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ROBUST RAYLEIGH QUOTIENT MINIMIZATION AND
NONLINEAR EIGENVALUE PROBLEMS∗

ZHAOJUN BAI† , DING LU‡ , AND BART VANDEREYCKEN‡

Abstract. We study the robust Rayleigh quotient optimization problem where the data matrices
of the Rayleigh quotient are subject to uncertainties. We propose to solve such a problem by ex-
ploiting its characterization as a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv).
For solving the NEPv, we show that a commonly used iterative method can be divergent due to a
wrong ordering of the eigenvalues. Two strategies are introduced to address this issue: a spectral
transformation based on nonlinear shifting and a reformulation using second-order derivatives. Nu-
merical experiments for applications in robust generalized eigenvalue classification, robust common
spatial pattern analysis, and robust linear discriminant analysis demonstrate the effectiveness of the
proposed approaches.
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1. Introduction. For a pair of symmetric matrices A,B ∈ Rn×n with either
A � 0 or B � 0 (positive definite), the Rayleigh quotient (RQ) minimization problem
is to find the optimizers of

(1) min
z∈Rn
z 6=0

zTAz

zTBz
.

It is well known that the optimal RQ corresponds to the smallest (real) eigenvalue of
the generalized Hermitian eigenvalue problem Az = λBz. There exist many excellent
methods for computing this eigenvalue by either computing the full eigenvalue decom-
position or by employing large-scale eigenvalue solvers that target only the smallest
eigenvalue and possibly a few others. We refer the reader to [10, 3] and the references
therein for an overview.

Eigenvalue problems and, in particular, RQ minimization problems have numer-
ous applications. Traditionally, they occur in the study of vibrations of mechanical
structures, but other applications in science and engineering including buckling, elas-
ticity, control theory, and statistics. In quantum physics, eigenvalues and eigenvectors
represent energy levels and orbitals of atoms and molecules. More recently, they are
also a building block of many algorithms in data science and machine learning; see,
e.g., [34, Chap. 2]. Of particular importance to the current paper are, for exam-
ple, generalized eigenvalue classifiers [20], common spatial pattern analysis [7], and
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Fisher’s linear discriminant analysis [8]. In section 5 we will explain these examples in
more detail, but in each example the motivation for solving the generalized eigenvalue
problem comes from its relation to the RQ minimization (1).

1.1. Robust Rayleigh quotient minimization. Real-world applications typ-
ically use data that is not known with great accuracy. This is especially true in data
science where statistical generalization error leads to very noisy observations of the
ground truth. It also occurs in science and engineering, like vibrational studies, where
the data is subject to modeling and measurements errors. All this uncertainty can
have a large impact on the nominal solution, that is, the optimal solution in case
the data is treated as exact, thereby making that solution less useful from a practi-
cal point of view. This is well known in the field of robust optimization; see [5] for
specific examples in linear programming. In data science, it causes overfitting which
reduces the generalization of the optimized problem to unobserved data. There exists
therefore a need to obtain robust solutions that are more immune to such uncertainty.

In this paper, we propose to obtain robust solutions to (1) by optimizing for the
worst-case behavior. This is a popular paradigm for convex optimization problems
(see the book [4] for an overview), but to the best of our knowledge a systematic
treatment is new for the RQ. To represent uncertainties in (1), we let the entries of
A and B depend on some parameters µ ∈ Rm and ξ ∈ Rp. Specifically, we consider
A and B as the smooth matrix-valued functions

(2)
A : µ ∈ Ω 7→ A(µ) ∈ Rn×n,
B : ξ ∈ Γ 7→ B(ξ) ∈ Rn×n,

where A(µ) � 0 and B(ξ) � 0 for all µ ∈ Ω and ξ ∈ Γ, and Ω ⊂ Rm and Γ ⊂ Rp are
compact. To take into account the uncertainties, we minimize the worst-case RQ:

(3) min
z∈Rn
z 6=0

max
µ∈Ω
ξ∈Γ

zTA(µ)z

zTB(ξ)z
.

We call (3) a robust RQ minimization problem. Since B(ξ) is only positive semidef-
inite, the inner max problem might yield a value +∞ for a particular z. For well-
posedness, we assume B(ξ) 6≡ 0, so a nontrivial finite minimizer of (3) exists. The
positive definiteness constraints of A will be exploited in this paper, but they can be
relaxed; see Remark 2 later.

By denoting the optimizers1 of the max problem as

(4) µ∗(z) := arg max
µ∈Ω

zTA(µ)z and ξ∗(z) := arg min
ξ∈Γ

zTB(ξ)z,

and introducing the coefficient matrices

(5) G(z) := A(µ∗(z)) and H(z) := B(ξ∗(z)),

we can write the problem (3) as

(6) min
z∈Rn
z 6=0

maxµ∈Ω z
TA(µ)z

minξ∈Γ zTB(ξ)z
= min
z∈Rn
z 6=0

zTG(z)z

zTH(z)z
.

This is a nonlinear RQ minimization problem with coefficient matrices depending
nonlinearly on the vector z.

1When the optimizers are not unique, µ∗ and ξ∗ denote any of them.
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1.2. Background and applications. The robust RQ minimization occurs in
a number of applications. For example, it is of particular interest in robust adaptive
beamforming for array signal processing in wireless communications, medical imag-
ing, radar, sonar, and seismology; see, e.g., [17]. A standard technique in this field
to make the optimized beamformer less sensitive to errors caused by imprecise sensor
calibrations is to explicitly use uncertainty sets during the optimization process. In
some cases, this leads to robust RQ optimization problems; see [30, 24] for explicit
examples that are of the form (3). For simple uncertainty sets, the robust RQ prob-
lem can be solved in closed-form. This is, however, no longer true for more general
uncertainty sets, showing the necessity of the algorithms proposed in this paper.

Fisher’s linear discriminant analysis (LDA) was extended in [15] to allow for
general convex uncertainty models on the data. The resulting robust LDA is the cor-
responding worst-case optimization problem for LDA and is an example of (3). For
product-type uncertainty with ellipsoidal constraints, the inner maximization can be
solved explicitly and thus leads to a problem of the form (6). Since the objective
function is of fractional form, the robust Fisher LDA can be solved by convex opti-
mization as in [14], where the same technique is also used for robust matched filtering
and robust portfolio selection [14]. As we will show in numerical experiments, it might
be beneficial to solve the robust LDA by other algorithms than those that explicitly
exploit convexity. In addition, convexity is rarely present in more realistic problems.

The generalized eigenvalue classifier (GEC) determines two hyperplanes to dis-
tinguish two classes of data [20]. When the data points are subject to ellipsoidal
uncertainty, the resulting worst-case analysis problem can again be written as a ro-
bust RQ problem of the form (6). This formulation is used explicitly in [31] for the
solution of the robust GEC.

Common spatial pattern (CSP) analysis is routinely applied in feature extraction
of electroencephalogram data in brain-computer interface systems; see, e.g., [7]. The
robust common spatial filters studied in [13] are another example of (6) where the
uncertainty on the covariance matrices is of product type.

Robust GEC and CSP cannot be solved by convex optimization. Fortunately,
since (6) is a nonlinear RQ problem, it is a natural idea to solve it by the following
fixed-point iteration scheme:

(7) zk+1 ←− arg min
z∈Rn
z 6=0

zTG(zk)z

zTH(zk)z
, k = 0, 1, . . . .

In each iteration, a standard RQ minimization problem, that is, an eigenvalue prob-
lem, is solved. This simple iterative scheme is widely used in other fields as well. In
computational physics and chemistry it is known as the self-consistent-field (SCF)
iteration (see, e.g., [16]). Its convergence behavior applied to (6) remains, however,
unknown.

A block version of the robust RQ minimization can be found in [2]. A similar
problem with a finite uncertainty set is considered in [27, 25]. A different treatment of
uncertainty in RQ minimization occurs in uncertainty quantification. Contrary to our
minimax approach, the aim there is to compute statistical properties (e.g., moments)
of the solution of a stochastic eigenvalue problem given the probability distribution
of the data matrices. While the availability of the random solution is appealing, it
also leads to a much more computationally demanding problem; see [9, 6] for recent
development of stochastic eigenvalue problems. Robust RQ problems, on the other
hand, can be solved at the expense of typically only a few eigenvalue computations.
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1.3. Contributions and outline. In this paper, we propose to solve the ro-
bust RQ minimization problem using techniques from nonlinear eigenvalue problems.
We show that the nonlinear RQ minimization problem (6) can be characterized as a
nonlinear eigenvalue problem with eigenvector dependence (NEPv). We explain that
the simple iterative scheme (7) can fail to converge due to a wrong ordering of the
eigenvalues, and we will show how to solve this issue by a nonlinear spectral trans-
formation. By taking into account the second-order derivatives of the nonlinear RQ,
we derive a modified NEPv and prove that the simple iterative scheme (7) for the
modified NEPv is locally quadratic convergent. Finally, we discuss applications and
detailed numerical examples in data science applied to a variety of datasets. The nu-
merical experiments clearly show that a robust solution can be computed efficiently
with the proposed methods. In addition, our proposed algorithms typically gener-
ate better optimizers measured by cross-validation than those from the traditional
methods, like simple fixed-point iteration.

