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1 Introduction

Physical systems often have certain characteristics that are critical in deter-
mining the system behaviors. Often these characteristics appear in the form
of the system matrices being naturally blocked with each sub-block having
its own physical relevance. For example, the system matrices from linearizing
a second order dynamical system admit a natural 2-by-2 block partitioning.
General purpose subspace projection techniques for model order reduction
usually destroy any block structure and thus the reduced systems may not be
of the same type as the original system. Other things being equal, we would
like to preserve the block structure and hence some of the important charac-
teristics so that the reduced systems are much like the original system but
only at much smaller scales.

Structure-preserving Krylov subspace projection methods have received
much attention in recent years. In this chapter, we discuss the advance of the
structure-preserving methods under a unified Krylov projection formulation.
We shall start by building a mathematical foundation and a general paradigm
to preserve important block structures under subspace projections. The gen-
eral paradigm provides a unified projection formulation. When necessary, the
technique can be used to preserve certain blocks in the system matrices. We
then go on to study in detail model order reductions of RCL and RCS systems.

The rest of this paper is organized as the follows. In Section 2, we discuss
a unified Krylov subspace projection formulation for model order reduction
with properties of structure-preserving and moment-matching, and present
a generic algorithm for constructing structure-preserving projection matri-
ces. The inherent structural properties of Krylov subspaces for certain block
matrices are presented in Section 3. Section 4 examines structure-preserving
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model order reduction of RCL and RCS equations including the objective of
developing synthesized RCL and RCS equations.

Throughout the paper, RF*¢ is the set of k x £ real matrices. I is the
identity matrix and its dimension can be judged from the context. Unless
otherwise explicitly stated, capital letters are matrices, while lower case letters
are vectors or scalars. X7 is the transpose of the matrix X, span{X} is the
subspace spanned by the columns of X.

Let Abe N x N, and let B be N x p. The kth Krylov subspace generated
by A on B is defined to be

Ki(A,B) = span{B, AB, ..., A*"'B}. (1.1)

For convenience, when k = 0, define Ko(A, B) = {0}, a subspace of the zero
vector.

2 A unified Krylov projection structure-preserving
model order reduction framework

Consider the matriz-valued transfer function of the first-order multi-input
multi-output (MIMO) linear dynamical system

H(s) =LT(sC+ G)" !B, (2.1)

where C and G are N x N, Bis N xm and L is N x p. Often p < N and
m <K N.

Assume that G is nonsingular. The transfer function can be expanded
around s =0 as

(-1 LT (GIC)YG B

NE

H(s) =

)
Il
=

(—1)%s* My,

I
NE

£=0

where
M, =LY (G™'C)!G™'B

are referred to as the moments at s = 0. In the case when G is singular or
approximations to H(s) around a selected point sy # 0 are sought?, a shift

s=(s—5s0)+so=0+so (2.2)
can be performed and then

4 Tt is assumed that the matrix pencil sC + G is regular, meaning that there are
at most IV values of s at which sC + G is singular.
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sSC+G=(s—5)C+5C+G=0C+(50C+ Q).
Upon substitutions (i.e., renaming)
G+ 50C+ G, s+ o,

the problem of approximating H(s) around s = sp becomes equivalent to
approximate the substituted H (o) around o = 0. For this reason, without
loss of generality we shall focus approximation mostly around s = 0 in this
chapter unless some care has to be taken for computational efficiency when a
shift like (2.2) has to be performed.

Many transfer functions appearing in different forms can be re-formulated
in the first order form (2.1).

