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NONLINEAR EIGENVECTOR PROBLEMS AND GEOMETRY
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Abstract. This paper concerns a class of monotone eigenvalue problems with eigenvector non-
linearities (mNEPv). The mNEPv is encountered in applications such as the computation of joint nu-
merical radius of matrices, best rank-one approximation of third-order partial-symmetric tensors, and
distance to singularity for dissipative Hamiltonian differential-algebraic equations. We first present
a variational characterization of the mNEPv. Based on the variational characterization, we provide
a geometric interpretation of the self-consistent field (SCF) iterations for solving the mNEPv, prove
the global convergence of the SCF, and devise an accelerated SCF. Numerical examples demonstrate
theoretical properties and computational efficiency of the SCF and its acceleration.

Key words. nonlinear eigenvalue problem, self-consistent field iteration, variational characteri-
zation, geometry of SCF, convergence analysis
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1. Introduction. We consider the following eigenvector-dependent nonlinear ei-
genvalue problem:

(1.1) H(x)x = \lambda x,

where H(x) is a Hermitian matrix-valued function of the form

(1.2) H(x) :=

m\sum 
i=1

hi(x
HAix)Ai,

\{ Ai\} are n-by-n Hermitian matrices, and \{ hi\} are differentiable and nondecreasing
functions over \BbbR . The goal is to find a unit-length vector x \in \BbbC n and a scalar \lambda \in \BbbR 
satisfying (1.1), and, furthermore, \lambda (= xHH(x)x) is the largest eigenvalue of H(x).
The solution vector x is called an eigenvector of the eigenvalue problem (1.1), and \lambda 
is the corresponding eigenvalue. Since H(\gamma x) \equiv H(x) for any \gamma \in \BbbC with | \gamma | = 1, if x
is an eigenvector, then so is \gamma x.

The matrix-valued function H(x) in (1.2) is a linear combination of constant
matrices \{ Ai\} with monotonic functions \{ hi\} . We say H(x) is of a monotone affine-
linear structure and, for simplicity, call the eigenvalue problem (1.1) a monotone
NEPv, or mNEPv. For the case m= 1, the mNEPv simplifies to h(xHAx) \cdot Ax = \lambda x,
so its eigenvector x must also be an eigenvector of the Hermitian matrix A, and by
the monotonicity of h, x corresponds to the largest eigenvalue of A.
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 85

In section 2, we will see that the mNEPv (1.1) is intrinsically related to the
following maximization problem:

(1.3) max
x\in \BbbC n,\| x\| =1

\Biggl\{ 
F (x) :=

m\sum 
i=1

\phi i

\bigl( 
xHAix

\bigr) \Biggr\} 
,

where \{ \phi i\} are antiderivatives of \{ hi\} , i.e., \phi \prime 
i(t) = hi(t) for i= 1, . . . ,m. Since \{ hi\} are

differentiable and nondecreasing, \{ \phi i\} are twice-differentiable and convex functions.
We call (1.3) an associated maximization of the mNEPv (1.1), or aMax.

The mNEPv (1.1) is a class of the eigenvalue problems with eigenvector non-
linearities (NEPv). NEPv have been extensively studied in the Kohn–Sham density
functional theory for electronic structure calculations [42] and the Gross–Pitaevskii
eigenvalue problem, a nonlinear Schrödinger equation to describe the ground states of
ultracold bosonic gases [9, 31]. NEPv have also been found in a variety of computa-
tional problems in data science, e.g., Fisher’s linear discriminant analysis [47, 66, 67]
and its robust version [8], spectral clustering using the graph p-Laplacian [16], core-
periphery detection in networks [57], and orthogonal canonical correlation analy-
sis [68].

Self-consistent field (SCF) iteration is a gateway algorithm to solve NEPv, much
like the power method for solving linear eigenvalue problems. The SCF was introduced
back in the 1950s [54]. Since then, the convergence analysis of the SCF has long been
an active research topic in the study of NEPv; see [7, 17, 18, 40, 55, 59].

Although the underlying structure of the mNEPv (1.1) is commonly found in
NEPv, it has been largely unexploited. In this paper, we will conduct a systematical
study of the mNEPv and exploit its underlying structure. Theoretically, we will reveal
a variational characterization of the mNEPv (1.1) by maximizers of the aMax (1.3).
Using the variational characterization, we will provide a geometric interpretation of
the SCF for solving the mNEPv (1.1), which reveals the global convergence of the
algorithm. We will then prove the global monotonic convergence of the SCF. Finally,
we will present an accelerated SCF by exploiting the underlying structure of H(x)
and demonstrate its efficiency with examples from a variety of applications.

The aMax (1.3) is interesting in its own right and finds numerous applications.
One important source of the problems is a quartic maximization over the Euclidean
ball, where \phi i(t) = t2 [46]. In section 5, we will discuss such quartic maximization
problems arising from the joint numerical radius computation and the rank-one ap-
proximation of partial-symmetric tensors. Another application of the aMax (1.3) is
from computing the distance to singularity for dissipative Hamiltonian differential-
algebraic equation (dHDAE) systems [43]. The aMax (1.3) also arises in robust opti-
mization with ellipsoid uncertainty; see e.g., [12]. By the intrinsic connection between
the mNEPv and the aMax, we will devise an eigenvalue-based approach for solving
the aMax that can exploit state-of-the-art eigensolvers from numerical linear algebra.

Optimizations of the form (1.3) have been investigated in the literature, but they
are often formulated as the minimization of F (x) over the vector space \BbbR n or \BbbC n.
Examples of recent studies include the quartic-quadratic optimization with \phi i(t) = t2

or t [29, 65] and the Crawford number computation with \phi i(t) = t2 [41]. For these
minimization problems, eigenvalue-based approaches have been developed which lead
to NEPv H(x)x = \lambda x with H(x) given by (1.2) and \lambda corresponding to the smallest
eigenvalue of H(x); see [29, 41]. However, as the target eigenvalue is the smallest
rather than the largest, the solution and analyses of those NEPv differ fundamentally
from those of the mNEPv (1.1). For example, the SCF is no longer globally convergent
for computing the smallest eigenvalue.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

0/
25

 to
 1

69
.2

37
.5

.1
89

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



86 ZHAOJUN BAI AND DING LU

The rest of this paper is organized as follows. Section 2 presents a variational
characterization of the mNEPv (1.1) through maximizers of the aMax (1.3). Section
3 provides a geometric interpretation of the SCF and proves its global convergence.
Section 4 focuses on the practical aspects of the SCF. Section 5 discusses the appli-
cations of the mNEPv (1.1). Numerical experiments are presented in section 6, and
concluding remarks are provided in section 7.

We follow standard notation in matrix computations. \BbbR m\times n and \BbbC m\times n are the
sets of m-by-n real and complex matrices, respectively. Re(\cdot ) extracts the real part of
a complex matrix or a number. For a matrix (or a vector) X, XT stands for transpose,
XH for conjugate transpose, and \| X\| for the matrix 2-norm. We use \lambda min(X) and
\lambda max(X) for the smallest and largest eigenvalues of a Hermitian X. The spectral
radius (i.e., the largest absolute value of eigenvalues) of a matrix or linear operator
is denoted by \rho (\cdot ). Standard little-o and big-O notations are used: f(x) = o(g(x))
means that f(x)/g(x) \rightarrow 0 as x\rightarrow 0, while f(x) = \scrO (g(x)) means that f(x)/g(x) \leq c
for some constant c as x\rightarrow 0. Other notations will be explained as used.

2. Variational characterization. Variational characterizations provide pow-
erful tools to the study of eigenvalue problems, facilitating both theoretical analysis
and numerical computations. A prominent example is the Hermitian linear eigenvalue
problem of the form Ax = \lambda x, where the Courant–Fischer principle uses optimizers of
the Rayleigh quotient xHAx/xHx to form variational characterizations of the eigen-
values of A; see, e.g., [14]. With this characterization, bounds for eigenvalues, and
interlacing, monotonicity of eigenvalues can be proved quickly. Variational character-
izations have also been developed for eigenvalue-dependent nonlinear eigenvalue prob-
lems of the form T (\lambda )x = 0 [34]. It is also well known that the NEPv in Kohn–Sham
density functional theory is derived from the minimization of an energy function in
electronic structure calculations; see, e.g., [42, 18]. In this section, we provide a varia-
tional characterization of the mNEPv (1.1) by exploring its relation to the aMax (1.3).

2.1. Stability of eigenvectors. We start with the following NEPv without
assuming the structure of H(x) and the order of the eigenvalue \lambda :

(2.1) H(x)x = \lambda x with \| x\| = 1,

where H(x) is Hermitian, differentiable (w.r.t. both real and imaginary parts of x),
and unitarily scaling invariant (i.e., H(\gamma x) = H(x) for any \gamma \in \BbbC with | \gamma | = 1). Due
to scaling invariance, we can view an eigenvector x of the NEPv (2.1) as an equivalent
class [x] := \{ \gamma x | \gamma \in \BbbC , | \gamma | = 1\} , i.e., a point in the Grassmannian Gr(1,\BbbC n).

Let x\ast be an eigenvector of the NEPv (2.1) and the corresponding \lambda \ast be the pth
largest eigenvalue of H(x\ast ). Assume that \lambda \ast is a simple eigenvalue. Then [x\ast ] can be
interpreted as a solution to the fixed-point equation over Gr(1,\BbbC n),

(2.2) [x] = Π([x]),

where the mapping Π : Gr(1,\BbbC n) \rightarrow Gr(1,\BbbC n) is defined by Π([x]) := [u(x)] and
u(x) is an (arbitrary) unit eigenvector for the pth largest eigenvalue of H(x). The
attractiveness of the fixed point [x\ast ] for the mapping Π in (2.2) can be determined
by the spectral radius of a related linear operator, as established in [7]. To introduce
this linear operator, we first denote the eigenvalue decomposition of H(x\ast ) as

(2.3) H(x\ast )
\bigl[ 
x\ast X\ast \bot 

\bigr] 
=
\bigl[ 
x\ast X\ast \bot 

\bigr] \biggl[ \lambda \ast 
Λ\ast \bot 

\biggr] 
,
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 87

where
\bigl[ 
x\ast X\ast \bot 

\bigr] 
\in \BbbC n\times n is unitary and Λ\ast \bot \in \BbbR (n - 1)\times (n - 1) is a diagonal matrix.