The paper is organized as follows. In section 2, we study basic properties of the
coefficient matrices G(z) and H(z). In section 3, we derive NEPv characterizations
of the nonlinear RQ optimization problem (6). In section 5, we discuss three applica-
tions of the robust RQ minimization. Numerical examples for these applications are
presented in section 6. Concluding remarks are in section 7.

Notation. Throughout the paper, we follow the notation commonly used in numer-
ical linear algebra. We call λ an eigenvalue of a matrix pair (A,B) with an associated
eigenvector x if both satisfy the generalized linear eigenvalue problem Ax = λBx. We
call λ =∞ an eigenvalue if Bx = λ−1Ax = 0. An eigenvalue λ is called simple if its al-
gebraic multiplicity is one. When A and B are symmetric with either A � 0 or B � 0,
we call (A,B) a symmetric definite pair, and we use λmin(A,B) and λmax(A,B) to
denote the minimum and maximum of its (real) eigenvalues, respectively.

2. Basic properties. In the following, we first consider basic properties of the
coefficient matrices G(z) and H(z) defined in (5), as well as the numerator and de-
nominator of the nonlinear RQ (6).

Lemma 2.1. (a) For a fixed z ∈ Rn, G(z) = G(z)T � 0 and H(z) = H(z)T � 0.
(b) G(z) and H(z) are homogeneous matrix functions in z ∈ Rn, i.e., G(αz) = G(z)

and H(αz) = H(z) for α 6= 0 and α ∈ R.
(c) The numerator g(z) = zTG(z)z of (6) is a strongly convex function in z. In

particular, if g(z) is smooth at z, then ∇2g(z) � 0.

Proof. (a) The proof follows from A(µ) � 0 for µ ∈ Ω. Hence, G(z) = A(µ∗(z))
is also symmetric positive definite. We can show H(z) � 0 in analogy.

(b) The proof follows from maxµ∈Ω(αz)TA(µ)(αz) = α2 maxµ∈Ω z
TA(µ)z which

implies µ∗(αz) = µ∗(z) for all α 6= 0. Hence, G(αz) = G(z) is homogeneous in z. We
can show H(αz) = H(z) in analogy.

(c) Since A(µ) � 0 for µ ∈ Ω and Ω is compact, the function gµ(z) = zTA(µ)z
is a strongly convex function in z with uniformly bounded λmin(∇2gµ(z)) = 2 ·
λmin(A(µ)) ≥ δ > 0 for all µ ∈ Ω. Hence, the pointwise maximum g(z) = maxµ∈Ω gµ(z)
is strongly convex as well.

A situation of particular interest is when z satisfies the following regularity con-
dition.

Definition 2.2 (regularity). A point z ∈ Rn is called regular if z 6= 0, zTH(z)z 6=
0, and the functions µ∗(z) and ξ∗(z) in (4) are twice continuously differentiable at z.
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Regularity is not guaranteed from the formulation of minimax problem (3). How-
ever, we observe that it is not a severe restriction in applications where the optimal
parameters µ∗(z) and ξ∗(z) have explicit and analytic expressions; see section 6.

When z is regular, both G(z) and H(z) are smooth matrix-valued functions at z.
This allows us to define the gradient of numerator and denominator functions

g(z) = zTG(z)z and h(z) = zTH(z)z

of the nonlinear RQ (6). By straightforward calculations and using the symmetry of
G(z) and H(z), we obtain

(8) ∇g(z) = (2G(z) + G̃(z))z and ∇h(z) = (2H(z) + H̃(z))z,

where

(9) G̃(z) =


zT ∂G(z)

∂z1

zT ∂G(z)
∂z2
...

zT ∂G(z)
∂zn

 and H̃(z) =


zT ∂H(z)

∂z1

zT ∂H(z)
∂z2
...

zT ∂H(z)
∂zn

 .
Lemma 2.3. Let z ∈ Rn be regular. The following results hold.

(a) zT ∂G∂zi (z)z ≡ 0 and zT ∂H∂zi (z)z ≡ 0 for i = 1, . . . , n.

(b) ∇g(z) = 2G(z)z and ∇2g(z) = 2(G(z) + G̃(z)).

(c) ∇h(z) = 2H(z)z and ∇2h(z) = 2(H(z) + H̃(z)).

Proof. (a) By definition of G(z) and smoothness of µ∗(z) and A(µ), we have

zT
∂G

∂zi
(z)z = zT

∂A(µ∗(z))

∂zi
z = zT

(
dA(µ∗(z + tei))

dt

∣∣∣∣
t=0

)
z,

where ei is the ith column of the n×n identity matrix. Introducing f(t) = zTA(µ∗(z+
tei))z, we have zT ∂G∂zi (z)z = f ′(0). Since

f(0) = zTA(µ∗(z))z = max
µ∈Ω

zTA(µ)z ≥ zTA(µ∗(z + tei)µ)z = f(t),

the smooth function f(t) achieves its maximum at t = 0. Hence, f ′(0) = 0 and the
result follows. The proof for H(z) is completely analogous.

(b) The result ∇g(z) = 2G(z)z follows from (8) and result (a). Continuing from

this equation, we obtain ∇2g(z) = 2G(z) + 2G̃(z)T . Since the Hessian ∇2g(z) is

symmetric, we have that G̃(z) is a symmetric matrix due to the symmetry of G(z).
(c) The proof is similar to that of (b).

We can see that the gradients of g(z) and h(z) in (8) are simplified due to the
null vector property by Lemma 2.3(a):

(10) G̃(z)z = 0 and H̃(z)z = 0 ∀ regular z ∈ Rn.

In addition, from the proof of Lemma 2.3, we can also see that both G̃(z) and H̃(z)
are symmetric matrices. The symmetry property is not directly apparent from defini-
tion (9), but it is implied by the optimality of µ∗ and ξ∗ in (4). This property will be
useful in the discussion of the nonlinear eigenvalue problems in the following section.
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3. Nonlinear eigenvalue problems. In this section, we characterize the non-
linear RQ minimization problem (6) as two different nonlinear eigenvalue problems.
First, we note that the homogeneity of G(z) and H(z) from Lemma 2.1(b) and the
positive semidefiniteness of H(z) allow us to rewrite (6) as the constrained minimiza-
tion problem

(11) min
z∈Rn

zTG(z)z s.t. zTH(z)z = 1.

The characterization will then follow from the stationary conditions of this constrained
problem. For this purpose, let us define its Lagrangian function with multiplier λ:

L(z, λ) = zTG(z)z − λ(zTH(z)z − 1).

Theorem 3.1 (first-order NEPv). Let z ∈ Rn be regular. A necessary condition
for z being a local optimizer of (11) is that z is an eigenvector of the nonlinear
eigenvalue problem

(12) G(z)z = λH(z)z

for some (scalar) eigenvalue λ.

Proof. This result follows directly from the first-order optimality conditions [22,
Theorem 12.1] of the constrained minimization problem (11),

(13) ∇zL(z, λ) = 0 and zTH(z)z = 1,

combined with the gradient formulas (b) and (c) in Lemma 2.3.

Any (λ, z) with z 6= 0 and λ < ∞ satisfying (12) is called an eigenpair of the
NEPv. This means that the vector z must also be an eigenvector of the matrix pair
(G(z), H(z)). Since G(z) � 0 and H(z) � 0 are symmetric, the matrix pair has n
linearly independent eigenvectors and n strictly positive (counting ∞) eigenvalues.
However, Theorem 3.1 does not specify to which eigenvalue z corresponds. To resolve
this issue, let us take into account the second-order derivative information.

Theorem 3.2 (second-order NEPv). Let z ∈ Rn be regular, and define G(z) =

G(z) + G̃(z) and H(z) = H(z) + H̃(z). A necessary condition for z being a local
minimizer of (11) is that it is an eigenvector of the nonlinear eigenvalue problem

(14) G(z)z = λH(z)z,

corresponding to the smallest positive eigenvalue λ of the matrix pair (G(z), H(z))
with G(z) � 0. Moreover, if λ is simple, then this condition is also sufficient.

Proof. By the null vector properties in (10), we see that the first- and second-order
NEPv’s (12) and (14) share the same eigenvalue λ and eigenvector z,

G(z)z − λH(z)z = G(z)z − λH(z)z = 0.

Hence, by Theorem 3.1, if z is a local minimizer of (11), it is also an eigenvector
of (14).

It remains to show the order of the corresponding eigenvalue λ. Both G(z)
and H(z) are symmetric by Lemma 2.3, and G(z) � 0 is also positive definite by
Lemma 2.1(c). Hence, the eigenvalues of the pair (G(z),H(z)) are real (including infin-
ity eigenvalues), and we can denote them as λ1 ≤ λ2 ≤ · · · ≤ λn. Let v(1), v(2), . . . , v(n)
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be their corresponding G(z)-orthogonal2 eigenvectors. Since (λ, z) is an eigenpair of
both (12) and (14), we have for some finite eigenvalue λj that

z = v(j), λ = λj > 0.

We will deduce the order of λj from the second-order necessary condition of (11) for
the local minimizer z (see, e.g., [22, Theorem 12.5]):

(15) sT∇zzL(z, λ)s ≥ 0 ∀s ∈ Rn s.t. sTH(z)z = 0.