Ezample 1. Consider a simple integro-differential-algebraic equations (Integro-
DAEs) arising from the MNA formulation of circuits, such as the ones de-
scribed in the chapters by Freund and by Gad, Nakhla and Achar of this

book: .
C4x(t) + Ga(t) + F/O #(r)dr = Bu(t),

y(t) = B ().
The transfer function of the Integro-DAEs is given by

1 -1
H(s) = BT (sc +G+ EF) B. (2.3)
If one defines
C 0 GT B
C_[O—W]’G_[WO]’L_B_[O] (2.4)

for any nonsingular matrix W. Then the transfer function is of the form (2.1),

namely
H(s) =BT(sC+ G)"'B. (2.5)

In (2.4), the matrix W is usually taken to be I' (if it is nonsingular) or simply
the identity matrix.
Alternatively, if one defines

(g0 4] onsff] o

again for any nonsingular matrix W (usually taken to be C if it is nonsingular,
or simply the identity matrix). Then the transfer function is turned into the

form
H(s) =sB*(sC+G)'B. (2.7)

Leaving out the front factor s, (2.7) is in the form of (2.1). In the second lin-
earization (2.7), matrix-vector products with the matrices G™1C and G-TCT



4 Zhaojun Bai, Ren-cang Li, and Yangfeng Su

are much easier to do than the first linearization (2.4) and (2.5). These two
types of matrix-vector products are needed in forming Krylov subspaces for
calculating approximations to H(s) around s = 0. In this respect, the first
linearization (2.4) and (2.5) favors approximations around s = oco. In the case
when approximations near a finite point so # 0 are sought, a shift like (2.2)
must be performed and then neither linearization has cost advantage over the
other because the s9C+ G is no longer block diagonal for both (2.4) and (2.6).
But we point out that if the shift is performed before linearization, the same
advantage as the second linearization over the first one for approximations
near s = 0 is retained. Detail for this shift-before-linearization is discussed in
Section 4. <

Ezample 2. The interconnected (coupled) system described in [12] and [18§]
(see also the chapters by Reis and Stykel and by Vanderndorpe and Van
Dooren of this book) gives rise to the following transfer function

H(s) = Lg (I - W(s)€)™ W(s)B,,
where £ is the subsystem incidence matrix as a glue for connecting all sub-
systems Hi(s), ..., Hi(s) together, and
W (s) = diag( H1(s), ..., Hg(s))
= diag( L (s — A1) 7'By, ..., L (sI — Ay)"'By ).

Let A = diag(Ay,...,Ar), B = diag(B,...,B), and L = diag(Ly,..., Lg),
then the transfer function H(s) can be turned into the form (2.1), namely

H(s) =LT(sC+ G)" !B,
where C =1, G = —A — BEL, B = BBy and L = LL,. o

Model order reduction of the transfer function H(s) defined by (2.1) via
subspace projection starts by computing matrices

X,V e R¥*"  such that YTGX is nonsingular,
then defines a reduced-order transfer function
Hy(s) = L} (sC: + G;)'B;, (2.8)
where
C. =)Y'cx, G.=Y'Gx, B,=)Y'B, L, =aTL. (2.9)

Similarly, the reduced transfer function Hr(s) can be expanded around s = 0:
H(s) = Z(_l)ZSZL;F(Gr_ICr)ZGr_lBr
=0

= (—l)zseMr’g,
=0
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where
M, = L?(G;lcr)lGr_lBr

are referred to as the moments of the reduced system.

In practice it is often that n < N. This makes the reduced system matrices
G,, C,, L, and B, much smaller. By choosing X and Y right, the reduced
system associated with the reduced transfer function can be made to resemble
the original system enough to have practical relevance.

The following theorem dictates how good a reduced transfer function ap-
proximates the original transfer function. For the case when G is the identity
matrix, it is due to [19]. The general form as stated in the following theorem
was proved by [6]; a new proof in the projection language was given later
in [9]. Its implication to structure-preserving model reduction was also first
realized in [9].

Theorem 1. Suppose that G and G, are nonsingular. If
Kr(G™'C,G™'B) C span{X’}

and
K;(G=TC",G~"L) C span{)},

then the moments of H(s) and of its reduced function H.(s) satisfy
M= M,y for 0<{<k+j-—1,

which imply ‘
H,.(s) = H(s) + O(s*+9).