We then define an \BbbR -linear operator1

(2.4) \scrL : \BbbC n - 1 \rightarrow \BbbC n - 1 with \scrL (z) = D - 1
\ast XH

\ast \bot (DH(x\ast )[X\ast \bot z ] )x\ast ,

where D\ast = \lambda \ast In - 1  - Λ\ast \bot is diagonal and nonsingular since \lambda \ast is a simple eigenvalue
and DH(x)[d ] is the derivative of H at x along the direction of d:

(2.5) DH(x)[d ] := lim
\alpha \in \BbbR , \alpha \rightarrow 0

H(x + \alpha d) - H(x)

\alpha 
.

Let \rho (\scrL ) be the spectral radius of \scrL (i.e., the largest absolute value of the eigenvalues).
Then by [7, Thm. 4.2], we know that if \rho (\scrL )< 1, then [x\ast ] is an attractive fixed point
of the mapping Π (2.2); if \rho (\scrL ) > 1, then [x\ast ] is a repulsive fixed point; and if \rho (\scrL ) = 1,
then no immediate conclusion can be drawn for the attractiveness of [x\ast ]. It is worth
noting that although the theorem [7, Thm. 4.2] is stated for the case \lambda \ast = \lambda n being
the smallest eigenvalue of H(x\ast ), the result holds for a general pth eigenvalue.

Returning to the mNEPv (1.1), in the following lemma, we can show that the
operator \scrL in (2.4) is both self-adjoint and positive semidefinite. Consequently, the
conditions \rho (\scrL ) < 1 or \rho (\scrL ) \leq 1 can be characterized using the definiteness of a
characteristic function. To facilitate the analysis, we denote the vector space \BbbC n - 1

over the field of real numbers \BbbR as \BbbC n - 1(\BbbR ) and introduce an inner product over
\BbbC n - 1(\BbbR ) as

(2.6) \langle y, z \rangle D := Re(yHDz ),

where D is a given Hermitian positive definite matrix of size n - 1.

Lemma 2.1. Let x\ast \in \BbbC n be an eigenvector of the mNEPv (1.1) with a simple
eigenvalue \lambda \ast . Then the \BbbR -linear operator \scrL in (2.4) is self-adjoint and positive semi-
definite over \BbbC n - 1(\BbbR ) in the inner product (2.6) with D\ast = \lambda \ast In - 1  - Λ\ast \bot . Moreover,

(a) \rho (\scrL ) < 1 if and only if \varphi (d ;x\ast ) < 0 for all d \not = 0 and dHx\ast = 0;
(b) \rho (\scrL ) \leq 1 if and only if \varphi (d ;x\ast ) \leq 0 for all d \not = 0 and dHx\ast = 0.

Here, \varphi (d ;x\ast ) is a quadratic function in d\in \BbbC n and is parameterized by x\ast as

(2.7) \varphi (d ;x\ast ) := dH
\Bigl( 
H(x\ast ) - (xH

\ast H(x\ast )x\ast ) I
\Bigr) 
d+2

m\sum 
i=1

h\prime 
i(x

H
\ast Aix\ast ) \cdot (Re(dHAix\ast ))2.

Proof. To show that \scrL is self-adjoint and positive semidefinite, we first derive
from the definition (1.2) of H(x) that the directional derivative (2.5) is given by

DH(x)[d ] = 2

m\sum 
i=1

Re
\bigl( 
xHAid

\bigr) 
\cdot h\prime 

i(x
HAix) \cdot Ai.

Therefore, the \BbbR -linear operator \scrL in (2.4) takes the form of

\scrL (z) = 2D - 1
\ast 

m\sum 
i=1

Re(xH
\ast AiX\ast \bot z) \cdot h\prime 

i(x
H
\ast Aix\ast ) \cdot XH

\ast \bot Aix\ast .(2.8)

Since \lambda \ast is a simple largest eigenvalue, D\ast = \lambda \ast In - 1  - Λ\ast \bot is a diagonal and positive
definite matrix. A quick verification shows that

\langle \scrL (y), z \rangle D\ast = 2
\sum m

i=1 h
\prime 
i(x

H
\ast Aix\ast ) \cdot Re(xH

\ast AiX\ast \bot z) \cdot Re(xH
\ast AiX\ast \bot y) = \langle y,\scrL (z) \rangle D\ast ;

1\scrL : \BbbC m \rightarrow \BbbC m is called \BbbR -linear if \scrL (\alpha x+ \beta y) = \alpha \scrL (x) + \beta \scrL (y) for all \alpha ,\beta \in \BbbR and x, y \in \BbbC m.
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88 ZHAOJUN BAI AND DING LU

i.e., \scrL is self-adjoint w.r.t. the inner product \langle \cdot , \cdot \rangle D\ast over \BbbC n - 1(\BbbR ). Letting y = z, we
can also show that \scrL is positive semidefinite:

(2.9) \langle \scrL (z), z \rangle D\ast = 2

m\sum 
i=1

h\prime 
i(x

H
\ast Aix\ast ) \cdot Re(xH

\ast AiX\ast \bot z)2 \geq 0,

where we used the assumption that hi is nondecreasing (so h\prime 
i is nonnegative).

Now by the variational principle for the eigenvalues of self-adjoint operators (see,
e.g., [63, Chap. 1]), the spectral radius

(2.10) \rho (\scrL ) = \lambda max(\scrL ) = max
z \not =0

\langle \scrL (z), z \rangle D\ast 

\langle z, z \rangle D\ast 

.

Let d=X\ast \bot z. Then we have

(2.11) \langle z, z \rangle D\ast \equiv zH(\lambda \ast In - 1  - Λ\ast \bot )z = dH(xH
\ast H(x\ast )x\ast \cdot In  - H(x\ast ))d,

where we used the identities \lambda \ast = xH
\ast H(x\ast )x\ast and H(x\ast )X\ast \bot =X\ast \bot Λ\ast \bot . Therefore,

\rho (\scrL )  - 1 = max
z \not =0

\langle \scrL (z), z \rangle D\ast  - \langle z, z \rangle D\ast 

\langle z, z \rangle D\ast 

\equiv max
z \not =0, d=X\ast \bot z

\varphi (d ;x\ast )

\langle z, z \rangle D\ast 

,

where \varphi is from (2.7), and we used (2.9) for \langle \scrL (z), z \rangle D\ast and (2.11) for \langle z, z \rangle D\ast .
Consequently, \rho (\scrL ) < 1 (or \rho (\scrL ) \leq 1) if and only if \varphi (d ;x\ast ) < 0 (or \varphi (d ;x\ast ) \leq 0) for
all d=X\ast \bot z with z \not = 0. Since [X\ast \bot , x\ast ] is unitary, a vector d =X\ast \bot z for some z \not = 0
if and only if dHx\ast = 0 with d \not = 0. Results in items (a) and (b) follow.

By the standard notion of the stability of fixed points of a mapping in the fixed-
point analysis (see, e.g., [2, 13]), we can classify the stability of the eigenvectors of the
mNEPv (1.1) using the spectral radius \rho (\scrL ) and, alternatively, the characterization
function \varphi in Lemma 2.1.

Definition 2.2. Let x\ast \in \BbbC n be an eigenvector of the mNEPv (1.1) and \varphi be as
defined in (2.7). Then x\ast is a stable eigenvector if \varphi (d ;x\ast ) < 0 for all d \not = 0 and
dHx\ast = 0, and x\ast is a weakly stable eigenvector if \varphi (d ;x\ast ) \leq 0 for all d \not = 0 and
dHx\ast = 0. Otherwise, x\ast is called a nonstable eigenvector.

Note that Definition 2.2 does not explicitly require that \lambda \ast (H(x\ast )) is a simple
eigenvalue, as the characteristic function \varphi (2.7) is still well-defined for nonsimple
eigenvalues. In addition, we note that for a stable eigenvector x\ast , the corresponding
\lambda \ast must be a simple eigenvalue of H(x\ast ). Otherwise, there would exist another
eigenvector \widetilde x of \lambda \ast = \lambda max(H(x\ast )) orthogonal to x\ast . By letting d = \widetilde x and recalling
h\prime 
i(t) \geq 0, we derive from (2.7) that \varphi (d ;x\ast ) \geq 0, which contradicts the condition for

a stable eigenvector that \varphi (d ;x\ast ) < 0 for all d \not = 0 and dHx\ast = 0.

2.2. Characterization of mNEPv via aMax. The following theorem pro-
vides a variational characterization of the mNEPv (1.1) through the aMax (1.3).
Before stating the theorem, let us recall a standard optimization concept (see, e.g.,
[48, sect. 2.1]): A unit vector x is called a local maximizer of the aMax (1.3) if there
exists \varepsilon > 0 s.t.

(2.12) F (x) \geq F

\biggl( 
x + d

\| x + d\| 

\biggr) 
for all d\in \BbbC n with dHx = 0 and \| d\| \leq \varepsilon ,

and x is a strict local maximizer if the inequality for F in (2.12) holds strictly.
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 89

Theorem 2.3. Let x\in \BbbC n be a unit vector:
(a) If x is a stable eigenvector of the mNEPv (1.1), then x is a strict local maxi-

mizer of the aMax (1.3).
(b) If x is a local maximizer of the aMax (1.3), then x is a weakly stable eigen-

vector of the mNEPv (1.1).

Proof. Let \widehat x = (x + d)/\| x + d\| . Then we have \widehat xHAi\widehat x = xHAix + \delta i for i =
1,2, . . . ,m, where

(2.13) \delta i := 2 \cdot Re(dHAix) + dH
\bigl( 
Ai  - (xHAix)I

\bigr) 
d +\scrO (\| d\| 3).

Hence, by (1.3), the ith term of F (\widehat x) satisfies

\phi i

\bigl( \widehat xHAi\widehat x\bigr) = \phi i(gi(x) + \delta i) = \phi i(gi(x)) + hi(gi(x)) \cdot \delta i +
1

2
h\prime 
i(gi(x)) \cdot \delta 2i + o(\delta 2i ),

where gi(x) := xHAix. Summing over all \phi i from i = 1 to m, we obtain

F (\widehat x)\equiv 
m\sum 
i=1

\biggl[ 
\phi i(gi(x)) + hi(gi(x)) \cdot \delta i +

1

2
h\prime 
i(gi(x)) \cdot \delta 2i + o(\delta 2i )

\biggr] 
= F (x) + 2 Re(dHH(x)x) + dH (H(x) - s(x)I)d

+ 2

m\sum 
i=1

h\prime 
i(gi(x)) \cdot 

\bigl( 
Re(dHAix)

\bigr) 2
+ o(\| d\| 2)

= F (x) + 2 Re(dHH(x)x) + \varphi (d ;x) + o(\| d\| 2),(2.14)

where the second equality is by (2.13) and s(x) := xHH(x)x.
For item (a): We need to show that the inequality (2.12) holds strictly. By the

NEPv H(x)x = \lambda x and the orthogonality dHx = 0, we have dHH(x)x = 0. So (2.14)
implies that

(2.15) F (\widehat x) = F (x) + \varphi (d ;x) + o(\| d\| 2).