Take any s ∈ Rn such that sTH(z)z = 0; its expansion in the basis of eigenvectors
satisfies

s =

n∑
i=1

αiv
(i) =

n∑
i=1,i6=j

αiv
(i),

since αj = sTG(z)z = λjs
TH(z)z = λjs

TH(z)z = 0. Using the Hessian formulas (b)
and (c) in Lemma 2.3, the inequality in (15) can be written as

sT (∇2g(z)− λ∇2h(z)) s = 2 · sT (G(z)− λH(z)) s ≥ 0.

Combining with the expansion of s and λ = λj , the inequality above becomes

(16)

n∑
i=1,i6=j

α2
i

(
1− λj

λi

)
≥ 0,

which holds for all α1, . . . , αn. The necessary condition (15) is therefore equivalent to

1− λj
λi
≥ 0 ∀i = 1, . . . , n with i 6= j.

Since λ = λj > 0, we have shown that 0 < λ ≤ λi for all positive eigenvalues λi > 0.
Finally, if the smallest positive eigenvalue λ = λj is simple, then for any s ∈ Rn

such that s 6= 0 and sTH(z)z = 0, the inequalities from above lead to

(17)

n∑
i=1,i6=j

α2
i

(
1− λj

λi

)
= sT∇zzL(z, λ)s > 0.

We complete the proof by noticing that (17) corresponds to the second-order sufficient
condition for z being a strict local minimizer of (11),

sT∇zzL(z, λ)s > 0 ∀s ∈ Rn s.t. sTH(z)z = 0 and s 6= 0;

see, e.g., [22, Theorem 12.6].

By Theorem 3.1 (first-order NEPv), we see that a regular local minimizer z of
the nonlinear RQ (6) is an eigenvector of the matrix pair (G(z), H(z)). Although the
pair has positive eigenvalues, we do not know to which one z belongs. On the other
hand, by Theorem 3.2 (second-order NEPv), the same vector z is also an eigenvector
of the matrix pair (G(z),H(z)). This pair has real eigenvalues that are not necessarily
positive, but we know that z belongs to the smallest strictly positive eigenvalue.
Simplicity of this eigenvalue also guarantees that z is a strict local minimizer of (6).

2(v(i))TG(z)v(j) = δij for i, j = 1, . . . , n, where δij = 0 if i 6= j, and δij = 1 otherwise.
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Remark 1. Since G(z) is symmetric positive definite, but H(z) is only symmetric,
it is numerically advisable to compute the eigenvalues λ of the pair (G(z),H(z)) as
the eigenvalues λ−1 of the symmetric definite pair (H(z),G(z)).

Remark 2. From the proofs of Theorems 3.1 and 3.2, we can see that it is also pos-
sible to derive NEPv characterizations if we relax the positive definite conditions (2)
to A(µ) � 0, B(ξ) � 0, and A(µ) +B(ξ) � 0 for µ ∈ Ω and ξ ∈ Γ. The last condition

is to guarantee the well-posedness of the ratio zTA(µ)z
zTB(ξ)z

by avoiding the case 0/0, i.e.,

zTA(µ)z = zTB(ξ)z = 0. For Theorem 3.2 to hold, we need to further assume that
A(µ∗(z)) � 0. This guarantees G(z) � 0 and the eigenvalue λ > 0.

4. SCF iterations. The coefficient matrices in the eigenvalue problems (12)
and (14) depend nonlinearly on the eigenvector; hence they are nonlinear eigenvalue
problems with eigenvector dependence. Such problems also arise in the Kohn–Sham
density functional theory in electronic structure calculations [21], the Gross–Pitaevskii
equation for modeling particles in the state of matter called the Bose–Einstein con-
densate [12], and LDA in machine learning [36]. As mentioned in the introduction,
a popular algorithm to solve such an NEPv is the SCF iteration. The basic idea is
that by fixing the eigenvector dependence in the coefficient matrices, we end up with
a standard eigenvalue problem. Iterating on the eigenvector then gives rise to SCF.

Applied to the NEPv (12) or (14), the SCF iteration is

(18) zk+1 ←− an eigenvector of Gkz = λHkz,

where Gk = G(zk) and Hk = H(zk) for the first-order NEPv (12), or Gk = G(zk)
and Hk = H(zk) for the second-order NEPv (14), respectively. For the second-order
NEPv, it is clear by Theorem 3.2 that the update zk+1 should be the eigenvector
corresponding to the smallest positive eigenvalue of the matrix pair (G(zk),H(zk)).
However, for the first-order NEPv, we need to decide which eigenvector of the matrix
pair (Gk, Hk) to use for the update zk+1. We will address this so-called eigenvalue
ordering issue in the next subsection.

4.1. A spectral transformation for the first-order NEPv. Since the first-
order NEPv (12) is related to the optimality conditions of the minimization prob-
lem (11), it seems natural to choose zk+1 in (18) as the eigenvector belonging to the
smallest eigenvalue of the matrix pair (G(zk), H(zk)). After all, our main interest is
minimizing the robust RQ in (3), for which the simple fixed-point scheme (7) indeed
directly leads to the SCF iteration

(19) zk+1 ←− eigenvector of the smallest eigenvalue of G(zk)z = λH(zk)z.

In order to have any hope for convergence of (19) as k →∞, there needs to exist an
eigenpair (λ∗, z∗) of the NEPv that corresponds to the smallest eigenvalue λ∗ of the
matrix pair (G(z∗), H(z∗)), that is,

G(z∗)z∗ = λ∗H(z∗)z∗ with λ∗ = λmin(G(z∗), H(z∗)).

(Indeed, simply take z0 = z∗.) Unfortunately, there is little theoretical justification
for this in the case of the robust RQ minimization. As we will show in the numerical
experiments in section 6, it fails to hold in practice.

In order to deal with this eigenvalue ordering issue, we propose the following
(nonlinear) spectral transformation:

(20) Gσ(z)z = µH(z)z,
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where

Gσ(z) = G(z)− σ(z) · H(z)zzTH(z)

zTH(z)z

and σ(z) is a scalar function in z. It is easy to see that the nonlinearly shifted
NEPv (20) is equivalent to the original NEPv (12) in the sense that G(z)z = λH(z)z
if and only if

(21) Gσ(z)z = µH(z)z with µ = λ− σ(z).

The following lemma shows that with a proper choice of the shift function σ(z), the
eigenvalue µ of the shifted first-order NEPv (20) will be the smallest eigenvalue of the
matrix pair (Gσ(z), H(z)).

Lemma 4.1. Let β > 1, and define the shift function

(22) σ(z) = β · λmax(G(z), H(z))− λmin(G(z), H(z)).

If (µ, z) is an eigenpair of the shifted first-order NEPv (20), then µ is the simple
smallest eigenvalue of the matrix pair (Gσ(z), H(z)).

Proof. Similar to the proof of Theorem 3.2, let 0 < λ1 ≤ · · · ≤ λn be the n
eigenvalues of the pair (G(z), H(z)) with corresponding G(z)-orthogonal eigenvectors
v(1), . . . , v(n). By (21), we know that if (µ, z) is an eigenpair of (20), it implies that
λj = µ+ σ(z) and z = v(j) for some j.

From G(z)v(i) = λiH(z)v(i), we obtain zTH(z)v(i) = δijλ
−1
i . Hence, using z =

v(j) it holds that

Gσ(z)v(i) = G(z)v(i) = λiH(z)v(i) for i 6= j

and
Gσ(z)v(j) = G(z)v(j) − σ(z) ·H(z)v(j) = (λj − σ(z)) ·H(z)v(j).

So the n eigenvalues of the shifted pair (Gσ(z), H(z)) are given by λi for i 6= j and
µ = λj − σ(z). By construction of σ(z) in (22), we also have

µ = λj − σ(z) = λj − (βλn − λ1) < λj − (λn − λi) ≤ λi ∀i 6= j.

So µ is indeed the simple smallest eigenvalue of the shifted pair, and we complete the
proof.

Similar to the nonlinear spectral transformation (20) are the level shifting [23]
and the trust-region SCF [29, 33] schemes to solve NEPv from quantum chemistry.
However, the purpose of these schemes is to stabilize the SCF iteration and not to re-
order the eigenvalues as we do here. Lemma 4.1 provides a justification to apply SCF
iteration to the shifted first-order NEPv (20) and take zk+1 as the eigenvector corre-
sponding to the smallest eigenvalue. This procedure is summarized in Algorithm 1.
The optional line search in line 6 will be discussed in section 4.3.

In Algorithm 1 we have chosen β = 1.01 for convenience. In practice there seems
to be little reason for choosing larger values of β. This can be intuitively understood
from the fact that we can rewrite the solution zk+1 in Algorithm 1 as follows:

(23) zk+1 ←− arg min
zTH(zk)z=1

{
zTG(zk)z

zTH(zk)z
+
σk
2

∥∥∥H1/2(zk)
(
zzT − zkzTk

)
H1/2(zk)

∥∥∥2

F

}
,
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Algorithm 1 SCF iteration for the shifted first-order NEPv (20).

Input: initial z0 ∈ Rn, tolerance tol, shift factor β > 1 (e.g., β = 1.01).
Output: approximate eigenvector ẑ.

1: for k = 0, 1, . . . do
2: Set Gk = G(zk), Hk = H(zk), and ρk = zTk Gkzk/(z

T
kHkzk).