Remark 1. The conditions suggest that by enforcing span{ X'} and/or span{Y}
to contain more appropriate Krylov subspaces associated with multiple points,
H,(s) can be made to approximate H(s) well near all those points. See [6] and
[13, 14] for more detail.

Let us now discuss the objectives of structure-preserving model order re-
duction. For the simplicity of exposition, consider system matrices G, C, B,
and L having the following 2 x 2 block structure

N1 No N1 N2
_Np 011 0 _ N G11 G12
C_Né|:0 0221|’G_N§|:G21 0:|
(2.10)
P m
NY Bl Ny L1
— 1 —
M R

where N1 + N2 = N{ + Nj = N. System matrices from the time-domain mod-
ified nodal analysis (MNA) circuit equations take such forms (see Section 4).
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A structure-preserving model order reduction technique generates a reduced-
order system that structurally preserves the block structure, namely, to have

ni ng n1 na
2| Cr11 O 24 [ Gra1 Gra2
Cr = ' , b GI‘ = ! ’ . I
"’2|: 0 Cr,22] nh [Gr,zl 0
(2.11)
p m
n! Br 1 ny Lr 1
— 1 ) — )
Br_n'i 0 ] Lr—”[ 0 ]

where ni +ny = nj+nf = n. Furthermore, each sub-block is a direct reduction
from the corresponding sub-block in the original system.

In the formulation of subspace projection, this objective of structure-
preserving model order reduction can be accomplished by picking the pro-
jection matrices

ni ng ni nb
N X1 _ N Yi
X—NZ[ | y_Né[ Wl (2.12)
Then
T _ -YIT 17Cii 0] [Xy _ G O —
Y Cx = | Y' || 0 Oy Xo| | 0 Cra =Cn
T _ -YlT | -G11 Gio X1 . Gr,ll Gr,12 _
y GX = L Y2T_ _G21 0 X2 - Gr,21 0 _Gr,
[v,T 1B B
T _ 1 1 _ r,1 _
y B= I Y'2T- I 0 :| - [ 0 :| - Br7
r _ | XE Li|  |La| _
YL=1"xr|lo]|7| 0|7

For the case when ) is taken to be the same as X, this idea is exactly the
so-called “split congruence transformations” in [8]. A discussion of this idea
in a general framework was described in [9].

We now discuss a generic algorithm to generate the desired projection
matrices X and Y as in (2.12). Suppose that we have computed the basis
matrices X and Y by, e.g., a block Arnoldi procedure [15], such that

Kr(G™1C,G~!B) C span {X’}

and B
K;(G=TCT,G~"L) C span {Y} .
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In general, XandY generated by an Arnoldi process do not have the shape
as the desired X and Y in, e.g., (2.12), and thus taking X = X and Y =

will not preserve the 2-by-2 block structure presented in the matrices as in
(2.10). So instead of simply taking X = Xand Y = Y, we need to seek X
and Y having the form as in (2.12) and in the meantime satisfying

span {)Z'} C span{X} and span {f’} C span{)} (2.13)

so that the first k£ + j moments of H(s) and its reduced function H,(s) match
as claimed by Theorem 1.

This task can be accomplished by the following algorithm that for a given
g{| , it computes Z = [Zl Z2] satisfying

7 =

span{Z} C span{Z}.

Algorithm 1

1. Compute Z; having full column rank such that

span{Z;} C span{Z;};
Zy

2. Output Z = [ Zo |
Remark 2. There are a variety of ways to realize Step 1: Rank revealing QR
decompositions, modified Gram-Schmidt process, or singular value decompo-
sitions [3, 4, 7]. For maximum efficiency, one should make Z; have as fewer
columns as one can. Notice the smallest possible number is rank( i), but
one may have to add a few extra columns to make sure the total number of
columns in all X; and that in all Y; are the same when constructing X and Y
below in (2.14).