Since the stability of x (Definition 2.2) implies that \varphi (d ;x) < 0 and we can drop
o(\| d\| 2) (which is negligible to \varphi (d ;x) = \scrO (\| d\| 2)), (2.15) leads to F (x) > F (\widehat x) as
\| d\| \rightarrow 0.

For item (b): Let d be sufficiently tiny and dHx = 0. It follows from the local
maximality (2.12) and the expansion (2.14) that

(2.16) 0 \geq F (\widehat x)  - F (x) = 2 \cdot Re(dHH(x)x) + \varphi (d ;x) + o(\| d\| 2).

Therefore, the leading first-order term must vanish, that is, Re(dHH(x)x) = 0 for all
d with dHx = 0. This implies that H(x)x and x have common null spaces, i.e.,

(2.17) H(x)x = \lambda x for some scalar \lambda .

To show that x is a weakly stable eigenvector (Definition 2.2), we still need to
prove that (i) \lambda in (2.17) is the largest eigenvalue of H(x) and that (ii) \varphi (d ;x) \leq 0
for all d with dHx = 0. Condition (ii) follows from (2.16) by noticing that the first
term on the right side vanishes due to (2.17) and that o(\| d\| 2) is negligible to the
quadratic function \varphi (d ;x) as \| d\| \rightarrow 0. Condition (ii), in turn, also implies that \lambda 
is the largest eigenvalue of H(x). Otherwise, there is a \widetilde \lambda > \lambda with H(x)\widetilde x = \widetilde \lambda \widetilde x and
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90 ZHAOJUN BAI AND DING LU

\widetilde xHx = 0. Recall (2.7) that \varphi (d ;x) \geq dH(H(x)  - (xHH(x)x)I)d. Letting d = \widetilde x, we
have \varphi (d ;x) \geq \widetilde \lambda  - \lambda > 0, contradicting \varphi (d ;x)\leq 0.

Results from Theorem 2.3 can be regarded as second-order sufficient and necessary
conditions for the aMax (1.3). They are stated in a way to highlight the connections
between the local maximizers of the aMax and the stable eigenvectors of the mNEPv,
which benefits the analysis of the SCF to be discussed in section 3. We note that the
objective function F (x) of the aMax is not holomorphic (i.e., complex differentiable
in x\in \BbbC n). Therefore, second-order KKT conditions (see, e.g., [48, sect. 12.5]) are not
immediately applicable. Note that turning the problem to a real variable optimization
(in the real and imaginary parts of x \in \BbbC n) and then applying the KKT condition
will not lead to Theorem 2.3 since there would be no strict local maximizers for the
real problem due to the unitary invariance of F (x).

To end this section, let us discuss three immediate implications of the variational
characterization in Theorem 2.3:

(1) Given the intrinsic connection between the mNEPv (1.1) and the aMax (1.3),
stable and weakly stable eigenvectors of the NEPv are of particular interest.
Since the aMax always has a global (hence local) maximizer, Theorem 2.3(b)
guarantees the existence of weakly stable eigenvectors. Although such eigen-
vectors may not be unique and may correspond to local but nonglobal max-
imizers of the aMax (see Example 6.1), the connection to the aMax greatly
facilitates the design and analysis of algorithms for the mNEPv (1.1), such
as a geometric interpretation of the SCF in section 3.

(2) Theorem 2.3 is a generalization of the well-known variational characterization
of Hermitian eigenvalue problems. Consider the case of the mNEPv (1.1) with
m = 1 and h1(t) = 1, i.e., A1x = \lambda x. Let \lambda \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda n be the eigenvalues
of A1 with eigenvectors [x,x2, . . . , xn]. Since any nonzero d orthogonal to [x]
can be written as d = \alpha 2x2 + \cdot \cdot \cdot + \alpha nxn for some \{ \alpha i\} ni=2, the function \varphi 
defined in (2.7) becomes \varphi (d ;x) = dH(A1  - \lambda I)d =

\sum n
i=2\alpha 

2
i (\lambda i  - \lambda ). Hence,

\varphi (d ;x) is nonpositive and is strictly negative if \lambda is simple. Then Theorem
2.3 can be paraphrased to the well-known variational characterization of Her-
mitian eigenvalue problems: Eigenvectors of the largest eigenvalue of A1 are
global maximizers of (xHA1x)/(xHx). If the largest eigenvalue is simple, then
its eigenvector (up to scaling) is the only maximizer; see, e.g., [1, sect. 4.6.2].

(3) If the matrices \{ Ai\} of the mNEPv (1.1) are real symmetric, then H(x) is
real symmetric, and the eigenvectors of the mNEPv are all real vectors (up
to a unitary scaling). Theorem 2.3(b) implies that the global maximum of
the aMax (1.3) is always achieved at a real vector x\in \BbbR n, namely,

(2.18) max
x\in \BbbC n, xHx=1

F (x) = max
x\in \BbbR n, xT x=1

F (x).

The two maximizations above are fundamentally different in nature. The
identity holds only due to the specific formulation of F , as demonstrated
by Theorem 2.3. We highlight the identity (2.18) because many practical
optimization problems come in the form of the right-hand side with x \in \BbbR n.
We can nevertheless view such a problem as an aMax (1.3) with x \in \BbbC n.
This allows us to develop a unified treatment for both real and complex
variables, which is highly beneficial, as shown in the case of numerical radius
computation in subsection 5.1.
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3. Geometry and global convergence of the SCF. Much like the power
method for solving linear eigenvalue problems, SCF iteration is a gateway method for
NEPv; see [42, 17] and references therein. For the mNEPv (1.1), the SCF starts from
an initial unit vector x0 \in \BbbC n and generates a sequence of approximate eigenvectors
x1, x2 . . . , via sequentially solving the linear eigenvalue problems

(3.1) H(xk)xk+1 = \lambda k+1 xk+1 for k = 0,1, . . . ,

where \lambda k+1 is the largest eigenvalue of H(xk) and xk+1 is a unit eigenvector. In the
following, we first present a geometric interpretation of the SCF (3.1) and then provide
a proof of the global convergence of the SCF based on the geometric observation.

3.1. Geometry of the SCF. In subsection 2.2, we discussed the variational
characterization of the mNEPv (1.1) via the aMax (1.3). Now consider the change of
variables

(3.2) y = g(x) with g(x) :=
\bigl[ 
xHA1x, . . . , x

HAmx
\bigr] T \in \BbbR m.

The aMax (1.3) is then recast as an optimization over the joint numerical range

(3.3) max
y\in W (\scrA )

\Biggl\{ 
\phi (y) :=

m\sum 
i=1

\phi i(y(i))

\Biggr\} 
,

where y(i) is the ith entry of y and W (\scrA ) \subset \BbbR m is a (first) joint numerical range of
an m-tuple \scrA := (A1, . . . ,Am) of Hermitian matrices A1, . . . ,Am defined as

(3.4) W (\scrA ) =
\Bigl\{ 
y \in \BbbR m | y = g(x), x\in \BbbC m, \| x\| = 1

\Bigr\} 
.

By definition, W (\scrA ) is the range of the vector-valued function g over the unit sphere
\{ x \in \BbbC n | \| x\| = 1\} . Since g is a continuous and bounded function, W (\scrA ) is a
connected and bounded subset of \BbbR m. Moreover, it is known that the set of W (\scrA )
is convex in cases such as m = 1,2 for any matrix size n, m = 3 for n \geq 3 [3, 4], and
other cases under proper conditions [36].

Before we proceed, let us first revisit the notion of supporting hyperplane for a
general bounded and closed subset Ω of \BbbR m. To this end, we can define a hyperplane

(3.5) \scrP v :=
\Bigl\{ 
y \in \BbbR m | vT (y - yv) = 0

\Bigr\} 
,

where v is a given nonzero vector in \BbbR m and yv satisfies

(3.6) yv \in argmax
y\in \Omega 

vT y.

The hyperplane \scrP v contains in one of its half-spaces the entire Ω, and it also passes
through at least one point in Ω because

(3.7) (i) vT y\leq vT yv for all y \in Ω and (ii) yv \in Ω.

We will refer to \scrP v as a supporting hyperplanes of Ω with an outer normal vector v
(pointing outward from Ω) and a supporting point yv. Supporting hyperplanes are
commonly used for studying convex sets; see, e.g., [15, sect. 2.5].

Finding the global optimizer in (3.6) for a general set Ω is hard. Fortunately, if
the set Ω = W (\scrA ), then the following lemma shows that the supporting point yv in
(3.6) can be obtained by solving a Hermitian eigenvalue problem.
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92 ZHAOJUN BAI AND DING LU

Lemma 3.1. Let v \in \BbbR m be a nonzero vector. Then

(3.8) yv \in argmax
y\in W (\scrA )

vT y if and only if yv = g(xv),

where xv is an eigenvector for the largest eigenvalue \lambda v of the Hermitian matrix

(3.9) Hv :=

m\sum 
i=1

v(i) \cdot Ai

and v(i) is the ith entry of v.

Proof. Observe that

(3.10) vT g(x) =

m\sum 
i=1

(xHAix) \cdot v(i) = xHHvx.

The maximization from (3.8) leads to

max
y\in W (\scrA )

vT y = max
\| x\| =1

vT g(x) = max
\| x\| =1

xHHvx = xH
v Hvxv = vT g(xv),

where the second and the last equalities are due to (3.10) and the third equality is by
the eigenvalue maximization principle of Hermitian matrices; namely, the maximizer
of xHHvx is achieved at any eigenvector xv of the largest eigenvalue of Hv.

Lemma 3.1 suggests a close relation between the SCF (3.1) and the search for
supporting points of W (\scrA ). Such relation is called a geometric interpretation of the
SCF and is formally stated in the following theorem.

Theorem 3.2. Let \{ xk\} be a sequence of unit vectors generated by the SCF (3.1),
and let yk := g(xk), where g is defined in (3.2). Then it holds that

(3.11) yk+1 \in argmax
y\in W (\scrA )

\nabla \phi (yk)T y.

Therefore, geometrically,

(3.12) yk+1 is a supporting point of W (\scrA ) for the outer normal vector \nabla \phi (yk).