3: if ‖Gkzk − ρkHkzk‖2/(‖Gkzk‖2 + ρk‖Hkzk‖2) ≤ tol then return ẑ = zk+1.
4: Shift Gσk = Gk− σk

zTk Hkzk
Hkzkz

T
kHk with σk = β ·λmax(Gk, Hk)−λmin(Gk, Hk).

5: Compute the smallest eigenvalue and eigenvector (µk+1, zk+1) of (Gσk, Hk).
6: (optional) Perform line search to obtain zk+1.
7: end for

where zk is assumed to be normalized as zTkH(zk)zk = 1. Observe that the σk-term in
(23) is the distance of z to zk expressed in a weighted norm since H(zk) � 0, and z and
zk are normalized vectors. Hence, in each iteration of Algorithm 1 we solve a penalized
RQ minimization where the penalization promotes that zk+1 is close to zk. Therefore,
we may encounter slower convergence with a larger penalization factor σk and thus
also a larger β. From the viewpoint of solving penalized RQ minimization (23), a
smaller penalty σk (and therefore a smaller β) on the step size can also lead to a
faster convergence compared to what we will observe in the numerical experiments
in section 6. However, it is not theoretically guaranteed.

4.2. Local convergence of SCF iteration for the second-order NEPv.
Thanks to Theorem 3.2, we can apply SCF iteration directly to (14) while targeting
the smallest positive eigenvalue in each iteration. This procedure is summarized in
Algorithm 2.

Algorithm 2 SCF iteration for the second-order NEPv (14).

Input: initial z0 ∈ Rn, tolerance tol.
Output: approximate eigenvector ẑ.

1: for k = 0, 1, . . . do
2: Set Gk = G(zk), Hk = H(zk), and ρk = zTk Gkzk/(z

T
kHkzk).

3: if ‖Gkzk − ρkHkzk‖2/(‖Gkzk‖2 + ρk‖Hkzk‖2) ≤ tol then return ẑ = zk+1.
4: Compute the smallest strictly positive eigenvalue and eigenvector (λk+1, zk+1)

of (Gk, Hk).
5: (optional) Perform line search to obtain zk+1.
6: end for

Due to the use of second-order derivatives, one would hope that the local conver-
gence rate is at least quadratic. The next theorem shows exactly that.

Theorem 4.2 (quadratic convergence). Let (λ, z) be an eigenpair of the second-
order NEPv (14) such that λ is simple and the smallest eigenvalue of the matrix pair
(G(z), H(z)). If zk in Algorithm 2 is such that | sin∠(zk, z)| is sufficiently small, then
the iterate zk+1 in line 4 satisfies

sin∠(zk+1, z) = O(| sin∠(zk, z)|2),

where ∠(u, v) is the angle between the vectors u and v.

Proof. For clarity, let us denote the eigenpair of the second-order NEPv (14) as
(λ∗, z∗). Due to the homogeneity of G(z) and H(z) in z, we can always assume that



ROBUST RAYLEIGH QUOTIENT MINIMIZATION A3505

‖z∗‖2 = ‖zk‖2 = ‖zk+1‖2 = 1. Hence,

zk = z∗ + d with ‖d‖2 = 2 sin
(

1
2∠(zk, z∗)

)
= O(| sin∠(zk, z∗)|).

We will regard the eigenpair (λk+1, zk+1) of (G(zk), H(zk)) as a perturbation of the
eigenpair (λ∗, z∗) of (G(z∗), H(z∗)). This is possible since the matrix G(z∗) is positive
definite and, for ‖d‖2 sufficiently small, λk+1 remains simple and it will be the closest
eigenvalue of λ∗. Denoting

gk = (G(zk)− G(z∗)) z∗, hk = (H(zk)−H(z∗)) z∗,

we apply the standard eigenvector perturbation analysis for definite pairs; see, e.g., [28,
Theorem VI.3.7]. This together with the continuity of G(z) and H(z) gives that

‖zk+1 − αz∗‖2 ≤ c ·max(‖gk‖2, ‖hk‖2),

where |α| = 1 is a rotation factor and c is a constant depending only on the gap
between λ∗ and the rest of the eigenvalues of (G(z∗), H(z∗)). To complete the proof
it remains to show that

‖gk‖2 = O(‖d‖22) and ‖hk‖2 = O(‖d‖22).

The result for gk follows from G(z∗)z∗ = G(z∗)z∗ and the Taylor expansion

G(z∗)z∗ = G(zk)zk − G(zk)d+O(‖d‖22) = G(zk)z∗ +O(‖d‖22),

where we have used ∇(G(z)z) = 1
2∇

2g(z) = G(z) from Lemma 2.3(b). The result for
hk is derived analogously.

The convergence of SCF iteration has been studied for NEPv’s arising in electronic
structure calculations and machine learning, where local linear convergence is proved
under certain assumptions; see, e.g., [16, 32, 19, 35]. Our first-order and second-
order NEPv’s, however, do not fall in this category and hence these analyses do not
carry over directly. However, thanks to the special structure of the second-order
NEPv, we can, for instance, prove the local quadratic convergence. Our numerical
experience suggests that Algorithm 2 usually converges much faster than the first-
order Algorithm 1. But it also requires the derivatives of G(z) and H(z) in order to
generate the coefficient matrices G(z) and H(z). In cases where those matrices are
not available or are too expensive to compute, one can still resort to Algorithm 1 for
the solution.

4.3. Implementation issues. The SCF iteration is not guaranteed to be mono-
tonic in the nonlinear RQ

ρ(z) =
zTG(z)z

zTH(z)z
.

This is a common issue for SCF iterations. A simple remedy is to apply damping for
the update zk+1:

(24) zk+1 ←− αzk+1 + (1− α)zk,

where 0 ≤ α ≤ 1 is a damping factor. This is also called the mixing scheme when
applied to the density matrix zkz

T
k instead of to zk in electronic structure calcula-

tions [16]. Ideally, one would like to choose α so that it leads to the optimal value of
the nonlinear RQ

min
α∈[0,1]

ρ(αzk+1 + (1− α)zk).
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Since an explicit formula for the optimal α is usually unavailable, one has to instead
apply a line search for α ∈ [0, 1] to obtain

(25) ρ(zk + αdk) < ρ(zk) with dk = zk+1 − zk.

See, for example, Algorithm 3, where this is done by Armijo backtracking. Such a
line search works if dk is a descent direction of ρ(z) at zk, i.e.,

dTk∇ρ(zk) < 0 with ∇ρ(z) =
2

zTH(z)z

(
G(z)− ρ(z)H(z)

)
z.

As long as zTk+1Hkzk 6= 0, we can always obtain such a direction by suitably (scalar)
normalizing the eigenvectors zk+1 to satisfy
(a) line 5 of Algorithm 1: zTk+1Hkzk > 0, which leads to

1
2d
T
k∇ρ(zk) =

(
µk+1 + σk − ρk

)
· ζk < 0,

(b) line 4 of Algorithm 2: (λk+1 − ρk) · zTk+1Hkzk > 0, which leads to

1
2d
T
k∇ρ(zk) = (λk+1 − ρk) · ζk < 0.

Here, ζk = (zTk+1Hkzk)/(zTkHkzk), and for (a) we exploited that zk is not an eigen-
vector of (Gk, Hk) (in which case, Algorithm 1 stops at line 3), so that µk+1 =

minz
zTGσkz
zTHkz

<
zTk Gσkzk
zTk Hkzk

= −σk + ρk.

Algorithm 3 Line search.

Input: starting point zk, descent direction dk, factors c, τ ∈ (0, 1) (e.g., c = τ = 0.1).
Output: zk+1 = zk + αdk.

1: Set α = 1 and t = −cm with m = dTk∇ρ(zk).
2: while ρ(zk)− ρ(zk + αdk) < αt do
3: α := τα
4: end while

In the rare case of zTk+1Hkzk = 0, the increment dk = zk+1− zk is not necessarily
a descent direction. In this case, and more generally, when dk and ∇ρ(zk) are almost
orthogonal, i.e.,

cos∠(dk,∇ρ(zk)) ≤ γ with γ small,

we reset the search direction dk as the gradient

(26) dk = − ∇ρ(zk)

‖∇ρ(zk)‖2
.

This safeguarding strategy ensures that the search direction dk is descending and is
gradient related (its orthogonal projection onto −∇ρ(zk) is uniformly bounded by a
constant from below). Therefore, we can immediately conclude the global convergence
of both Algorithms 1 and 2 in the smooth situation. In particular, suppose µ∗(z) and
ξ∗(z) (hence also ρ(z)) are continuously differentiable in the level set {z : ρ(z) ≤
ρ(z0)}; then the iterates {zk}∞k=0 of both algorithms will be globally convergent to a
stationary point z∗, namely, ∇ρ(z∗) = 0. This result is a simple application of the
standard global convergence analysis of line search methods using gradient related
search directions; see, e.g., [1, Theorem 4.3].
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Remark 3. Observe that, as long as zTk+1Hkzk 6= 0, we can perform a line search
with dk = zk+1 − zk. In that case, the first iteration in line 2 of Algorithm 3 reduces
to ρ(zk) − ρ(zk+1) < −cdTk∇ρ(zk). It is therefore only when the SCF iteration does
not sufficiently decrease ρ(zk+1) that we will apply the line search. In practice, we see
that zk+1 from the SCF iteration usually leads to a reduced ratio ρ(zk+1), so the line
search is only applied exceptionally and it typically uses only one or two backtracking
steps. This is in stark contrast to applying the steepest descent method directly to
ρ(z), where line search is used to determine the step size in each iteration.