For convenience, we introduce notation ~» that transforms Z to Z, i.e.,

] satisfying span{Z} C span{Z}.

Return to the subspace embedding objective (2.13), by Algorithm 1, we
partition X and Y as

X = ‘)51 and Y = }:1
Xo Y,

consistently with the block structures in G, C, L, and B, and then perform

l%] ~as [Xl Xz] and l)%] ~ Y= [Yl Yz] (2.14)
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There are numerically more efficient alternatives when further character-
istics in the sub-blocks in G and C is known. For example, when G and C
are as in (2.6) from linearizing a transfer function like (2.3), X; and Y] can be
computed directly via the Second-Order Arnoldi process (SOAR) [1, 2]. More
detail is in the next section.

3 Structure of Krylov subspace and Arnoldi process

The generic Algorithm 1 presents a way to preserve the sub-block structure
in the reduced systems by first computing the bases of the related Krylov
subspaces and then splitting the basis matrices. In this section, we discuss a
situation when this first-computing-then-splitting can be combined into one
to generate the desired X’ and ) directly. This is made possible by taking ad-
vantage of a structural property of Krylov subspaces for certain block matrix.
The next theorem was implicitly implied in [2, 16] (see also [9]).

Theorem 2. Suppose that A and B admit the following partitioning

N N p
_ N A11A12 _ N Bl
A_N[QI 0:|’ B_N[Bz]’ (3'1)

where  is a scalar. Let a basis matriz X of the Krylov subspace Kr(A,B) be
partitioned as

)’Z,_N jfl
TN X

Then _ _
span{X>} C span{B2, X1}.

In particular if also B, =0, then span{)?g} C Span{)?l}.

This theorem provides a theoretical foundation to simply compute )Z'l,
then expand X; to X; so that span{X;} = span{Bs, X1} (by orthogonalizing
Bsy’s columns against X ’columns), and finally set

_| X
=[]
In practice, X can be computed directly by a structured Arnoldi process,

referred to as the second-order Arnoldi process (SOAR) in [1, 2, 16], as given
below.
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Algorithm 2 Structured Arnoldi process (framework)

Input: A and B as in (3.1).
Output: X; as in Theorem 2 and X; with span{X;} = span{B, X1}.

1. Bi =@Q1R (QR decomposition)

2. Pi=aB:R,!
3. for j=1,2,...k do
4. T=A11Q; + AP}
5. S =aQ);
6. fori=1,2,...,7 do
7. Z=QFfT
8. T=T-Q:Z
9. S=S—-PZ
10. enddo
11. T = Q;R (QR decomposition)
12. P, =SR!
13. enddo
4. Xy :[Q11Q25"'3Qk]
15. T = By;
16. for j=1,2,...,k do
17. Z=Q;T
18. T=T-Q;Z
19. enddo

20. T = QR (QR decomposition)
21. X, = [Xy1,Q)

Remark 3. Algorithm 2 is a simple-minded version to illustrate the key in-
gredients. Practical implementation will have to incorporate the possibility
when various QR decompositions produce (nearly) singular upper triangular
matrices R.

4 RCL and RCS systems

4.1 Basic equations

The MNA (modified nodal analysis) formulation [20] of an RCL circuit net-
work in frequency domain is of the form

([oe]e [ @] - 3]0
v =[5 )]
where (s) and i(s) denote N; nodal voltage and N, auxiliary branch cur-

rents, respectively; u and y are the input current sources and output voltages;
B, and D, denote the incidence matrices for the input current sources and
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output node voltages; C, L and G represent the contributions of the capaci-
tors, inductors and resistors, respectively; and E is the incidence matrix for
the inductances.