Proof. The coefficient matrix H(xk) by (1.2) is an Hv matrix in Lemma 3.1:

(3.13) H(xk)\equiv Hvk withvk =\nabla \phi (yk) and yk = g(xk)\in W (\scrA ).

Hence, the kth SCF iteration (3.1) is to solve the eigenproblem Hvkxk+1 = \lambda k+1xk+1.
It follows from Lemma 3.1 that yk+1 = g(xk+1) is a solution of (3.8) for vk =
\nabla \phi (yk). Therefore, yk+1 is a supporting point of W (\scrA ) for the outer normal direction
\nabla \phi (yk).

By Theorem 3.2, the SCF iteration (3.1) can be visualized as searching the so-
lution of the mNEPv (1.1) on the boundary of the joint numerical range W (\scrA ).
Moreover, at a solution x\ast of the mNEPv (1.1), the geometric interpretation (3.12)
is equivalent to the following geometric first-order optimality condition for the con-
strained optimization (3.3):

(3.14) \nabla \phi (y\ast ) is an outer normal vector of W (\scrA ) at y\ast ,

where y\ast = g(x\ast ). These concepts are illustrated by the example below.
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Fig. 1. Left: Illustration of Example 3.3 for the first three iterates x0, x1, x2 by the SCF (3.1)
for the mNEPv (3.15). The shaded region is the joint numerical range W (A1,A2); dashed lines
are contours of \phi (y) = \| y\| 2/2 with dashed arrows the gradient directions \nabla \phi ; solid tangent lines
are ``supporting hyperplanes"" at yi = g(xi) with solid arrows the normal direction \nabla \phi (yi - 1); the
maximizer of (3.16) is marked as \ding{72}. Right: Illustration of Example 3.6 for stable eigenvectors,
marked as solid stars \ding{72}, and nonstable eigenvectors, marked as hollow stars \ding{73}: Close to a nonstable
eigenvector, the gradients \nabla \phi (dashed arrows) point away from the normal vectors (solid arrow),
leading to divergence of the SCF from \ding{73}.

Example 3.3. Let us consider the mNEPv (1.1) of the form

(3.15) H(x)x = \lambda x with H(x) = (xHA1x) \cdot A1 + (xHA2x) \cdot A2,

where A1 and A2 are Hermitian matrices. The mNEPv (3.15) arises from numerical
radius computation and will be further discussed in subsection 5.1. By Theorem 2.3
and (3.3), the mNEPv (3.15) can be characterized by the optimization problems

(3.16) max
\| x\| =1

\bigl\{ 
F (x) := [(xHA1x)2+ (xHA2x)2]/2

\bigr\} 
= max

y\in W (A1,A2)

\bigl\{ 
\phi (y) := \| y\| 2/2

\bigr\} 
,

where W (A1,A2) is a joint numerical range of A1 and A2. The left plot in Figure 1
depicts the SCF as a search process for solving the mNEPv (3.15) with randomly
generated Hermitian matrices A1 and A2 of size 10. Given the initial y0 = g(x0), the
SCF first searches in the gradient direction v0 =\nabla \phi (y0) to obtain a supporting point
y1 = g(x1) and then searches in the gradient direction \nabla \phi (y1) to obtain the second
supporting point y2 = g(x2) and so on. When this process converges to y\ast = g(x\ast ), the
gradient \nabla \phi (y\ast ) overlaps the outer normal vector of W (\scrA ) at y\ast ; i.e., the optimality
condition (3.14) is achieved.

Another key indication of (3.11) is that the SCF is a successive local linearization
for the optimization (3.3): At iteration k, it approximates \phi (y) by its first-order
expansion

(3.17) \ell k(y) := \phi (yk) + \nabla \phi (yk)T (y - yk)

and solves the optimization of the linear function over the joint numerical range

(3.18) max
y\in W (\scrA )

\ell k(y).

By dropping the constant terms in \ell k(y), the maximizers of (3.18) satisfy

argmax
y\in W (\scrA )

\ell k(y) \equiv argmax
y\in W (\scrA )

\nabla \phi (yk)T y.
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94 ZHAOJUN BAI AND DING LU

Hence, the solution to (3.18) is exactly yk+1 in (3.11), and we have

(3.19) \ell k(yk+1) = max
y\in W (\scrA )

\ell k(y).

These observations are helpful to the proof of the global convergence of the SCF to
be presented in subsection 3.2.

3.2. Convergence analysis of the SCF. In this section, we show that the SCF
iteration is globally convergent to an eigenvector of the mNEPv (1.1), as indicated by
the visualization of the SCF in subsection 3.1. Moreover, the converged eigenvector
is typically a stable one, and the rate of convergence is at least linear.

We begin with the following theorem on the global convergence of the SCF (3.1).
Here for a sequence of unit vectors \{ xk\} , we call x\ast an (entrywise) limit point if

(3.20) x\ast = lim
j\rightarrow \infty 

xkj
for some subsequence \{ xkj

\} indexed by k1 <k2 < \cdot \cdot \cdot .

By the Bolzano–Weierstrass theorem, a bounded sequence in \BbbC n has a convergent
subsequence, so the sequence \{ xk\} of unit vectors has at least one limit point x\ast .

Theorem 3.4. Let \{ xk\} be a sequence of unit vectors from the SCF (3.1) for the
mNEPv (1.1) and F (x) be the objective function of the aMax (1.3). Then

(a) F (xk+1) \geq F (xk) for k = 0,1, . . . , with equality holding only if xk is an
eigenvector of the mNEPv (1.1);

(b) each limit point x\ast of \{ xk\} must be an eigenvector of the mNEPv (1.1), and
it holds that F (x\ast ) \geq F (xk) for all k\geq 0.

Proof. For item (a), recall that the linearization \ell k in (3.17) is a lower supporting
function for the convex function \phi , i.e., \ell k(y) \leq \phi (y) for y \in W (\scrA ). Consequently,

(3.21) F (xk+1)\equiv \phi (yk+1)\geq \ell k(yk+1) = max
y\in W (\scrA )

\ell k(y)\geq \ell k(yk) = \phi (yk)\equiv F (xk),

where the third equality is by (3.19). Moreover, if the equality F (xk+1) = F (xk)
holds, then (3.21) implies that

(3.22) \ell k(yk) = max
y\in W (\scrA )

\ell k(y),

namely,

yk \in argmax
y\in W (\scrA )

\ell k(y)\equiv argmax
y\in W (\scrA )

\nabla \phi (yk)T y.

According to Lemma 3.1, yk = g(xk), and xk is an eigenvector for the largest eigenvalue
of Hvk with vk = \nabla \phi (yk). Since Hvk \equiv H(xk), we have H(xk)xk = \lambda xk, and \lambda is the
largest eigenvalue; i.e., xk is an eigenvector of the mNEPv (1.1).

For item (b), let \{ xkj
\} be a subsequence of \{ xk\} convergent to x\ast . The mono-

tonicity from item (a) implies that F (x\ast ) \geq F (xk) for all k \geq 0. To show that x\ast is
an eigenvector, we denote by ykj = g(xkj ) and y\ast = g(x\ast ). The linearization of \phi at
y\ast satisfies

(3.23) \ell \ast (y) := \phi (y\ast ) + \nabla \phi (y\ast )T (y - y\ast ) = lim
j\rightarrow \infty 

\ell kj (y),

where the last equality is due to (3.17), y\ast = limj\rightarrow \infty ykj
, and the continuity of \phi 

and \nabla \phi .
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 95

We first show that

(3.24) \nabla \phi (y\ast )T (y - y\ast ) \leq 0 for all y \in W (\scrA ).

Otherwise, there exists a \widetilde y \in W (\scrA ) with

(3.25) \varepsilon :=\nabla \phi (y\ast )T (\widetilde y - y\ast )> 0.

By the convergence of \ell kj
\rightarrow \ell \ast in (3.23), there exists N \geq 0 such that for all j \geq N ,

(3.26) \ell kj (\widetilde y) \geq \ell \ast (\widetilde y) - \varepsilon /2.

It then follows from (3.21) (with k = kj) that for all j \geq N ,

\phi (ykj+1)\geq max
y\in W (\scrA )

\ell kj (y) \geq \ell kj (\widetilde y) \geq \ell \ast (\widetilde y)  - \varepsilon 

2
= \phi (y\ast ) +

\varepsilon 

2
,

where the last two equations are due to (3.26) and (3.25). The equation above implies
that F (xkj+1)\geq F (x\ast ) + \varepsilon /2, contradicting F (x\ast ) \geq F (xk) for all k.

It follows from (3.23) and (3.24) that

\ell \ast (y\ast ) = max
y\in W (\scrA )

\ell \ast (y) = \phi (y\ast ).

Then by the same arguments as for the yk in (3.22), we have that x\ast is an eigenvector
of the mNEPv (1.1).

In section 5, we will discuss the mNEPv (1.1) arising from optimization of the
form (1.3), for which the monotonicity of the objective function is highly desirable.
Starting from any x0, the SCF will find an eigenvector x\ast that has an increased
function value F (x\ast )\geq F (x0).

Let’s now consider the local convergence properties of the SCF. Theorem 3.4
guarantees that the SCF will converge globally to some eigenvector of the mNEPv
(1.1) from any initial guess x0. In theory, the SCF may terminate at a nonstable
eigenvector x\ast of the mNEPv, if it exists. In practice, however, convergence to a
nonstable eigenvector is unlikely to happen because such eigenvectors are repulsive
fixed points of the mapping Π (2.2), as explained in subsection 2.1. Therefore, the
SCF (3.1), which is a fixed point iteration with Π, will diverge from a nonstable x\ast 
when xk is in a neighborhood of x\ast . More rigorously, by the local convergence analysis
of the SCF for a general unitarily invariant NEPv (see [7, Thm. 1]), we can draw the
local convergence of the SCF (3.1) for the mNEPv (1.1), as stated in the following
theorem.

Theorem 3.5. Let x\ast be an eigenvector of the mNEPv (1.1) with a simple eigen-
value \lambda \ast , \scrL be the \BbbR -linear operator (2.4) for x\ast , and \rho (\scrL ) be the spectral radius:

(a) If \rho (\scrL ) < 1 (i.e., x\ast is a stable eigenvector by Definition 2.2), then the SCF
(3.1) is locally convergent to x\ast , with an asymptotic convergence rate bounded
by \rho (\scrL ).

(b) If \rho (\scrL ) > 1 (i.e., x\ast is a nonstable eigenvector by Definition 2.2), then the
SCF is locally divergent from x\ast .