5. Applications. In this section, we discuss three applications that give rise to
the robust RQ optimization problem (3). We will in particular show that the closed-
form formulations of the minimizers, as needed in (6), are indeed available and that
the regularity assumption of Definition 2.2 is typically satisfied. This will allow us
to apply our NEPv characterizations and SCF iterations from the previous sections.
Numerical experiments for these applications are postponed to the next section.

5.1. Robust generalized eigenvalue classifier. Data classification via gen-
eralized eigenvalue classifiers can be described as follows. Let two classes of labeled
datasets be represented by the rows of matrices A ∈ Rm×n and B ∈ Rp×n:

A = [a1, a2, . . . , am]T and B = [b1, b2, . . . , bp]
T ,

where each row ai and bi is a point in the feature space Rn and n ≤ min{m, p}. The
generalized eigenvalue classifier (GEC), also known as multisurface proximal support
vector machine classification introduced in [20], determines two hyperplanes, one for
each class, such that each plane will be as close as possible to one of the datasets and
as far as possible from the other dataset. We denote the hyperplane related to class
A as wTAx− γA = 0 with wA ∈ Rn and γA ∈ R; then (wA, γA) needs to satisfy

(27) min
[wAγA ]6=0

‖AwA − γAe‖22
‖BwA − γAe‖22

= min
z=[wAγA ]6=0

zTGz

zTHz
,

where e is a column vector of ones, G = [A, −e]T [A, −e], and H = [B, −e]T [B, −e].
The other hyperplane (wB , γB) for class B is determined similarly. Using these two
hyperplanes, we predict the class label of an unknown sample xu ∈ Rn by assigning
it to the class with minimal distance from the corresponding hyperplane:

class(xu) = arg min
i∈{A,B}

|wTi xu − γi|
‖wi‖

.

Observe that (27) is a generalized RQ minimization problem. We may assume that
the matrices G and H are positive definite, since A and B are tall skinny matrices
and the number of features n is usually much smaller than the number of points m
and p. Hence, (27) is the minimal eigenvalue of the matrix pair (G,H).

To take into account uncertainty, we consider the datasets as A + ∆A and B +
∆B with ∆A ∈ UA and ∆B ∈ UB , where UA and UB are the sets of admissible
uncertainties. In [31], the authors consider each data point to be independently
perturbed in the form of ellipsoids:

UA =
{

∆A = [δ
(A)
1 , δ

(A)
2 , . . . , δ(A)

m ]T ∈ Rm×n : δ
(A)T
i Σ

(A)
i δ

(A)
i ≤ 1, i = 1, . . . ,m

}
and

UB =
{

∆B = [δ
(B)
1 , δ

(B)
2 , . . . , δ(B)

p ]T ∈ Rp×n : δ
(B)T
i Σ

(B)
i δ

(B)
i ≤ 1, i = 1, . . . , p

}
,
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where Σ
(A)
i ,Σ

(B)
i are positive definite matrices defining the ellipsoids. The optimal

hyperplane for the dataset A that takes into account the worst-case perturbations in
the data points in (27) can be found by solving

(28) min
z 6=0

max
∆A∈UA
∆B∈UB

zT Ĝ(∆A)z

zT Ĥ(∆B)z
,

where Ĝ(∆A) = [A + ∆A, −e]T [A + ∆A, −e] and Ĥ(∆B) = [B + ∆B, −e]T [B +
∆B, −e]. This is the robust RQ minimization problem (3). Since the inner maximiza-
tion can be solved explicitly—see [31] and Appendix A.1 for a correction—it leads to
the nonlinear RQ optimization problem (6) for the optimal robust hyperplane (w, γ),
i.e.,

(29) min
z=[wγ ]6=0

zTG(z)z

zTH(z)z
,

where the coefficient matrices are given by

G(z) = [A+ ∆A(z), −e]T [A+ ∆A(z), −e],(30a)

H(z) = [B + ∆B(z), −e]T [B + ∆B(z), −e],(30b)

with
(31)

∆A(z) =



sgn(wT a1−γ)√
wTΣ

(A)−1
1 w

· wTΣ
(A)−1
1

sgn(wT a2−γ)√
wTΣ

(A)−1
2 w

· wTΣ
(A)−1
2

...
sgn(wT am−γ)√
wTΣ

(A)−1
m w

· wTΣ
(A)−1
m


, ∆B(z) =



ϕ1(z) · sgn(γ−wT b1)√
wTΣ

(B)−1
1 w

· wTΣ
(B)−1
1

ϕ2(z) · sgn(γ−wT b2)√
wTΣ

(B)−1
2 w

· wTΣ
(B)−1
2

...

ϕp(z) · sgn(γ−wT bp)√
wTΣ

(B)−1
p w

· wTΣ
(B)−1
p


,

and

ϕj(z) = min

 |γ − wT bj |√
wTΣ

(B)−1
j w

, 1

 for j = 1, 2, . . . , p.

The optimizer z∗ of (29) defines the robust generalized eigenvalue classifier (RGEC)
for the dataset A.

We note that the optimal parameter ∆A(z) is a function that is smooth in z =
[wγ ] ∈ Rn+1 except for z ∈

⋃m
i=1

{
[wγ ] : wTai − γ = 0

}
, i.e., when the hyperplane

{x : wTx − γ = 0} defined by z touches one of the sampling points ai. Likewise,
∆B(z) is smooth in z except for z ∈

⋃p
j=1 {z : ϕj(z) = 1}, i.e., when the hyperplane

defined by z is tangent to one of the ellipsoids of bj . Since ∆A(z) and ∆B(z) represent
the functions µ∗(z) and ξ∗(z) in Definition 2.2, respectively, we can assume that for
generic datasets, the optimal point z of (29) is regular.

5.2. Common spatial pattern analysis. Common spatial pattern (CSP) anal-
ysis is a technique commonly applied for feature extraction of electroencephalogram
(EEG) data in brain-computer interface (BCI) systems; see, for example, [7]. The
mathematical problem of interest is the RQ optimization problem

(32) min
z 6=0

zTΣ−z

zT (Σ+ + Σ−)z
,
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where Σ+,Σ− ∈ Rn×n are symmetric positive definite matrices that are averaged
covariance matrices of labeled signals x(t) ∈ Rn in conditions “+” and “−,” respec-
tively. By minimizing (32), we obtain a spatial filter z+ for discrimination, with small
variance for condition “−” and large variance for condition “+.” In analogy, we can
also solve for the minimum to obtain the other spatial filter z−. As a common practice
in CSP analysis [7], the eigenvectors zc are normalized such that zTc (Σ+ + Σ−)zc = 1
for c ∈ {+,−}. These spatial filters are then used for extracting features.

Because of artifacts in collected data, the covariance matrices Σc can be very
noisy, and it is important to robustify CSP against these uncertainties. In [13], the
authors considered the robust CSP problem3

(33) min
z 6=0

max
Σ+∈S+
Σ−∈S−

zTΣ−z

zT (Σ+ + Σ−)z
,

where the tolerance sets are given, for c ∈ {+,−}, by

Sc =

{
Σc = Σc + ∆c

∣∣∣∣∆c =

k∑
i=1

α(i)
c V (i)

c ,

k∑
i=1

(
α

(i)
c

)2
w

(i)
c

≤ δ2
c , α(i)

c ∈ R

}
,(34)

where δc are prescribed perturbation levels, Σc are nominal covariance matrices, V
(i)
c ∈

Rn×n are symmetric interpolation matrices, and w
(i)
c are weights for the coefficient

variables α
(i)
c . These parameters Σc, V

(i)
c , and w

(i)
c are typically obtained by principal

component analysis (PCA) of the signals; for more details, see numerical examples in
section 6.

It is shown in [13] that the inner maximization problem in (33) can be solved
explicitly, so (33) leads to the nonlinear RQ optimization problem

(35) min
z 6=0

zTΣ−(z)z

zT [Σ+(z) + Σ−(z)] z
,

where for c ∈ {+,−},

(36) Σc(z) = Σc +

k∑
i=1

α(i)
c (z)V (i)

c with α(i)
c (z) =

−cδcw(i)
c zTV

(i)
c z√∑k

i=1 w
(i)
c (zTV

(i)
c z)2

.

Here, we have assumed Σc(z) � 0, which is guaranteed to hold if Σc is positive defi-
nite and if the perturbation levels δc are (sufficiently) small. In the general case when
positive definiteness fails to hold, evaluating Σc(z) can be done via some semidefinite

programming techniques. Observe that the optimal parameters α
(i)
c (z) are analytic

functions of z. Hence, the optimal point z of (32) is regular in the sense of Defini-
tion 2.2 as long as the corresponding Σc(z) is positive definite.