When an RCL network is modeled with a 3-D extraction method for in-
terconnection analysis, the resulted inductance matrix L is usually very large
and dense [10]. This may cause great difficulties to the subsequent simula-
tion process. As an alternative approach, we can use the susceptance matrix
S = L=, which is sparse after dropping small entries [5, 22]. The resulting
equations are called the RCS equations:

(e L&Dl - (o,

Accordingly, the equations in (4.1) are called the RCL equations.
Eliminating the branch current variable i(s) of the RCL and RCS equations
in (4.1) and (4.2), we have the so-called second-order form

{ (sc +G+ %F) v(s) = Byu(s), (4.3)

y(s) = Dyu(s),

where
I'=EL'ET = ESE".

The transfer function H(s) of the RCL and RCS equations in (4.1) and (4.2)
can thus be written as

-1
H(s) = D) (sC +G + %F) B,. (4.4)

Perform the shift (2.2) to get
H(s) = sDY(s’C+sG+T)"'B,
= (s0 + 0) DI [0*C + 0(250C + G) + (s3C + 50G + I')] ' B,
= (s +0)LT(¢cC + G)™'B,

where

o~[576]- =[5 5] 1[5 n-[3). o

and Go = 250C + G, Iy = s3C + s0G + I' and W is any nonsingular matrix.
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4.2 Model order reduction

The SPRIM method described in the chapter by Freund of this book provides
a structure-preserving model order reduction method for the RCL equations
in (4.1). In this section, we discuss an alternative structure-preserving method
for the RCL equations in (4.1) and the the RCS equations in (4.2) using the
framework presented in Sections 2 and 3. The method is referred to as the
SAPOR method, initially published in [17, 11]. The SAPOR method exploits
their second-order form (4.3).
For the system matrices C, G and B in (4.5), we have®

i~ |y 'Ge Iy 'O ip | Ty 'B,
Gc_[_I o |- GTB= 07

They have the same block structures that Theorem 2 requires. Apply Algo-
rithm 2 to compute X, with orthonormal columns such that

Kn(G1C,G'B) C span{ [Xf Xr] } (4.6)

which is needed by Theorem 1 for matching the first £ moments. The frame-
work of the projection technique in Section 2 can also be viewed as a change-
of-variables

v(s) =~ Xy (s), (4.7

where v,(s) is a vector of dimension n. Substituting (4.7) into (4.3), and
multiplying the first equation in (4.3) by X.I from the left yields the reduced-
order model of the second-order equations in (4.3):

(sCr + G; + él"r) ve(8) = By pu(s),
y(s) = Dl ue(s),

(4.8)

where
C.=XrCX,, G.=XYGX,, I, =E'TE,, E. = X'E, (4.9)

and
B,y =X!B,, D;, = X'D,.

The transfer function of the reduced system (4.8) is given by

-1
1
H.(s) = DrTﬂ) (SC, +G: + El}) B, ,. (4.10)
The reduced second-order form (4.8) corresponds to a reduced order sys-
tem of the original RCS equations in (4.2). This can be seen by setting

5 To preserve the symmetry in C, G, and I" as by (4.9), we do not need a Krylov
subspace of G TCT on G TL.
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n  Ng

and then projecting the original RCS equations in (4.2) as in Section 2 to get
the reduced order equations

B,

R

(158 [ S ST [50] = 1%
3e) = (D8, 0] | %)

Note that i(s) is a vector of Ny components, the same as the original auxiliary
branch currents i(s).

] (4.11)

4.3 Towards a synthesized system

The reduced system (4.11) preserves the block structures and the symmetry of
system data matrices of the original RCS system (4.2). However, the matrix E,
in the reduced-order RCS system (4.11) cannot be interpreted as an incidence
matrix. Towards the objective of synthesis based on the reduced-order model,
we shall reformulate the projection (4.7) and the reduced-order system (4.8).
This work was first published in [21].

