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1 Introduction

Consider the multi-input multi-output (MIMO) time-invariant second-order
problem
my+ { MO+ DI+ Kalt) = Futy )
v y(t) = Lq(1)

with initial conditions ¢(0) = go and ¢(0) = go. Here t is the time variable.
q(t) € RY is a vector of state variables. N is the state-space dimension. u(t)
and y(t) are the input force and output measurement functions, respectively.
M, D, K € RY*N are system matrices, such as mass, damping and stiffness
as known in structural dynamics, and acoustics. We have F € RY*P and L €
RN*™ are input distribution and output measurement matrices, respectively.

Second-order systems X of the form (1) arise in the study of many
types of physical systems, with common examples being electrical, mechanical
and structural systems, electromagnetics and microelectromechanical systems
(MEMS) [Cra81, Bal82, CZB*00, BBC*00, RW00, Slo02, WMSW02].

We are concerned with the system Xy of very large state-space dimen-
sion N. The analysis and design of large models becomes unfeasible with
reasonable computing resources and computation time. It is necessary to ob-
tain a reduced-order model which retains important properties of the original
system, and yet is efficient for practical use. A common approach for reduced-
order modeling is to first rewrite X'y as a mathematically equivalent linear
system and then apply linear system dimension reduction techniques, such as
explicit and implicit moment-matching and balanced truncation. The reader
can find surveys of these methods, for example, in [Fre00, ASG01, Bai02].
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There are two major drawbacks with such a linearization approach: the corre-
sponding linear system has a state space of double dimension which increases
memory requirements, and the reduced system is typically linear and the
second-order structure of the original system is not preserved.

The preservation of the second-order structure is important for physical
interpretation of the reduced system in applications. In addition, respecting
the second-order structure also leads more stable, accurate and efficient re-
duced systems. This book contains three chapters on second (or higher) order
systems. Chapter 77 discusses Krylov-subspace based and SVD-based meth-
ods for second-order structure preserving model reduction. For the Krylov-
subspace based techniques, conditions on the projectors that guarantee the
reduced second-order system tangentially interpolates the original system
at given frequencies are derived. For SVD-based techniques, a second-order
balanced truncation method is derived from second order gramians. Chap-
ter ?? presents Krylov methods based on projections onto a subspace which
is spanned by a properly partitioned Krylov basis matrices obtained by apply-
ing standard Krylov-subspace techniques to an equivalent linearized system.
In this chapter, we present modified Arnoldi methods which are specifically
designed for the second-order system, without via linearization. We call them
as second-order Krylov subspace techniques. In a unified style, we will review
recently developed Arnoldi-like dimension reduction methods that preserve
the second-order structure. We will focus on the presentation of essential
ideas behind these methods, without going into details on elaborate issues
on robustness and stability of implementations and others.

For simplicity, we only consider the single-input single output (SISO) sys-
tem in this paper. Denote F' = f and L = [, where f and [ are column vectors
of dimension N. The extension to the MIMO case requires block Arnoldi-like
methods, which is beyond the scope this paper. The matrices M, D, and K
often have particular properties such as symmetry, skew-symmetry, and posi-
tive (semi-)definiteness. We do not exploit nor assume any of such properties.
We only assume that K is invertible. If this would not be the case, we assume
there is an sy € R so that s3M + soD + K is nonsingular.

2 Second-order system and dimension reduction

The second-order system Xy of the form (1) is the representation of Xy
in the time domain, or the state space. Equivalently, one can also represent
the system in the frequency domain via the Laplace transform. Under the
assumption of the initial conditions ¢(0) = go = 0 and ¢(0) = go = 0 and
u(0) = 0. Then the input U(s) and output Y (s) in the frequency domain are
related by the transfer function

H(s) =1"(s*M +sD + K)7' f, (2)
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where physically meaningful values of the complex variable s are s = iw,
w > 0 is referred to as the frequency. The power series expansion of H(s) is
formally given by

oo
H(s) = mo + mys+ mas® + - -- :Zmlsf,
=0

where my for £ > 0 are called moments. The moment m, can be expressed as
the inner product of the vectors [ and r:

me=1"r, for £>0, 3)

where the vector sequence {r,} is defined by the following linear homogeneous
second-order recurrence relation

ro = K_lb
r=—K 'Drg (4)
ry = —Kﬁl(DTgf1 + MTZ,Q) for £=2,3,...
As mentioned above, we assume that K is nonsingular, otherwise, see the
discussion in section 5. The vector sequence {ry} is called a second-order

Krylov vector sequence. Correspondingly, the subspace spanned by the vector
sequence {ry} is called a second-order Krylov subspace:

Gn(A, B;ro) = span{ro,71,72,..."n_1}, (5)

where A= —K~!'D and B = —K ! M. When the matrices 4 and B, i.e., the
matrices M, D and K, and ¢ are known from the context, we will drop them
in our notation, and simply write G,,.