Here we recall that an iterate xk by the SCF (3.1) is understood as a one-dimensional
subspace spanned by xk. The local convergence and divergence of xk in Theorem 3.5
is measured by the vector angle \angle (x\ast , xk) := cos - 1

\bigl( 
| xH

\ast xk| 
\bigr) 
.

Example 3.6. By the geometric interpretation of the SCF from Theorem 3.2, we
can visualize its local convergence behavior revealed in Theorem 3.5. The right plot

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

0/
25

 to
 1

69
.2

37
.5

.1
89

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



96 ZHAOJUN BAI AND DING LU

in Figure 1 depicts the search directions of the SCF for a numerical radius problem
described in (3.16), with the corresponding mNEPv (3.15). There are four eigenvec-
tors (marked as stars, where the solid and dashed arrows overlap). Two solid stars
are stable eigenvectors (i.e., local maximizers of (3.16)), and two hollow stars are non-
stable eigenvectors (nonmaximizers). The reason why the SCF is locally convergent
to stable eigenvectors is now clear: Close to a solid star, the search directions \nabla \phi (y)
by (3.12) (dashed arrow) bring the next iteration closer to the solid star. In contrast,
close to a hollow star, the search directions lead away from the hollow star. This
observation also justifies the name of nonstable eigenvector since a slight perturbation
will lead the SCF to diverge from those solutions.

Combining the properties of global and local convergence in Theorems 3.4 and 3.5,
we can summarize the overall convergence of the SCF (3.1) as follows:

1. Let x\ast be an (entrywise) limit point of \{ xk\} by the SCF. Then x\ast is an
eigenvector of the mNEPv (1.1); see Theorem 3.4(b).

2. The limit point x\ast is unlikely a nonstable eigenvector since the SCF is locally
divergent from nonstable eigenvectors; see Theorem 3.5(b).2 Consequently,
the SCF is expected to converge to (at least) a weakly stable eigenvector x\ast .

3. If the limit point x\ast is a stable eigenvector, then the SCF is at least locally
linearly convergent to x\ast ; see Theorem 3.5(a).

4. The SCF in practice. In this section, we will introduce an acceleration
technique and discuss related implementation details of the SCF iteration.

4.1. Accelerated SCF. The iterative process (3.1) is an SCF in its simplest
form, also known as the plain SCF. There are a number of ways to accelerate the plain
SCF, such as the damping scheme [19], level-shifting [64], direct inversion of iterative
subspace with Anderson acceleration [51], and the preconditioned fixed-point iteration
[39]. Most of these schemes are designed for solving NEPv from electronic structure
calculations. In this section, we present an acceleration scheme of the SCF (3.1) for
the mNEPv (1.1) based on the inverse iteration.

Inverse iterations are a commonly used technique for solving linear eigenvalue
problems [30] and eigenvalue-dependent nonlinear eigenvalue problems [25]. Moreover,
there is also an inverse iteration available for NEPv in the form

(4.1) H(x/\| x\| ) \cdot x = \lambda x,

where H(x) is a real symmetric matrix that is differentiable in x \in \BbbR n [31].3 For
normalized x, we have H(x/\| x\| ) \equiv H(x), so that the mNEPv (1.1) can be equivalently
written to an NEPv (4.1). In the following, we will first revisit the inverse iteration
scheme in [31] and then propose an improved scheme for solving the mNEPv (1.1) by
exploiting its underlying structure.

Let xk be a unit approximate eigenvector of the NEPv (4.1) and \sigma k be a given
shift close to a target eigenvalue. The following inversion step is proposed in [31] to
improve xk:

(4.2) \widetilde xk = \alpha k (J(xk) - \sigma kI)
 - 1

xk with J(x) :=
\partial 

\partial x
(H(x/\| x\| )x),

2One exceptional but rare case is that some xk coincides with a nonstable x\ast and that the SCF
terminates.

3The authors in [31] considered scaling invariant NEPv H(x) \cdot x= \lambda x with H(x)\equiv H(\alpha x) for all
\alpha \not = 0, and they pointed out such NEPv cover (4.1) as a special case.
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 97

where \alpha k is a normalization factor. The formula (4.2) can be derived from Newton’s
method applied to the nonlinear equations H(x/\| x\| )x - \lambda x = 0 and xTx = 1. Iter-
atively applying (4.2) with a fixed shift \sigma has been proven to converge linearly with
a convergence factor proportional to | \sigma  - \lambda \ast | , whereas using dynamic Rayleigh shifts
\sigma k = xT

kH(xk)xk is expected to yield quadratic convergence [31]. However, directly
applying the inverse iteration (4.2) may lead to convergence to an eigenvalue that is
not the largest one. Hence, we will only use it as a local acceleration scheme for the
SCF.

We first note that despite the matrix H(x) of the mNEPv (1.1) being symmet-
ric when all coefficient matrices A1, . . . ,Am are real symmetric, the corresponding
Jacobian J(x) in (4.2) is generally not. Specifically, the Jacobian J(x) is given by

J(x)\equiv \partial 

\partial x
(H(x/\| x\| )x ) = H(x) + 2M(x)C(x)M(x)TP (x),(4.3)

where M(x) = [A1x, \cdot \cdot \cdot , Amx] and C(x) = Diag
\bigl( 
h\prime 
1

\bigl( 
xTA1x

\bigr) 
, . . . , h\prime 

m

\bigl( 
xTAmx

\bigr) \bigr) 
and

P (x) = I  - xxT is a projection matrix. To symmetrize J(x), we introduce

(4.4) Js(x) := J(x) + x \cdot q(x)T =H(x) + 2P (x)M(x)C(x)M(x)TP (x),

where q(x) = 2P (x)M(x)C(x)M(x)Tx \in \BbbR n. Since the new matrix Js is a rank-one
modification of J , by the Sherman–Morrison–Woodbury formula [28], we have

(Js(xk)  - \sigma kI)
 - 1

xk = c \cdot (J(xk)  - \sigma kI)
 - 1

xk

for some constant c. Therefore, we can reformulate the inversion step (4.2) to

(4.5) \widetilde xk = \widetilde \alpha k \cdot (Js(xk)  - \sigma kI)
 - 1

xk,

where \widetilde \alpha k normalizes \widetilde xk to a unit vector; i.e., we can replace J by the symmetric Js.
If the coefficient matrices \{ Ai\} are complex Hermitian, then H(x) is not holomor-

phically differentiable since its diagonal entries are always real and cannot be analytic
functions. Consequently, the (holomorphic) Jacobian of H(x/\| x\| )x does not exist.
Nevertheless, the matrix Js(x) by (4.4) is well-defined and Hermitian (with transpose
\cdot T replaced by conjugate transpose \cdot H), so it can still be used for the inversion (4.5).

4.2. Implementation issues. The SCF with an optional acceleration for solv-
ing the mNEPv (1.1) is summarized in Algorithm 4.1. A few remarks on the imple-
mentation detail are in order:

(1) The initial x0, in view of the geometry of the SCF discussed in subsection
3.1, can be chosen from sampled supporting points of W (\scrA ). To do this, we
randomly choose \ell search directions vi \in \BbbR m for i = 1, . . . , \ell and then find
the supporting points yvi = g(xvi) of W (\scrA ) along each direction. Among
xv1 , . . . , xv\ell , we choose the one with the largest value F (xvi) as x0. This
greedy sampling scheme increases the chance for the SCF to find the global
maximizer of the aMax (1.3).
To compute the supporting points, Lemma 3.1 tells us that xvi is an eigenvec-
tor to the largest eigenvalue of the Hermitian matrix Hvi

in (3.9). Thus, we
need to solve \ell Hermitian eigenvalue problems to obtain \ell supporting points.
For efficiency, we can exploit the fact that H - vi \equiv  - Hvi , so we can compute
two supporting points in both directions \pm vi by solving a single eigenvalue
problem of Hvi .
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98 ZHAOJUN BAI AND DING LU

Algorithm 4.1 The SCF with optional acceleration

Input: Starting x0 \in \BbbC n, residual tolerance tol, and acceleration threshold tolacc.
Output: Approximate eigenpair (\lambda k, xk) of the mNEPv (1.1).

1: for k = 1,2, . . . do
2: H(xk - 1)xk = \lambda k \cdot xk with \lambda k = \lambda max(H(xk - 1)); % SCF
3: if res(xk)\leq tol, then return (\lambda k, xk); % test for convergence
4: if res(xk)\leq tolacc then % acceleration if activated
5: compute \widetilde xk by (4.5) with the shift \sigma k = xH

k H(xk)xk.
6: if F (\widetilde xk)>F (xk), then update xk = \widetilde xk;
7: end if
8: end for

(2) Algorithm 4.1 requires finding the eigenvector corresponding to the largest
eigenvalue of the matrix H(xk - 1) in line 2. Additionally, when we apply accel-
eration, we need to solve a linear system with coefficient matrix Js(xk) - \sigma kI in
line 5. For the mNEPv of small to medium sizes, direct solvers can be applied,
such as the QR algorithm for Hermitian eigenproblems and LU factorization
for linear systems (e.g., MATLAB’s eig and backslash, respectively). For
large sparse problems, iterative solvers are applied, such as the Lanczos-type
methods for Hermitian eigenproblems (e.g., MATLAB’s eigs) and MINRES
and SYMMLQ for linear systems; see, e.g., [6, 10].

(3) The acceleration with the inverse iteration is expected to work well for xk

close to a solution. A threshold tolacc is introduced to control the activation
of inverse iteration in line 4. If tolacc = 0, Algorithm 4.1 runs the plain SCF. If
tolacc =\infty , Algorithm 4.1 applies acceleration at each step. We observe that
the choice of tolacc is not critical, and tolacc = 0.1 is used in our numerical
experiments.

(4) To maintain the monotonicity of F (xk), as in the SCF, the accelerated eigen-
vector \widetilde xk is accepted only if F (\widetilde xk) \geq F (xk) in line 6.

(5) To assess the accuracy of iteration k in line 3, we use the relative residual
norm

(4.6) res(\widehat x) := \| H(\widehat x)\widehat x - (\widehat xHH(\widehat x)\widehat x) \cdot \widehat x\| /\| H(\widehat x)\| ,

where \| H(\widehat x)\| is some convenient-to-evaluate matrix norm, e.g., the matrix
1-norm as we used in the experiments.

5. Applications. The mNEPv (1.1) and the aMax (1.3) can be found in nu-
merous applications. In this section, we discuss three of them. The first one is on
the quartic maximization over the Euclidean sphere and its application for computing
numerical radius. The second is on the best rank-one approximation of third-order
partial-symmetric tensors. The third is from the study of the distance to singularity
of dHADE systems.