We begin with the original RCS equations in (4.2). Let

~

i(s) = Ei(s). (4.12)

Then the RCS equations in (4.2) can be written as
Cco G I v(s)] _ [B,
Clor e (o) )= (0]

With the change-of-variables (4.12), the incidence matrix E in the original
RCS equations in (4.2) is now the identity matrix I in (4.13). The matrix I"
plays the role of the susceptance matrix. An identity incidence matrix can
be interpreted as “self-inductance”, although the susceptance matrix I" is not
diagonal yet. We will discuss how to do so later in this subsection.

Note that the new current vector ?(s) is of the size Ny, typically N3 > Nb.
The order of the new RCS equations in (4.13) is 2V;. The equations in (4.2)
and (4.13) have the same voltage variables and the same output. However,
they are not equivalent since the current variables i(s) cannot be recovered
from i(s). The reformulated equations in (4.13) are referred to as the ezpanded
RCS equations, or RCSe for short.
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In the first-order form, the transfer function H(s) of the RCSe equations
in (4.13) are given by

H(s) =LT(sC+ G)™'B, (4.14)

where G and C are 2N; x 2N;:

col ~_[GTI
o=[51] e= %3]

o-[2] - [5].

For the reduced-order model of the RCSe equations in (4.13), let us define

n
X=y-= Z {Xf Xr] (4.15)

Then by the change-of-variables
v(s) = XTu(s) and i(s) m~ XTig(s), (4.16)

and using the projection procedure in Section 2, we have the reduced-order
RCSe equations

R R D ] R S
ORI P

Compared with the RCSe equations in (4.13), the reduced equations in (4.17)
not only preserve the 2-by-2 block structure of the system data matrices G
and C, but also preserve the identity of the incidence matrix.

For the objective of synthesis of the original RCL and RCS equations in
(4.1) and (4.2), let us further consider the structures of the input and output
matrices and the incidence matrix. Without loss of generality, we assume that
the sub-blocks B, and D, in the input and output of the RCS equations in
(4.2) are of the forms:

P m

Bv — P1 |:Bv1:|, Dv — P1 |:-D'u1:|. (418)

Ni-p1 | O Ni-p1 | O

It indicates that there are totally p; different input and output nodes. Oth-
erwise we can reorder the nodes in the RLC/RCS circuit network such that
B, and D, are in the desired forms.
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Furthermore, we assume that the incidence matrix E in (4.2) has the
zero block on the top, conformal with the partition of the input and output
matrices in (4.18):

N2
. n 0
E= " [E] (4.19)

This assumption means that there is no susceptance (inductor) directly con-
necting to the input and output nodes [21].

With the assumptions in (4.18) and (4.19), let X, be an orthonormal basis
for the projection subspace in (4.6). Using partitioning-and-embedding steps
in Algorithm 1 of Section 2, we have

" P1
x - I
Xl. — p1 r Xr — p1 ,
Ni—p1 [X£2) - Ni—r1 |: X2]
where the columns of X5 form an orthonormal basis for the range of X§2).
For simplicity, we assume that there is no deflation, namely, rank( r(z)) =
rank(Xs) = n.
Similarly to (4.15) and (4.16), using the subspace projection with
p1+n p1+n
X
X=y="1"
=2 * z]
we have the reduced-order RCSe equations
C: 0 Gy I ve(s)| _ | Brw
(52 [Sa]) [260] - [0
N N ve(s) (4.20)
y(S) = [Dr,v 0:| |:lr(3) ’

where C;, G, and I} are (p; +n) X (p1 + n) matrices:
C.=X'CX,, G, = X'GX,, I = X'TX,,

and the input and output sub-block matrices B; , and D; , preserve the struc-
ture in (4.18):

ot 5] vom -]
r,v — g 0 - ) rov = Ap = .

Note that
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[ e[ ]}

The reduced RCSe system (4.20) also preserves the moment-matching prop-
erty for the system (4.17) by Theorem 1.