Let @, be an orthonormal basis of G,, i.e.,

Gn = span{Q,} and Q1Q, =I.

An orthogonal projection technique of dimension reduction onto the subspace
G, seeks an approximation of ¢(t), constrained to stay in the subspace spanned
by the columns of @,,, namely

q(t) = Qn2(t) -

This is often referred to as the change-of-state coordinates. Then by imposing
the so-called Galerkin condition:

MQnZ(t) + DQrz(t) + KQnz(t) — fu(t) L Gn,
we obtain the following reduced-order system:

T { Mnn() + Dnin(t) + K;Eg - l%zug) , (6)
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where M,, = QZMQTU D, = QZDQn; K, = QZKQm o= ng and I, =
QT]. We note that by explicitly formulating the matrices M, D,, and K,
in X,, essential structures of M, D and K are preserved. For example, if
M is symmetric positive definite, so is M,,. As a result, we can preserve the
stability, symmetry and physical meaning of the original second-order system
- This is in the same spirit of the widely used PRIMA algorithm for passive
reduced-order modeling of linear dynamical systems arising from interconnect
analysis in circuit simulations [OCP98].

The use of the second-order Krylov subspace G,, for structure-preserving
dimension reduction of the second-order system Xy has been studied by Su
and Craig back to 1991 [SCJ91], although the subspace G,, is not explicitly
defined and exploited as presented here. It has been revisited in recent years
[RW00, Bai02, Slo02, BS04a, SL04, MRO03]. It has been applied to very large
second-order systems from structural analysis and MEMS simulations. The
work of Meyer and Srinivasan [MS96] is an extension of balancing truncation
methods for the second-order system. Recent such effort includes [CLM*02].
Another structure-preserving model reduction technique is recently presented
in [GCFPO03]. Those two approaches focus on the application of moderate size
second-order systems.

The transfer function h,(s) and moments mgn) of the reduced second-order
system X, in (6) are defined similar to the ones of the original system Xy,
namely,

hn(s) =X (s> M, + sD, + K,,)) "' f,

and
m{™ =17 for £>0,

where r§") are the second-order Krylov vectors as defined in (4) associated

with the matrices M,,, D, and K,.

One way to assess the quality of the approximation is by comparing
the number of moments matched between the original system Xy and the
reduced-order system X,,. The following theorem shows that the structure-
preserving reduced system X, matches as many moments as the linearization
approach (see section 3). A rigorous proof of the theorem can be found in
[BS04a].

Moment-matching Theorem. The first n moments of the original system
YN in (1) and the reduced system X, in (6) are matched, i.e., my = mgn) for
£=0,1,2,...,n — 1. Hence h,(s) is an n-th Padé-type approzimant of the
transfer function h(s):

h(s) = hn(s) + O(s™).

Furthermore, if the original system X is symmetric, i.e., M, D and K are
symmetric and f =1, then the first 2n moments of h(s) and h,(s) are equal
and hy,(s) is an n-th Padé approximant of h(s):

h(s) = hu(s) + O(s*™).
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The gist of structure-preserving dimension reduction of the second-order
system Xy is now on how to efficiently compute an orthonormal basis @, of
the second-order Krylov subspace G,. In section 4, we will discuss recently
developed Arnoldi-like procedures for computing such an orthonormal basis.

3 Linearization method

In this section, we review the Arnoldi-based linearization approach for the
dimension reduction of X. By exploiting the underlying second-order struc-
ture of this approach, it leads to the recently proposed structure-preserving
methods to be discussed in the following sections.

