue problem [3, 4]. One is a shifting deflation technique and

the other is an idea of extending the search subspace. Both have been incorporated into LOBP4dCG to

give a new method called the ELOBP4dCG. Numerical examples prominently demonstrate the efficiency

of the deflation technique and show dramatic increase of the rate of convergence.
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15 Kovač-Striko J, Veselić K. Trace minimization and definiteness of symmetric pencils. Linear Algebra Appl, 1995, 216:

139–158

16 Lancaster P, Ye Q. Variational properties and Rayleigh quotient algorithms for symmetric matrix pencils. Oper Theory

Adv Appl, 1989, 40: 247–278

17 Li R-C. Rayleigh quotient based optimization methods for eigenvalue problems. In: Bai Z, Gao W, Su Y F, eds.

Matrix Functions and Matrix Equations, vol. 19. Series in Contemporary Applied Mathematics. Singapore: World

Scientific, 2015, 76–108

18 Li R-C, Zhang L-H. Convergence of block Lanczos method for eigenvalue clusters. Numer Math, 2015, 131: 83–113

19 Liang X, Li R-C. Extensions of Wielandt’s min-max principles for positive semi-definite pencils. Linear Multilinear

Algebra, 2014, 62: 1032–1048

20 Liang X, Li R-C, Bai Z. Trace minimization principles for positive semi-definite pencils. Linear Algebra Appl, 2013,

438: 3085–3106

21 Marques M A, Castro A, Rubio A. Assessment of exchange-correlation functionals for the calculation of dynamical

properties of small clusters in time-dependent density functional theory. J Chem Phys, 2001, 115: 3006–3014

22 Money J, Ye Q. EIGIFP: A MATLAB program for solving large symmetric generalized eigenvalue problems. ACM

Trans Math Software, 2005, 31: 270–279

23 Olsen J, Jensen Aa H J, Jørgensen P. Solution of the large matrix equations which occur in response theory. J Comput

Phys, 1988, 74: 265–282

24 Olsen J, Jørgensen P. Linear and nonlinear response functions for an exact state and for an MCSCF state. J Chem

Phys, 1985, 82: 3235–3264

25 Quillen P, Ye Q. A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue

problems. J Comput Appl Math, 2010, 233: 1298–1313

26 Ring P, Schuck P. The Nuclear Many-Body Problem. New York: Springer-Verlag, 1980

27 Rocca D. Time-Dependent Density Functional Perturbation Theory: New algorithms with Applications to Molecular

Spectra. PhD thesis. Trieste: The International School for Advanced Studies, 2007

28 Rocca D. Iterative diagonalization of non-hermitian eigenproblems in time-dependent density functional and many-

body perturbation theory. Boston: Presentation at Session B39, the APS Marching Meeting, 2012

29 Saad Y. On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM J Numer Anal, 1980, 15:

687–706

30 Teter M, Payne M, Allan D. Solution of Schrödinger equation for large systems. Phys Rev B, 1989, 40: 12255–12263

31 Thouless D J. Vibrational states of nuclei in the random phase approximation. Nuclear Phys, 1961, 22: 78–95

32 Thouless D J. The Quantum Mechanics of Many-Body Systems. New York: Academic, 1972

33 Tsiper E V. Variational procedure and generalized Lanczos recursion for small-amplitude classical oscillations. JETP



1460 Bai Z J et al. Sci China Math August 2016 Vol. 59 No. 8

Letters, 1999, 70: 751–755

34 Wen Z, Zhang Y. Block algorithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation.

Technical report. ArXiv:1507.06078, 2015

35 Ye Q. An adaptive block Lanczos algorithm. Numer Algor, 1996, 12: 97–110

36 Zhou Y, Li R-C. Bounding the spectrum of large Hermitian matrices. Linear Algebra Appl, 2011, 435: 480–493