Now we turn to the diagonalization of I" in the RCSe equations in (4.13)
for the objective of synthesis. The assumption (4.19) for the incidence matrix
E implies that I' is of the form

P1 Ni-p1
0 0 ]

_ 1T _  P1 e
I'=FEL "E" = [0 7

Ni-p1
It can be seen that in the reduced RCSe equations in (4.20), I3 has the same
form

r1 n
»n[00
=" =
=0 n)
where I}, = ngQg. Note that I is symmetric semi-positive definite, so is I..
Let L
L,=vav?
be the eigen-decomposition of 1~“r, where V is orthogonal and A is diagonal.
Define

P1+n p1+m

~

-V
V — p1+ N 7
p1t+n V
where
P1 n
iy _ P1 I
7= [ V].

Then by a congruence transformation using the matrix V', the reduced-order
RCSe equations in (4.20) is equivalent to the equations

(58 (D) (e

oy AT Ur(s
yls) = [D"” 0] {ir(s)

where U, (s) = Vv, (s) and iy (s) = V¥iy(s). C;, G, and I} are (py +n) X (py+n)

matrices:

G. T
o

~—

’

(4.21)

7

C.=V'eV, G =VT'G.V, L,=V'LV.

Moreover with V' being block diagonal, the input and output structures are
preserved, too:
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By =771, =" [Bgl ] . D,=7"D,, =" [Dgl ] .

We note that after the congruence transformation, fT is diagonal
p1 n
_» |00
Therefore, to avoid large entries in the synthesized inductors for synthesized
RCL equations, we partition the eigenvalue matrix A of I} into

M~

£ n—t¢

A
a= ")

where A, contains the n — £ smallest eigenvalues that are smaller than a given
threshold € in magnitude. Setting A, = 0, we derive reduced RCSe equations
of the same form as in (4.21) with the “susceptance” matrix

p1 £ n—t

N p1 | 0
Ii= . Ay
n—t 0
Subsequently, we can define reduced-order equations to resemble the RCL
form (4.1):
AR IER
s = |+ ~ = v u(s),
( 0 L, —-I0 ir(8) 0 (4.22)

o
L.= . A;l
n—t 0

Since L, is diagonal, there is no inductance loop in synthesized network. We
refer to the equations in (4.22) as the synthesized RCL equations of the original
RCL equations in (4.1). The synthesized RCL equations in (4.22) are described
in detail by an RCLSYN (RCL equivalent circuit synthesis) tool presented in
[21].
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Ezxample 3. We consider a 64-bit bus circuit network with 8 inputs and 8
outputs. The order N of the corresponding RCL model is N = 16963. By
the structure-preserving model order reduction described in this section, we
obtain a reduced-order RLC equations of the form (4.22), with order n = 640.

SPICE transient analysis are performed on both the original RLC circuit
and the synthesized circuit (4.22) with excitations of pulse current sources
at eight inputs. The transient simulation results are shown in Figure 1. The
transient response of the synthesized circuit is visually indistinguishable from
that of the original RLC circuit. SPICE AC analysis was also performed on
both the original RLC circuit and the synthesized RLC circuit with current
excitation at the near end of the first line. The voltage at the far end of the
first line is considered as the observing point. The AC simulation results are
shown in Figure 2. We see that two curves are visually indistinguishable. The
CPU elapsed time for the transient and AC analysis are shown in the following
table

Full RCL Synthesized RCL
Dimensionality 16963 640
Transient analysis | 5007.59 (sec.) 90.16 (sec.)
AC analysis 29693.02 (sec.) | 739.29 (sec.)

From the table, we see that with the reduced RCL equations a factor of
50 of speedup for the transient analysis and a factor of 40 of speedup for the
AC analysis have been achieved. <

Voltage (V)

0.5F

A Original Circuit

+ Synthesized Circuit
o " " " " " " " ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s) X107

Fig. 1. Transient analysis of the bus circuit
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A Original Circuit
+ Synthesized Circuit
g
=
(0]
g
s
>
‘0 1 2 3 4 5 6 7 8 9 10
Frequency (Hz) x10°
Fig. 2. AC analysis of the bus circuit
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