5.3. Robust Fisher linear discriminant analysis. Fisher’s linear discrim-
inant analysis (LDA) is widely used for pattern recognition and classification; see,

3In [13], the problem is stated as maxz minΣ± (zT Σ+z)/(zT (Σ+ + Σ−)z). To be consistent with

our notation, we stated it in the equivalent min-max form (33) using (zT Σ+z)(zT (Σ+ + Σ−)z) =
1− (zT Σ−z)(zT (Σ+ + Σ−)z).
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e.g., [8]. Let X,Y ∈ Rn be two random variables, with mean µx and µy and covari-
ance matrices Σx and Σy, respectively. LDA finds a discriminant vector z ∈ Rn such
that the linear combinations of variables zTX and zTY are best separated:

(37) max
z 6=0

(zTµx − zTµy)2

zTΣxz + zTΣyz
.

It is easy to see that up to a scale factor α, the optimal discriminant z∗ is given by

z∗ = α · (Σx + Σy)−1(µx − µy).

Consequently, the optimal z∗ defines the LDA discriminant that can be used to gen-
erate the linear classifier ϕ(u) = zT∗ u− β with β = zT∗ (µx + µy)/2. We can classify a
new observation u by assigning it to class x if ϕ(u) > 0, and to class y otherwise.

In practice, the parameters µc and Σc for c = {x, y} are unknown and replaced by
their sample mean µc and covariance Σc, or similar estimates based on a finite number
of samples. In any case, these quantities will be subject to uncertainty error which
will influence the result of LDA. To account for these uncertainties, Kim, Magnani,
and Boyd [15] propose the robust LDA

(38) max
z 6=0

min
(Σx,Σy)∈Ω
(µx,µy)∈Γ

(zTµx − zTµy)2

zTΣxz + zTΣyz

with the ellipsoidal uncertainty models
(39)

Ω = {(Σx, Σy) : ‖Σx − Σx‖F ≤ δx and ‖Σy − Σy‖F ≤ δy},
Γ = {(µx, µy) : (µx − µx)TS−1

x (µx − µx) ≤ 1 and (µy − µy)TS−1
y (µy − µy) ≤ 1}.

Here, Σc � 0, δc > 0, and Sc � 0, µc ∈ Rn, are known parameters for c ∈ {x, y}, but
they can be estimated from the data.

To see that the robust LDA is of the robust RQ form (6), we write (37), by taking
reciprocals, as the minimization of the RQ

(40) min
z 6=0

zT (Σx + Σy)z

zT (µx − µy)(µx − µy)T z
.

Therefore, the robust LDA in (38) is a solution of the robust RQ minimization

(41) min
z 6=0

ρ(z) ≡
max

(Σx,Σy)∈Ω
zT (Σx + Σy)z

min
(µx,µy)∈Γ

zT (µx − µy)(µx − µy)T z
.

In Appendix A.2, we show that ρ(z) = ∞ if |zT (µx − µy)| ≤
√
zTSxz +

√
zTSyz.

Otherwise,

(42) ρ(z) =
zTGz

zTH(z)z
,

where

G = Σx + Σy + (δx + δy)In and H(z) = f(z)f(z)T ,
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and

f(z) = (µx − µy)− sgn(zT (µx − µy))

(
Sxz√
zTSxz

+
Syz√
zTSyz

)
.

Note that H(z) is analytic in z when zT (µx − µy) 6= 0, so z is regular in the sense of
Definition 2.2 if ρ(z) <∞.

In [15, 14], it is shown that the max-min problem (38) satisfies a saddle-point
property that allows us to formulate it as the equivalent problem

(43)
min (µx − µy)TG−1(µx − µy)

s.t. (µx, µy) ∈ Γ.

With the constraints (39), the optimization problem (43) is a well-studied convex
quadratically constrained program (QCP). The global minimizer (µ∗x, µ

∗
y) can be

solved, e.g., by CVX, a package for specifying and solving convex programs [11].
The global minimizer of (42) is given by z∗ = G−1(µ∗x − µ∗y).

Although (43) can be formulated as a QCP, it may be more beneficial to use
the NEPv characterization described in the previous section. Indeed, as shown by
numerical experiments in section 6, Algorithm 2 usually converges in fewer than 10
iterations and is more accurate since it avoids the construction of explicit inverses,
i.e., there is no need for G−1 and S−1

c . Moreover, the SCF iterations always converged
to a (numerically) global minimum. This rather surprising property can be explained
from the following result.

Theorem 5.1. Suppose ρ(z) 6≡ ∞; then any eigenpair of the NEPv (12), (14),
or (20) is a global solution of the robust LDA problem (38).

Proof. It is sufficient to show the theorem for the NEPv (12). We first recall that
the robust problem (38) is equivalent to the convex program (43), where the sufficient
and necessary condition for global optimality is given by the KKT condition
(44)
ν > 0, G−1(µx − µy) + νS−1

x (µx − µx) = 0, (µx − µx)TS−1
x (µx − µx)− 1 = 0,

γ > 0, G−1(µx − µy)− γS−1
y (µy − µy) = 0, (µy − µy)TS−1

y (µy − µy)− 1 = 0,

where we exploited ν 6= 0 and γ 6= 0 since otherwise µx = µy, which implies that the
denominator in ρ(z) in (41) vanishes and ρ(z) ≡ ∞ for all z 6= 0.

Next, let (λ, z) be an eigenpair of the NEPv (12); it holds that λ = ρ(z) > 0.
Due to homogeneity of f(z), we can take z such that λf(z)T z = 1 and obtain

(45) Gz = λ(f(z)f(z)T )z = f(z).

Since f(z)T z > 0, it follows from definition (42) and the condition ρ(z) <∞ that

σ := sgn(zT (µx − µy)) = 1.

Now observe that

µx = − σSxz√
zTSxz

+ µx, µy =
σSyz√
zTSyz

+ µy, ν =

√
zTSxz

σ
, γ =

√
zTSyz

σ

satisfy (44). Therefore, (µx, µy) a global minimizer of (43) and so the eigenvector
z = G−1f(z) = G−1(µx − µy) is a global minimizer of ρ(z).
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6. Numerical examples. We report on numerical experiments for the three
applications discussed in section 5. We will show the importance of the eigenvalue
ordering issue for the derived NEPv, and the potential divergence problem of the
simple iterative scheme (7). All computations were done in MATLAB 2017a. The
starting values z0 for all algorithms are set to the nonrobust minimizer, i.e., solu-
tion of (27) for robust GEC, of (32) for robust CSP, and of (40) for robust LDA,
respectively. The tolerance for both Algorithms 1 and 2 is set to tol = 10−8. Safe-
guarded line search is also applied. In the spirit of reproducible research, all MAT-
LAB scripts and data that were used to generate our numerical results can be found
at http://www.unige.ch/∼dlu/.

Example 1 (robust GEC). In this example, we use a synthetic example to il-
lustrate the convergence behavior of SCF iterations and the associated eigenvalue-
ordering issue. Let data points ai, bi ∈ R2 be chosen as shown in the left plot of
Figure 1, together with their uncertainty ellipsoids. GEC for the dataset A (with-
out robustness consideration) computed by the RQ optimization (27) is shown by
the dashed line, and RGEC is shown by the solid line. The minimizer computed by
Algorithm 1 or 2 for RGEC is

ẑ∗ ≈
[
0.013890 0.313252 1.0

]
with ρ(ẑ∗) ≈ 0.2866130.

We can see that RGEC faithfully reflects the trend of uncertainties in dataset A. Note
that since RGEC represented by ẑ∗ does not pass through any of the data points, the
solution ẑ∗ is a regular point. To examine the local minimum, the right plot in
Figure 1 shows the magnitude of ρ(z) for z = [z1, z2, 1] close to ẑ∗. Note that since
ρ(z) = ρ(αz) for α 6= 0, we can fix the coordinate z3 = 1.

The convergence behavior of the robust RQs ρ(zk) by three different SCF iter-
ations is depicted in Figure 2. Algorithm 2 for the second-order NEPv (14) shows
superlinear convergence as proven in Theorem 4.2. Algorithm 1 for the first-order
NEPv (12) rapidly reaches a moderate accuracy of about 10−3, but it only converges
linearly. We also see that the simple iterative scheme (7), which is proposed in [31,
Algorithm 1], fails to converge.

Let us check the eigenvalue order of the computed eigenpair (ρ(ẑ∗), ẑ∗). The first
three eigenvalues at ẑ∗ of the first-order and second-order NEPv’s (12) and (14) are
given by

First-order NEPv (12): λ1 = 0.1328986, λ2 = 0.2866130, λ3 = 2.8923953,
Second-order NEPv (14): λ1 = −0.2946578, λ2 = 0.2866130, λ3 = 2.8433553.

We can see that the minimal ratio ρ(ẑ∗) is the least positive eigenvalue of the second-
order NEPv (14) but is not the smallest eigenvalue of the first-order NEPv (12).
As explained in section 4.1, we cannot therefore expect that the simple iterative
scheme (7) converges to ẑ∗. In addition, from the convergence behavior in the left
plot of Figure 2, we see that the objective value ρ(zk) oscillates between two points
of which neither is an optimal solution. This shows the usefulness of the nonlinear
spectral transformation in Algorithm 1.