5.1. Quartic maximization and numerical radius. A (homogeneous) quar-
tic maximization over the Euclidean sphere is of the form

(5.1) max
x\in \BbbC n,\| x\| =1

\Biggl\{ 
F (x) :=

1

2

m\sum 
i=1

\bigl( 
xHAix

\bigr) 2\Biggr\} 
,
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 99

where \{ Ai\} are n-by-n Hermitian matrices. The optimization (5.1) is a classical prob-
lem in the field of polynomial optimization, although in the literature, it is usually
formulated in real variables, i.e., x \in \BbbR n with symmetric \{ Ai\} [27, 46, 70]. In addi-
tion, it also arises in the study of robust optimization with ellipsoid uncertainty [12].
Observe that the quartic maximization (5.1) is an aMax (1.3) with \{ \phi i(t) = t2/2\} .
Hence, the underlying mNEPv (1.1) is of the form

(5.2) H(x)x = \lambda x with H(x) =

m\sum 
i=1

(xHAix) \cdot Ai,

where the coefficient functions hi(t) = \phi \prime 
i(t) = t are differentiable and nondecreasing.

The simplest nontrivial example of the quartic optimization (5.1) is when m= 2,
which occurs in the well-known problem of computing the numerical radius of a square
matrix. The numerical radius of a matrix B \in \BbbC n\times n is defined as

(5.3) r(B) := max
x\in \BbbC n,\| x\| =1

| xHBx| = max
x\in \BbbC n,\| x\| =1

\Bigl( 
(xHA1x)2 + (xHA2x)2

\Bigr) 1/2
,

where A1 = 1
2 (BH + B) and A2 = \imath 

2 (BH  - B) with \imath =
\surd 
 - 1 are Hermitian matrices

[28]. An extension of (5.3) is the joint numerical radius of an m-tuple of Hermitian
matrices \scrA = (A1, . . . ,Am) defined as

(5.4) r(\scrA ) := max
x\in \BbbC n,\| x\| =1

\Biggl( 
m\sum 
i=1

(xHAix)2

\Biggr) 1/2

;

see [22]. The (joint) numerical radius plays important roles in numerical analysis. For
examples, the numerical radius of a matrix is applied to quantify the transient effects
of discrete-time dynamical systems and analyze classical iterative methods [5, 56].
The joint numerical radius of a matrix tuple is used for studying the joint behavior
of several operators; see [35] and references therein.

Numerical algorithms for computing the numerical radius of a single matrix have
been extensively studied [26, 44, 45, 58, 62]. To find the global maximizer of (5.3),
many methods adopt the scheme of local optimization followed by global certifica-
tion. Most of those algorithms, however, do not immediately extend to computing
the joint numerical radius with m \geq 3. A major benefit of the NEPv approach pre-
sented in this paper is to allow fast computation of the local maximizers to accelerate
existing approaches. Moreover, the NEPv approach provides a unified treatment for
matrix tuple \scrA with m matrices and can serve as the basis for future development of
algorithms toward the global solution of r(\scrA ) with m\geq 3.

5.2. Best rank-one approximation of third-order partial-symmetric ten-
sors. Let T \in \BbbR n\times n\times m be a third-order partial-symmetric tensor; i.e., each slice
Ai := T (:, :, i) \in \BbbR n\times n is symmetric for i= 1, . . . ,m. The problem of the best rank-one
partial-symmetric tensor approximation is defined by the minimization

(5.5) min
\mu \in \BbbR , x\in \BbbR n, z\in \BbbR m

\| x\| =1,\| z\| =1

\| T  - \mu \cdot x\otimes x\otimes z\| 2F ,

where \otimes is the Kronecker product. The solution of (5.5) provides a rank-one partial-
symmetric tensor \mu \ast \cdot x\ast \otimes x\ast \otimes z\ast that best approximates T in the Frobenius norm
\| \cdot \| F and is also known as a truncated rank-one CP decomposition of T ; see, e.g.,
[33, 70].
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100 ZHAOJUN BAI AND DING LU

The best rank-one approximations (5.5) are often recast as quartic maximizations
(5.1); see, e.g., [21, eq. (6)]. Let xi denote the ith element of a vector x. Then

(5.6) \| T  - \mu \cdot x\otimes x\otimes z\| 2F = \| T\| 2F + \mu 2  - 2\mu 
\sum 
i,j,k

tijkxixjzk,

where the range of indices i, j, k is omitted in the summation for clarity. Since the min-
imum w.r.t. \mu is achieved at \mu =

\sum 
i,j,k tijkxixjzk, the best rank-one approximation

(5.5) becomes the maximization

(5.7) max
\| x\| =1
\| z\| =1

\biggl( \sum 
i,j,k

tijkxixjzk

\biggr) 2

= max
\| x\| =1
\| z\| =1

\biggl( \sum 
k

zk \cdot xTAkx

\biggr) 2

= max
\| x\| =1

\sum 
k

\bigl( 
xTAkx

\bigr) 2
,

where the first equality is by Ai = T (:, :, i) and the second equality is due to the
maximization w.r.t. z being solved at

(5.8) z = \alpha \cdot g(x) \equiv \alpha \cdot [xTA1x, . . . , x
TAmx]T

with \alpha being a normalization factor for \| z\| = 1 provided that g(x) \not = 0. The formula
of z in (5.8) follows from | zT g(x)| 2 \leq \| g(x)\| 2 with equality holding if z = g(x)/\| g(x)\| .

Problem (5.7) leads to a quartic maximization (5.1) with real symmetric matrices
\{ Ai\} and real variables x \in \BbbR n, i.e., an aMax (1.3) with \{ \phi i(t) = t2/2\} . By Theorem
2.3, the optimizer x\ast is an eigenvector of the mNEPv (5.2) with hi(t) = \phi \prime (t) = t, and
the corresponding eigenvalue is

(5.9) \lambda \ast = xT
\ast H(x\ast )x\ast =

\sum 
k

\bigl( 
xT
\ast Akx\ast 

\bigr) 2
= \mu 2

\ast .

Any other eigenvalue \lambda of (5.2) must satisfy \lambda \equiv xTH(x)x =
\sum 

k

\bigl( 
xTAkx

\bigr) 2 \leq \lambda \ast due
to (5.9) and maximization (5.7).

The best rank-one approximation is a fundamental problem in tensor analy-
sis; see [23, 32, 69]. Third-order partial-symmetric tensors are intensively studied
[20, 37, 53, 70] and found in applications such as crystal structure [21, 49] and social
networks (Example 6.4). It is known that tensor rank-one approximation problems
are closely related to tensor eigenvalue problems [53], such as the Z-eigenvalue [52]
and \ell 2-eigenvalue [38] for general supersymmetric tensors and the C-eigenvalue for
third-order partial-symmetric tensors [21]. Tensor eigenvalue problems provide first-
order optimality conditions for the best rank-one approximation. But those eigenvalue
problems are neither formulated nor studied through the NEPv as presented in this
paper. For a third-order partial-symmetric tensor, its largest C-eigenvalue \mu \ast and
the corresponding C-eigenvectors (x\ast , z\ast ) form the best rank-one approximation (5.5)
[21]. However, solving the tensor C-eigenvalue problems, which involve two coupled
nonlinear equations in (\mu ,x, z), are fundamentally different from solving the mNEPv
(5.2). Efficient solutions to the nonlinear equations for the C-eigenvalue are still
largely open.

5.3. Distance problem in dHDAE systems. Consider the following dHDAE:

(5.10) J
dju

dtj
=B0 +B1

du

dt
+ \cdot \cdot \cdot +B\ell 

d\ell u

dt\ell 
,

where u : \BbbR \rightarrow \BbbR n is a state function, j is an integer between 0 and \ell , J =  - JT

is skew symmetric, and Bi \succeq 0 are symmetric positive semidefinite for i = 0, . . . , \ell .
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MONOTONE NONLINEAR EIGENVECTOR PROBLEMS 101

By convention, d0u
dt0 = u. The dHDAE (5.10) arises in energy-based modeling of

dynamical systems [43, 60]. An important special case is with j = 0 and \ell = 1, known
as the linear time-invariant dHDAE system [11, 60]. Another one is the second-order
dHDAE (5.10) with j = 1 and \ell = 2 [11, 43].

To analyze the dynamical properties of a dHDAE system, one needs to know
whether the system is close to a singular one. A dHDAE system (5.10) is called
singular if det(P (\lambda ))\equiv 0 for all \lambda \in \BbbC , where

(5.11) P (\lambda ) =  - \lambda jJ +B0 + \lambda B1 + \cdot \cdot \cdot + \lambda \ell B\ell 

is the characteristic matrix polynomial. The distance of a dHDAE system to the
closest singular dHDAE system is measured by the quantity dsing(P (\lambda )):

dsing(P (\lambda )) = min
x\in \BbbR n

\| x\| =1

\Biggl\{ 
2\| Jx\| 2 +

\ell \sum 
i=0

\Bigl( 
2\| (I  - xxT )Bix\| 2 + (xTBix)2

\Bigr) \Biggr\} 1/2

;(5.12)

see [43, Thm. 16]. We can reformulate the optimization (5.12) to an aMax (1.3).
First, by the skew-symmetry of J and the symmetry of Bi, we can write (5.12) as

\Bigl( 
dsing(P (\lambda ))

\Bigr) 2
= min

x\in \BbbR n

\| x\| =1

\Biggl\{ 
2 \cdot xT (JTJ)x +

\ell \sum 
i=0

\bigl[ 
2xT (BT

i Bi)x - (xTBix)2
\bigr] \Biggr\} 

= - 2 \cdot max
x\in \BbbR n

\| x\| =1

\Biggl\{ 
xTA1x +

1

2

\ell +2\sum 
i=2

(xTAix)2

\Biggr\} 
,(5.13)

where A1 \equiv J2  - 
\sum \ell 

i=0B
2
i and Ai \equiv Bi - 2 for i = 2, . . . , \ell + 2. Consequently, (5.13) is

of the form of the aMax (1.3),

(5.14) max
x\in \BbbR n,\| x\| =1

\Biggl\{ 
F (x) := xTA1x +

1

2

\ell +2\sum 
i=2

\bigl( 
xTAix

\bigr) 2\Biggr\} 
,

with \phi 1(t) = t and \phi i(t) = t2/2 for i = 2, . . . , \ell +2. By Theorem 2.3, a local maximizer
of (5.14) can be found by solving the following mNEPv of the form (1.1):

(5.15) H(x)x = \lambda x with H(x) \equiv A1 +

\ell +2\sum 
i=2

(xTAix) \cdot Ai,

where h1(t) = 1 and hi(t) = t for i= 2, . . . , \ell + 2 are nondecreasing functions.
Computable upper and lower bounds of the quantity dsing(P (\lambda )) have been stud-

ied in [43, 50], and a recent method using two-level minimization and gradient flow
has been proposed for estimating dsing(P (\lambda )) [24]. In comparison, the mNEPv ap-
proach provides a computationally efficient alternative for estimating dsing(P (\lambda )) for
dHDAE systems of any order; see Examples 6.2 and 6.3 in section 6.

6. Numerical examples. In this section, we present numerical examples of
Algorithm 4.1 for solving the mNEPv (1.1) arising from the applications described
in section 5. The main purpose of the experiments is to illustrate the convergence
behavior of the SCF (Algorithm 4.1 with tolacc = 0) and the efficiency of the acceler-
ated SCF (Algorithm 4.1 with tolacc = 0.1). The error tolerance for both algorithms
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102 ZHAOJUN BAI AND DING LU

is set to tol = 10 - 13. All experiments are carried out in MATLAB and run on a Dell
desktop with an Intel i9-9900K CPU at 3.6 GHZ and 16 GB core memory. In the spirit
of reproducible research, we have made available the MATLAB scripts implementing
the algorithms and the data used to generate the numerical results presented in this
paper. They can be accessed at https://github.com/ddinglu/mnepv.

Example 6.1. In subsection 5.1, we discussed that the computation of the nu-
merical radius of a matrix B \in \BbbC n\times n is related to mNEPv (3.15) and the variational
characterization (3.16) with Hermitian A1 = (BH + B)/2 and A2 = (BH  - B) \cdot \imath /2.
For the numerical experiment, let us consider the following matrix:

(6.1) B =

\left[    
0.6  - 0.2  - 1.9  - 0.3
 - 0.1  - 0.3  - 1.3  - 1.2
 - 2.0  - 1.6  - 2.1 1.3
 - 0.1  - 1.6 1.5  - 0.1

\right]    + \imath 

\left[    
0.6 2.5  - 0.2 2.5
2.3  - 2.6 0.4 1.3
0.0 0.6  - 0.4 1.2
2.0 1.4 1.0  - 2.3

\right]    .
The corresponding numerical range W (A1,A2) is depicted in Figure 2 as the shaded
region. We sampled 100 different starting vectors x0 to run the SCF, where each
y0 = g(x0) is a supporting point of W (A1,A2), depicted in Figure 2 as dots on the
boundary of W (A1,A2). By the discussion on the implementation of Algorithm 4.1,
such initial x0 are obtained from the eigenvectors xv of the matrix Hv for sampled
directions v \in \BbbR 2 (see Lemma 3.1 and subsection 4.2). Since a unit direction v \in \BbbR 2

can be represented by polar coordinates as v = [cos\theta , sin\theta ]T with \theta \in [0,2\pi ), the
initials x0 are set as

(6.2) x0 := xv with v = [cos\theta , sin\theta ]T

using 100 equally distant \theta between 0 and 2\pi . The sampled g(x0) are well distributed
on the boundary of W (A1,A2), as shown in Figure 2.

For 100 runs of the SCF, three different solutions are found. In Figure 2, they
are labeled, respectively, with I, II, III, in descending order of their objective values
of (3.16). The initial g(x0) on the boundary of W (A1,A2) are colored the same
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Fig. 2. Left: Numerical range W (A1,A2) of the matrix in (6.1). \ding{73} represents the solution for
the mNEPv and \bullet the starting g(x0) of the SCF. The \bullet are colored according to the solution they
have computed (blue is for solution I, red for II, and green for III). The dashed lines are contours of
\phi (y) = \| y\| 2/2; see (3.16). Right: Number of SCF iterations (``o"") and the accelerated SCF (``\times "")
for different x0 parameterized by \theta \in [0,2\pi ), as in (6.2).
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Fig. 3. Left: Convergence history of F (xk) by the SCF (``o"") and the accelerated SCF (``\times ""),
where each colored curve is a run with a particular x0 from four different starting vectors. Right:
Relative residual norms (4.6) of the mNEPv.

if the SCF will converge to the same solution, which, hence, reveals the region of
convergence for the SCF. The numbers of SCF iterations with each x0 are reported
in Figure 2. For the SCF, the iteration numbers vary for different solutions, whereas
the accelerated SCF are almost independent of the choice of the initial x0 with only
a moderate increase on the boundary of two convergence regions.

The left plot of Figure 3 depicts the convergence history of the objective func-
tion F (xk) for four different starting vectors x0, corresponding to the equally distant
\theta \in \{ 0, \pi /2, \pi , 3\pi /2\} from Figure 2. As expected, the SCF demonstrates monotonic
convergence. The right plot in Figure 3 shows the relative residual norms of xk, as
defined in (4.6). We can see that the SCF quickly enters the region of linear conver-
gence in all cases (in about three iterations). The acceleration takes full advantage
of the rapid initial convergence and speeds up the SCF significantly. We note that in
this example, the matrices A1 and A2 are complex Hermitian, for which the inverse
iteration (4.5) with Rayleigh shift \sigma k is not guaranteed quadratically convergent.

Example 6.2. In this example, we consider the mNEPv (5.15) arising from the
distance problem of dHDAE systems described in subsection 5.3. The characteristic
polynomial of a linear dHDAE system is given by

(6.3) P (\lambda ) :=  - J +R + \lambda E,

where J =  - JT is skew symmetric and E and R are symmetric positive definite
matrices. As discussed in subsection 5.3, the computation of distance to singularity
dsing(P (\lambda )) leads to the optimization (5.13) and the associated mNEPv (5.15), where

(6.4) F (x) = xTA1x +
1

2

3\sum 
i=2

(xTAix)2 and H(x) = A1 +

3\sum 
i=2

(xTAix) \cdot Ai

and A1 = J2  - E2  - R2, A2 =E, and A3 =R.
For experiments, the matrices \{ J,R,E\} of order 30 are generated randomly.4

Similar to Example 6.1, the initial x0 of the SCF are computed from supporting points

4For J : X=randn(n); X= X-X'; X= X/norm(X). For E and R: X=randn(n); X= orth(X);

X= X * diag(rand(n,1) + 1.6E-6)*X'.
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Fig. 4. Left: Computed numerical range W (A1,A2,A3) based on 800 sample supporting points
on the boundary (nodes of the mesh); \ding{73} represents the solution for the mNEPv, \bullet the starting g(x0),
and ``\circ "" the first few supporting points g(xk) by the SCF. The smaller mesh that crosses \ding{73} is part
of the level surface \phi (y) = \phi (y\ast ) for \phi (y) = y(1) + (y(2)2 + y(3)2)/2 at the solution y\ast = g(\widehat x\ast ).
Right: Number of SCF iterations (``o"") and the accelerated SCF (``\times "") for different starting x0

parameterized by \theta \in [0,2\pi ) and \eta \in [0, \pi ), as in (6.5).

of the joint numerical range W (A1,A2,A3) \subset \BbbR 3 along several sampled directions
v \in \BbbR 3. Recall that a unit v \in \BbbR 3 can be represented by spherical coordinates as

(6.5) v = [sin\eta cos\theta , sin\eta sin\theta , cos\eta ]T with \eta \in [0,2) and \theta \in [0,2\pi ).

We hence construct an equispaced grid of 20 by 40 points of (\eta , \theta ) \in [0, \pi ] \times [0,2\pi ],
yielding 800 supporting points of W (A1,A2,A3). They are depicted in Figure 4,
together with the approximate joint numerical range they generate.5

From all 800 initial x0, the SCF converge to the same solution, as marked in
Figure 4. This solution appears to be the global optimizer of (5.13), as visually verified
by the level surface of the objective function \phi (y) for the corresponding optimization
over the joint numerical range (3.3). From the numbers of iterations reported in Figure
4, we can see that both the SCF and the accelerated SCF converge rapidly to the
solution. The numbers of SCF iterations are not sensitive to the choice of x0. Figure 5
depicts the convergence history of F (xk) and the relative residual norms by the SCF
from six different starting vectors x0 (sampled supporting points of W (A1,A2,A2)
along the three coordinate axes). We observe that the SCF converges monotonically
to the same solution regardless of the starting vector used. The accelerated SCF
greatly reduces the number of iterations and shows a quadratic convergence rate.

In general, a computed \widehat x\ast may not be a global maximizer of the aMax (5.13).
But we have at least an upper bound of the distance:

(6.6) dsing(P (\lambda ))\equiv 
\bigl( 
 - 2 \cdot max

\| x\| =1
F (x)

\bigr) 1/2 \leq \bigl(  - 2 \cdot F (\widehat x\ast )
\bigr) 1/2

.

If the initial vector x0 of the SCF is especially set to be the eigenvector corresponding
to the largest eigenvalue of A1, then we have

(6.7)
\bigl( 
 - 2 \cdot F (\widehat x\ast )

\bigr) 1/2 \leq \bigl(  - 2 \cdot F (x0)
\bigr) 1/2 \leq \delta M :=

\bigl( 
 - 2 \cdot \lambda max(A1)

\bigr) 1/2
,

5Plot generated by MATLAB functions trisurf and boundary using the 800 supporting points.
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Fig. 5. Left: Convergence history of F (xk) by the SCF (``o"") and the accelerated SCF (``\times ""),
where each colored curve is a run with a particular x0 from six different starting vectors. Right:
Relative residual norms (4.6) of the mNEPv.

where the first inequality is by the monotonicity of the SCF (see Theorem 3.4) and
the second inequality is by the definition of F (x) (6.4). The quantity \delta M was in-
troduced in [43] and used as an estimation of dsing(P (\lambda )). By the inequalities (6.6)
and (6.7), the SCF always produces a sharper upper bound of dsing(P (\lambda )). In this
example, the SCF provides a sharper estimation

\sqrt{} 
 - 2 \cdot F (\widehat x\ast ) \approx 0.5989, as opposed to

\delta M \approx 0.6923.
An alternative computable upper bound to the quantity \delta M has been recently

proposed in [50], which involves an optimization of sum of Rayleigh quotients, but
it does not ensure a better estimation than \delta M [50, Thm. 3.7 and Example (3)].
In another related work [24], the authors considered an approach to estimate the
distance dsing(P (\lambda )), based on the observation that the distance is the smallest root
of a monotonically decreasing function w. A root-finding method such as bisection can
be applied. The difficulty there lies in the evaluation of the function w. For a given \epsilon ,
evaluating w(\epsilon ) can be very expensive, as it requires an optimization by a gradient flow
method, which involves repeated solution of Hermitian eigenvalue problems of size n.