Example 2 (robust GEC). In this example, we apply RGEC to the Pima Indians
Diabetes (PID) dataset [26] in the UCI Machine Learning Repository [18]. In this
dataset, there are 768 data points classified into two classes (diabetes or not). Each
data point x collects eight attributes (features) such as blood pressure, age, and body
mass index (BMI) of a patient. For numerical experiments, we set the uncertainty

http://www.unige.ch/~dlu/
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close to local minimizer ẑ∗ (marked as +).
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Fig. 2. Left: Convergence behaviors of three SCF iterations. Right: Errors of ρ(zk).

ellipsoid for each patient data to be of the form

(46) Σ−1 = diag(α2
1x̄

2
1, α

2
2x̄

2
2, . . . , α

2
nx̄

2
n),

where x̄i is the mean of the ith feature xi over all patients, and αi is a measure for
the anticipated relative error of xi. We set αi = 0.5 (hence, 50% relative error) for all
features, except for the first (number of pregnancies) and the eighth (age), where we
set αi = 0.001 since we do not expect large errors in those features.

Similar to the setup in [31], we apply holdout cross-validation with 10 repetitions.
In every repetition, 70% of the randomly chosen data points are used as training set
and the remaining 30% as testing set. The training set is used to compute the two
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Fig. 3. Correctness rates for the PID dataset with β = 0.1. The squares and dots represent
the average rates, and the error bars depict the range between the best and the worst rate. The
experiments are sorted in decreasing order of average rates for GEC. Left: GEC in magenta and
RGEC in blue. Right: GEC in magenta and the simple iterative scheme (7) in blue. (Color available
online.)

classification planes, given the uncertainty ellipsoid Σ if required. Testing is performed
by classifying random data points x + δx with x a sample from the testing set and
δx ∼ N (0, βΣ), a normal distribution with mean 0 and variance βΣ. Each sample in
the testing set is used exactly once. The factor β > 0 expresses the conservativeness
of the uncertainty ellipsoid. Since δx is normally distributed, a sample x+ δx is more
likely to violate the ellipsoidal constraints with growing β. We will use the following
values in the experiments: β = 0.1, 1, 10. For each instance of the training set,
we perform 100 such classification tests and calculate the best, worst, and average
classification accuracy (ratio of number of correctly classified samples to the total
number of tests).

In the first experiment with β = 0.1, we compare GEC and RGEC. We observed
convergence in all experiments. We summarize the correctness rates of the classifica-
tion in the left plot of Figure 3. RGEC shows very small variance. In contrast, GEC
demonstrates large variance and lower average correctness rates. For comparison, we
also report the testing results (on the same data) for the simple iterative scheme (7)
in the right plot of Figure 3. Since the simple iteration does not always converge, we
took the solution with the smallest nonlinear RQ within 30 iterations. The results for
the other values of β are reported in Figure 4. As β increases, RGEC significantly
improves the results of GEC.

Example 3 (robust CSP). We consider a synthetic example of CSP analysis dis-
cussed in section 5.2. As described in [13], the testing signals are generated by a linear
mixing model with nonstationary sources:

x(t) = A

[
sd(t)
sn(t)

]
+ ε(t),

where x(t) is a 10-dimensional signal, sd(t) is a 2-dimensional discriminative source,
sn(t) is an 8-dimensional nondiscriminative source, A is a random rotation, and
ε(t) ∼ N (0, 2). The discriminative source sd(t) is sampled from N (0,diag(1.8, 0.6))
in condition “+,” and N (0,diag(0.2, 1.4)) in condition “−.” The nondiscrimina-
tive sources sn(t) are sampled from N (0, 1) in both conditions. For each condition
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Fig. 4. Correctness rates for the PID dataset with β = 1 (left) and β = 10 (right).

c ∈ {+,−}, we generate N = 50 random signals x(t) that are sampled in m = 200

points to obtain the matrix X
(j)
c = [x(t1), x(t2), . . . , x(tm)] for j = 1, . . . , N .

To obtain the coefficients Σc, V
(i)
c , and w

(i)
c in the tolerance sets Sc (34), we apply

the PCA scheme described in [13]. In particular, for each condition c ∈ {+,−}, we

first compute the (local) covariance matrix U
(j)
c = 1

m−1

∑m
i=1X

(j)
c (:, i)X

(j)
c (:, i)T for

j = 1, . . . , N and define Σc = 1
N

∑N
j=1 U

(j)
c as the averaged covariance matrix. We

then vectorize each (U
(j)
c − Σc) ∈ R10×10 to u

(j)
c ∈ R100 and compute the singular

value decomposition

[u(1)
c , u(2)

c , . . . , u(N)
c ] =

N∑
i=1

σ(i)
c v(i)

c q(i)T
c ,

where σ
(1)
c ≥ · · · ≥ σ

(N)
c ≥ 0 are ordered singular values, and {v(i)

c }Ni=1 ∈ R100 and

{q(i)
c }Ni=1 ∈ RN are the corresponding left and right singular vectors. For numerical

experiments, we take the leading k = 10 singular values to define w
(i)
c = (σ

(i)
c )2,

matricize (inverse of vectorization) the singular vectors v
(i)
c ∈ R100 to V

(i)
c ∈ R10×10,

and symmetrize V
(i)
c := (V

(i)
c + V

(i)T
c )/2 for i = 1, . . . , k.

To show the convergence of SCF iterations, we compute the minimizer of the
nonlinear RQ (35) with perturbation δ+ = δ− = 6. Both Algorithms 1 and 2 converge
to a (local) optimal value ρ(ẑ∗) = 1.042032. Some ordered eigenvalues at ẑ∗ are listed
below:

First-order NEPv: · · · λ5 = 1.017731, λ6 = 1.042032, λ7 = 1.239586,
Second-order NEPv: · · · λ2 = −0.527799, λ3 = 1.042032, λ4 = 1.286031.

The largest eigenvalue of the first-order NEPv (12) is λ10 ≈ 2.7 from which we com-
pute σ(z) for the shift. The optimal ρ(ẑ∗) corresponds to the least positive eigenvalue
of the second-order NEPv (14), and the sixth eigenvalue of the first-order NEPv (12).
In the convergence plot of Figure 5, we see that the simple iterative scheme (7) (used
as [13, Algorithm 1] to solve (35)) fails to converge. Algorithm 2 is locally quadrati-
cally convergent. Algorithm 1 converges quickly in the first few iterations. This shows
the potential of combining Algorithms 1 and 2 for fast global convergence.

Example 4 (robust CSP). In this example, we use the computed spatial filters
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Fig. 5. Convergence of ρ(zk) of CSP analysis, synthetic example.

z+ and z− for signal classification as in BCI systems. To predict the class label of a
sampled signal X = [x(t1), x(t2), . . . , x(tm)], a common practice in CSP analysis (see,
e.g., [7]) is to first extract the log variance feature of the signal using the spatial filters

f(X) = log

([
var(zT+X)
var(zT−X)

])
,

where the variance var(x) :=
∑m
i=1(xi − µ)2/(m− 1) with µ =

∑m
i=1 xi/m and log(·)

is the elementwise logarithm, and then define a linear classifier

(47) ϕ(X) = wT f(X)− β0,

where β0 and w ∈ R2 are weights. The sign of ϕ(X) is used for the class label of
signal X.

The weights w and β0 are determined by training signals using Fisher’s linear

discriminant analysis (LDA) (see, e.g., [8]). Specifically, let f
(i)
c = f(X

(i)
c ) be the log

variance features of the training signals for i = 1, . . . , N , and let

Sc =

N∑
i=1

(f (i)
c −mc)(f

(i)
c −mc)

T with mc =
1

N

N∑
i=1

f (i)
c

be the corresponding scatter matrices, where c ∈ {+,−}; then the weights w and
β0 are determined by w = w̃/‖w̃‖2 with w̃ = (S+ + S−)−1(m+ − m−), and β0 =
1
2w

T (m+ +m−).
For numerical experiments, we train the classifier (47) using the synthetic signals

from Example 3. The spatial filters z+ and z− are computed from either CSP, i.e.,
using averaged covariance matrices Σ+ and Σ−, or robust CSP, i.e., using Algorithm 2
with δc = 0.5, 1, 2, 4, 6, 8 for c ∈ {+,−}. To assess the classifiers under uncertainties,
we generate and classify a test signal from the same linear model but with an increased
noise term ε(t) ∼ N (0, 30). We repeated the experiment 100 times and summarize
the results in Figure 6. We observe significant improvements of the classification
correctness rates for robust CSP with properly chosen perturbation levels δ. The
choice of δ is clearly critical for the performance (as also discussed in [13]), but a
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Fig. 6. The boxplot of the classification rate for the linear mixing model problem with ε(t) ∼
N (0, 30). The boxes from left to right represent standard CSP (non-rbst), and robust CSP with
δ ∈ {0.5, 1, 2, 4, 6, 8}. The robust CSP is computed by Algorithm 2 (left panel) and the simple
iterative scheme (right panel).
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Fig. 7. The classification rate of robust CSP (by Algorithm 2) for the linear mixing model
problem with ε(t) ∼ N (0, 10) (left) and N (0, 20) (right).

good value can be estimated in practice by cross validation. For comparison, we also
reported the results for the simple iterative scheme (7), where the solution with the
smallest ρ(zk) is retained in case of nonconvergence. In Figure 7, the same experiment
is repeated but now with noise terms ε(t) ∼ N (0, 10) and ε(t) ∼ N (0, 20). For both
the robust and the nonrobust algorithms, the classification rates improve as expected
with smaller noise. However, robust CSP still gives considerably better results showing
the robustness of our approach to the magnitude of the noise.

Example 5 (robust LDA). In this example we demonstrate the effectiveness of the
NEPv approach for solving the robust LDA problems from section 5.3. We use the
sonar and ionosphere benchmark problems from the UCI Machine Learning Reposi-
tory [18]. The sonar problem has 208 points each with 60 features, and the ionosphere
problem has 351 points each with 34 features. Both benchmark problems are used
in [15] for testing robust LDA (RLDA), and we will follow the same setup here.

For the experiment, we randomly partition the dataset into training and testing
sets. The number of training points to the total is controlled by a ratio α. For a given
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Fig. 8. Test set accuracy (TSA) for sonar and ionosphere benchmark problems. The robust
discriminant of RLDA is computed by Algorithm 2.

partition, we generate the uncertainty parameters (39) by a resampling technique. In
particular, we resample the training set with uniform distribution over all data points
and then compute the sample mean and covariance matrices of each data class for the
resampled training set. We repeat this 100 times. The averaged covariance matrices
are used to define Σx, and Σy, whereas the maximum deviation (in Frobenius norm)
to the average is used to define δx and δy, respectively. In the same fashion, the
averaged mean values are used to define µx and µy, whereas the covariance matrices
of all the mean values, Px and Py, are used to define Sx = nPx and Sy = nPy.

Using these uncertainty parameters for (39), we compute the robust discriminant
and evaluate the classification accuracy for the testing set. We repeat such classi-
fication experiment 100 times (each time with a new random partition) and obtain
the average accuracy and the deviation. In Figure 8 we report the results for various
partition parameters α. The robust discriminants are computed by Algorithm 2. Fig-
ure 8 illustrates the results demonstrated in [15]. It shows that RLDA significantly
improves the classification accuracy over conventional LDA (using averaged mean and
covariance matrices).

In our experiments, Algorithm 2 successfully found the minimizers for all robust
RQs (100 × 6 cases for each dataset) with the specified tolerance tol = 10−8. It
also showed fast convergence: The average number of iterations (and hence linear
eigenvalue problems) was 8.79 for the ionosphere problem and 8.01 for the sonar
problem. The overall computation time was 2.8 and 7.2 seconds, respectively. For
comparison, when the robust LDA problem was solved as a QCP with CVX [11],
the overall computation time was 136.9 and 163.4 seconds, respectively. We can also
alternatively solve the first-order NEPv by Algorithm 1. That will produce the same
results, but with a larger number of iterations to reach high accuracy. Observe that
since the matrix pair (G,H(z)) has only one positive eigenvalue, there is no need to
reorder the eigenvalues in NEPv (12).

We remark that both Algorithms 1 and 2 have to start with z0 such that ρ(z0) 6=
∞. In our experiment, this was not a problem since the nonrobust solution always
provided a valid z0. However, if ρ(z0) = ∞ happens, then one has to reset z0 by
checking the feasibility of |zT (µx − µy)| >

√
zTSxz+

√
zTSyz for z 6= 0; i.e., the two

ellipsoids Γ in (39) do not intersect. This can be done with convex optimization.
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7. Concluding remarks. We introduced the robust RQ minimization problem
and reformulated it to nonlinear eigenvalue problems with eigenvector nonlinearity
(NEPv). Two forms of NEPv were derived, namely one that only uses first-order
information, and another that also uses second-order derivatives. Attention was paid
to the eigenvalue ordering issue in solving the nonlinear eigenvalue problem via self-
consistent field (SCF) iterations that may lead to nonconvergence. To solve the eigen-
value ordering issue, we introduced a nonlinear spectral transformation technique for
the first-order NEPv. The SCF iteration for the second-order NEPv has proven local
quadratic convergence. The effectiveness of the proposed approaches is demonstrated
by numerical experiments arising in three applications from data science.

The results presented in this work depend on the smoothness assumption of the
optimal parameters µ∗(z) and ξ∗(z). The smoothness condition allows us to employ
the nonlinear eigenvalue characterization in Theorems 3.1 and 3.2, and consequently
the SCF iterations in Algorithms 1 and 2 can be applied. This assumption is satisfied
for the applications discussed in this paper; however, how to solve the robust RQ
minimization when this assumption does not hold is a subject of future study.

Appendix A. Proofs related to equivalent formulations.

A.1. Inner minimization for robust eigenclassifier. The following lemma
provides a correction for a similar result in [31]. The difference is in the use of the
function ϕ(w).

Lemma A.1. Given vectors w 6= 0 and xc ∈ Rn, a symmetric positive definite
matrix Σ ∈ Rn×n, and scalar γ, the following hold:
(a) The maximization problem satisfies

(48) max
xTΣx≤1

(
wT (xc + x)− γ

)2
=
(
wT (xc + x∗)− γ

)2
,

where

x∗ =
sgn(wTxc − γ)√

wTΣ−1w
Σ−1w.

(b) The minimization problem satisfies

(49) min
xTΣx≤1

(
wT (xc + x)− γ

)2
=
(
wT (xc + x∗)− γ

)2
,

where

x∗ = ϕ(γ,w) · sgn(γ − wTxc)√
wTΣ−1w

Σ−1w and ϕ(γ,w) = min

{
|γ − wTxc|√
wTΣ−1w

, 1

}
.

The function ϕ(γ,w) is smooth except for |γ − wTxc| =
√
wTΣ−1w; i.e., the

hyperplane {x : wT (xc + x)− γ} is tangent to the ellipsoid xTΣ−1x = 1.

Proof. (a) Let us define the Lagrangian of the maximization problem

L(x, λ) =
(
wT (xc + x)− γ

)2 − λ(xTΣx− 1),

where λ is the Lagrangian multiplier. The maximum (x∗, λ∗) must satisfy the KKT
conditions

stationary: Lx(x∗, λ∗) := 2
(
wT (xc + x∗)− γ

)
w − 2λ∗Σx∗ = 0,(50)

feasibility: λ∗ ≥ 0 and xT∗ Σx∗ ≤ 1,(51)

slackness: λ∗ · (xT∗ Σx∗ − 1) = 0.(52)
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The multiplier λ∗ > 0 must be strictly positive, since otherwise λ∗ = 0 and the
stationary condition (50) implies the maximum of (48) (wT (xc + x∗) − γ)2 = 0 so
the ellipsoid xTΣx ≤ 1 degenerates to a plane. The positivity of λ∗, combined with
condition (50), implies x∗ = αΣ−1w with α being a scalar. Plugging x∗ into the slack
condition (52), we obtain α = ±(wTΣ−1w)−1/2, i.e.,

x∗ = ±(wTΣ−1w)−1/2 · Σ−1w.

We choose the sign of the leading coefficient that maximizes the optimizing func-
tion (48) at x∗, and obtain the expression in (48).

(b) First, suppose the intersection of the ellipsoid and the hyperplane

(53) S :=
{
x : xTΣx ≤ 1

}⋂{
x : wT (xc + x)− γ = 0

}
= ∅;

then the minimization problem

(54) min
xTΣx≤1

(
wT (xc + x)− γ

)2
=
(
wT (xc + x∗)− γ

)2
,

where

x∗ =
sgn(γ − wTxc)√

wTΣ−1w
Σ−1w.

The proof is analogous to Lemma A.1 except for λ∗ ≤ 0 in the feasibility condi-
tion (51) due to the minimization. The nonvanishing condition (53) ensures that the
corresponding multiplier λ∗ < 0 is strictly negative, since otherwise λ∗ = 0 leads to(
wT (xc + x∗)− γ

)
w = 0 with xT∗ Σx∗ ≤ 1, contradicting S = ∅.

If S is nonempty, i.e.,

min
wT (xc+x)−γ=0

xTΣx ≤ 1 ⇒ |γ − wTxc|√
wTΣ−1w

≤ 1,

then the objective function attains zeros for all x∗ ∈ S. In particular, we can choose

x∗ =
|γ − wTxc|√
wTΣ−1w

· sgn(γ − wTxc)√
wTΣ−1w

Σ−1w.

A.2. Robust LDA. We show that (41) is equivalent to (42). The formula of
G in the numerator is by elementary analysis. The minimization problem in the
denominator amounts to computing the shortest projection of µx − µy onto z. Since
(µx − µx)TS−1

x (µx − µx) ≤ 1 is an ellipsoid, the projection of µx onto z satisfies

zTµx ∈
[
zTµx −

√
zTSxz, z

Tµx +
√
zTSxz

]
= [ax, bx].

Similarly, the projection of µy onto z satisfies

zTµy ∈
[
zTµy −

√
zTSyz, z

Tµy +
√
zTSyz

]
= [ay, by].

Therefore, we can write the minimization problem equivalently as

min (zTµx − zTµy)2

s.t. zTµx ∈ [ax, bx], zTµy ∈ [ay, by].
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The minimizer is 0 if the interval [ax, bx] intersects [ay, by], i.e., |zTµx − zTµx| ≤√
zTSxz +

√
zTSyz. Otherwise, the minimizer is given by the minimal distance be-

tween the end points of the intervals(
|zTµx − zTµx| −

(√
zTSxz +

√
zTSyz

))2

= (f(z)T z)2,

where the previous equation is verified by direct calculation.
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