Example 6.3. In this example, we consider a quadratic dHDAE system with the
characteristic polynomial

P (\lambda ) :=  - \lambda G+K + \lambda D + \lambda 2M,

where G= - GT is skew symmetric and M , D, and K are symmetric positive definite.
By subsection 5.3, the computation of distance to singularity dsing(P (\lambda )) leads to the
optimization (5.13) and the mNEPv (5.15) with

F (x) = xTA1x +
1

2

4\sum 
i=2

(xTAix)2 and H(x) = A1 +

4\sum 
i=2

(xTAix) \cdot Ai,

where A1 =G2  - M2  - D2  - K2, A2 =M , A3 =D, and A4 =K.
For numerical experiments, we consider a lumped-parameter mass-spring-damper

system Mü + Du̇ + Ku = f with n point masses and n spring-damper pairs. The
matrices D and K are interchangeable with DK =KD and are simultaneously diago-
nalizable [61]. We pick a random skew symmetric G to simulate the gyroscopic effect.
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Fig. 6. Left: Convergence history of F (xk) by the SCF (``o"") and the accelerated SCF (``\times ""),
where each colored curve is a run with a particular x0 from eight different starting vectors (lines
overlapped). Right: Relative residual norms (4.6) of the mNEPv.

Table 1
Number of iterations and computation time (in seconds) for various problem sizes n. Reported

are average results from 100 runs with different starting vectors, with the largest deviations marked.

n algorithms F (x\ast ) iterations timing

500 RTR  - 0.094157045470939 (\pm 7 \cdot 10 - 17) 24.2 (\pm 10 ) 1.63 (\pm 0.47)
SCF  - 0.094157045470939 (\pm 7 \cdot 10 - 17) 17.0 (\pm 4.0) 1.18 (\pm 0.34)

accel. SCF  - 0.094157045470939 (\pm 7 \cdot 10 - 17) 5.3 (\pm 1.3) 0.34 (\pm 0.14)

1000 RTR  - 0.095120974693461 (\pm 7 \cdot 10 - 17) 27.8 (\pm 8.8) 8.98 (\pm 1.33)
SCF  - 0.095120974693461 (\pm 4 \cdot 10 - 17) 21.3 (\pm 3.3) 6.54 (\pm 1.15)

accel. SCF  - 0.095120974693461 (\pm 6 \cdot 10 - 17) 4.7 (\pm 1.3) 1.32 (\pm 0.48)

2000 RTR  - 0.090910959613593 (\pm 6 \cdot 10 - 17) 27.6 (\pm 12 ) 58.35 (\pm 9.37)

SCF  - 0.090910959613593 (\pm 4 \cdot 10 - 17) 17.0 (\pm 4.0) 4.91 (\pm 1.58)

accel. SCF  - 0.090910959613593 (\pm 6 \cdot 10 - 17) 4.8 (\pm 1.8) 1.52 (\pm 0.73)

3000 RTR  - 0.089186202007536 (\pm 7 \cdot 10 - 17) 28.4 (\pm 11 ) 181.65 (\pm 20.6)

SCF  - 0.089186202007536 (\pm 8 \cdot 10 - 17) 16.9 (\pm 3.9) 20.51 (\pm 5.33)

accel. SCF  - 0.089186202007536 (\pm 7 \cdot 10 - 17) 5.2 (\pm 1.2) 6.39 (\pm 1.93)

The sizes n of the matrices are set ranging from 500 to 3000. For each set of testing
matrices, we run the SCF with 100 different starting vectors x0. Again, those x0 are
computed from supporting points of the joint numerical range W (\scrA ) \subset \BbbR 4 along 100
randomly sampled directions v \in \BbbR 4.

Similar to the linear system in Example 6.2, the SCF converge to the same solu-
tion from all 100 different starting vectors. Figure 6 depicts the convergence history
of the SCF and the accelerated SCF for a case of n = 1000, with eight randomly
selected starting vectors. It shows the same convergence behavior of the SCF and
the accelerated SCF, as in the previous example. Table 1 summarizes the iteration
number and computation time for the algorithms from all testing cases. We can see
that the performance of both the SCF and the accelerated SCF are not much affected
by the choice of initial vectors. Both algorithms converge rapidly, and the accelerated
SCF speed up to a factor between 2.5 and 6.2. For comparison, we have included the
results by the Riemannian trust region (RTR) method for solving the optimization
problem (5.14). We used the trustregions function provided by Manopt, a MATLAB
toolbox available at https://www.manopt.org. RTR is considered as a state-of-the-art
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approach for the optimization problems with spherical constraints of the form\| x\| = 1.
We observe that RTR finds the same solution as the proposed NEPv approach, but
it takes significantly more running time.

Example 6.4. As discussed in subsection 5.2, the problem of best rank-one ap-
proximation for a partial-symmetric tensor T \in \BbbR n\times n\times m leads to a quartic opti-
mization (5.7) and the corresponding mNEPv (5.2), where the coefficient matrices
are Ai := T (:, :, i) \in \BbbR n\times n for i = 1, . . . ,m. For nonnegative tensors, the objective

function F (x) = 1
2

\sum 
i

\bigl( 
xTAix

\bigr) 2
of (5.7) satisfies F (| x| ) \geq F (x), where | \cdot | denotes

componentwise absolute value. Therefore, it is advisable to start the SCF (3.1) with
a nonnegative initial x0. Note that if xk \geq 0, then H(xk) \geq 0, so by the Perron–
Frobenius theorem [28], the eigenvector xk+1 for the largest eigenvalue of H(xk) is
also nonnegative. Consequently, the iterates xk by the SCF will remain nonnegative.

We note that for a nonnegative tensor T and a nonnegative initial x0, the SCF
(3.1) is indeed equivalent to the alternating least squares (ALS) algorithm for finding
the best rank-one approximation (5.5). Recall that in subsection 5.2, the best rank-
one approximation (5.5) is turned into the maximization problem

(6.8) max
\| x\| =1,\| z\| =1

\bigl( 
zT \cdot g(x)

\bigr) 2
,

where g(x) = [xTA1x, . . . , x
TAmx]T . Maximizing alternatively with respect to z and

x leads to the alternating iteration

(6.9)

\left\{       
zk+1 = argmax

\| z\| =1

\bigl( 
zT \cdot g(xk)

\bigr) 2
= \alpha k \cdot g(xk),

xk+1 = argmax
\| x\| =1

\bigl( 
zTk+1 \cdot g(x)

\bigr) 2
= argmax

\| x\| =1

\bigl( 
xT \cdot H(xk) \cdot x

\bigr) 2
for k = 1,2, . . . , where \alpha k > 0 is a normalization factor for zk+1. Note that H(xk) \geq 0
if xk \geq 0. The maximizer xk+1 of (6.9) is the eigenvector corresponding to the
largest eigenvalue of H(xk) by the Perron–Frobenius theorem. Therefore, the iteration
(6.9) coincides with the SCF. The ALS algorithms are commonly used for low-rank
approximations in tensor computations [33].

For numerical experiments, we use the following third-order partial-symmetric
tensors: the New Orleans tensor6 is created from a Facebook network and has size
63891 \times 63891 \times 20 with 477778 nonzeros, the Princeton tensor7 is from a Facebook
“friendship” network and has size 6593 \times 6593 \times 6 with 70248 nonzeros, and the
Reuters tensor8 is from a news network based on all stories released by the news
agency Reuters concerning the September 11, 2011, attack during the 66 consecutive
days beginning on September 11, and the size of the tensor T is 13332 \times 13332 \times 66
with 486894 nonzeros. All three tensors are nonnegative and sparse (density \approx 10 - 5),
and so are the corresponding coefficient matrices Ai = T (:, :, i) for i = 1, . . . ,m.

In Algorithm 4.1, we use MATLAB eigs for the eigenvalue computation and
minres for solving the linear system in the acceleration (4.5). We use an adaptive
error tolerance Tol = min\{ 10 - 3, res(xk)2\} for each call of eigs and minres. We use
100 randomly generated and nonnegative starting vectors x0 to run the SCF (using
x0=abs(randn(n,1))). The convergence history is reported in Figure 7. We observe

6Data available at http://socialnetworks.mpi-sws.org/data-wosn2009.html.
7Data available at https://archive.org/details/oxford-2005-facebook-matrix.
8Data available at http://vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm.
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Fig. 7. Convergence history of relative residual norms res(xk) (4.6) by the SCF (``\circ "") and the
accelerated SCF (``\times ""). Each colored curve represents a run with a different starting vector from
100 randomly generated x0 \geq 0 (due to curve overlapping, eight selected curves are reported). The
reported computational times are the average results from the 100 runs, with the largest deviations
marked.

that from different starting x0, Algorithm 4.1 always converges to the same solution,
and the convergence rate appears not to be affected by the choice of x0. Also, the
accelerated SCF significantly reduces the number of the SCF iterations and has a
quadratic convergence rate. It is noteworthy that the SCF can find the solution in
just about a fraction of a second. This is a surprising result given the large size of
the Hermitian eigenvalue problem that is solved in each iteration.

7. Concluding remarks. A variational characterization for the mNEPv (1.1) is
revealed. Based on that, we provided a geometric interpretation of the SCF iterations
for solving the mNEPv. The geometry of the SCF illustrates the global monotonic
convergence of the algorithm and leads to a rigorous proof of its global convergence. In
addition, we presented an inverse iteration–based scheme to accelerate the convergence
of the SCF. Numerical examples demonstrated the effectiveness of the accelerated SCF
for solving the mNEPv arising from different applications. By the intrinsic connection
between the mNEPv (1.1) and the aMax (1.3), we developed an NEPv approach for
solving the aMax. Algorithmically, it allows the use of state-of-the-art eigensolvers
for fast solution.

Most results presented in this work can be extended to the case of NEPv (1.1)
with hi being nondecreasing and locally Lipschitz continuous functions. A variational
characterization of such NEPv similar to Theorem 2.3 can be established. The present
work also lays the groundwork for studying a more general class of NEPv in the
form (1.1), where the coefficient of Ai is a composite function hi(g(x)) with a given
hi : \BbbR m \rightarrow \BbbR and g(x), as defined in (3.2). Expanding theoretical analysis and
geometric interpretation of the SCF discussed in the present work to such NEPv is a
topic for future study.

Acknowledgment. We thank the anonymous referees for their many helpful
comments that substantially improved this manuscript.
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