It is easy to see that the original second-order system X'y is mathematically
equivalent to the following linear system:

L { Ci(t) + Ga(t) = fu(t) -

_lq® | D M KO ~_[|fl +_ !
“0=i] e=[50] e=[02] =[] =[] @
Z is an arbitrary N x N nonsingular matrix.

An alternative linear system can be defined by the following system ma-
trices

e |0 M _|KD| +_|[f] +_|1
Various linearizations have been proposed in the literature, see [TMO01] for
a survey. We consider the above two, since they can be used in the methods we

discuss. The linearization discussed by [MWO01] does not fit in this framework.
Note that both linearizations produce

-K~'D KlM]

I 0 (10)

-G'C = [
The zero block in (10) is very important for Arnoldi-like methods discussed
in this paper.
Let K,(—G~1C;7y) denote the Krylov subspace based on the matrix
—G71C and the starting vector 7o = G~ f:

’Cn(—G_IC; F(]) = span{?o, (—G_IC)?(), cay (—G_IC)n_lFo}.

The following Arnoldi procedure is a popular numerically stable procedure to
generate an orthonormal basis V;, of the Krylov subspace K, (-G 1C;7) C
R2N, namely,
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span{V,,} = Kp(-G~1C;7)

and VIV, =1I.
Algorithm 1 Arnoldi procedure

Input: C, G, f,n

Output: V,
v =G F/IG Tl
2 forj=1,2,...,n do
3 r= —Gilcvj
4. hj = V;TT
5. r=r—Vjh;
6.
7.
8

~

Bt = lIrll2
stop if hjy1,; =0
: Vi1 =7/hjy15
9. end for
The governing equation of the Arnoldi procedure is
(=G~1C) V= Voy Hy, (11)

where H, = (hij) is an (n + 1) x n upper Hessenberg matrix and V41 =
[Vi ¥ny1] is @ 2N x (n+ 1) matrix with orthonormal columns. By making the
use of the orthonormality of the columns of V.41, it follows that

vIi-Gg-'o)v, = H,

where H,, is the n x n leading principal submatrix of H n-

By the framework of an orthogonal projection dimension reduction tech-
nique, one seeks an approximation of z(t), constrained to the subspace
spanned by the columns of V,,, namely

z(t) = Vpz(t).
Then by imposing the so-called Galerkin condition:
G 'OV, 4(t) + Vnz(t) = G ' Fu(t) L span{V,},

we obtain the following reduced-order system in linear form:

™

u(t)
«() (12)

where C, = —H,,, Gp = I, fn = €1||G 1 f|2, and I,, = V1T

It can be shown that the reduced linear system XL matches the first n
moments of the original linear system X'k which are equal to the first n mo-
ments of the original second-order system X'n. In finite precision arithmetic,

o~

3

ZL . an(t) + an(t) =
" g()
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reorthogonalization may lead to a smaller order for the same precision, see
[Mee03]. The major disadvantages of this method include doubling the storage
requirement, and the loss of the second-order structure for the reduced-order
model.

We note that the Arnoldi procedure breaks down when hji;; = 0 at
iteration j. This happens if and only if the starting vector 7y is a linear
combination of j eigenvectors of —G~'C. In addition, K;(—G~*C;7) is an
invariant subspace and Ky (—G~1C;7y) = K;(—G~1C;7p) for all k > j. It can
be shown that at the breakdown, the moments of the reduced-order system
are identical to those of the original system, i.e., h(s) = h;(s). Therefore, the
breakdown is considered as a rare but lucky situation.

4 Modified Arnoldi procedures

Define the Krylov matrix K,, by
K, =[%o, (-=G'O)ry, (=G™*C)*7, ..., (=G™rCO)" 7y ).

It is easy to see that the Krylov matrix K,, can be rewritten in the following

form:
_|ToT1 T2 Th-1
Kn - 0 ro”ry - Tp—2 ’ (13)
where the vectors {rg,r1,73,...,7,_1} are defined by the second-order re-
currences (4). It is well-known, for example see [Ste01, section 5.1], that the
orthonormal basis V;,, generated by the Arnoldi procedure (Algorithm 1), is
the orthogonal Q-factor of the QR factorization of the Krylov matrix K,,:

K, =V,R,, (14)
where R, is some n X n upper triangular matrix. Partition V,, into the 2 x 1

block matrix
Un
Vn - [Wn:| )

then equation (14) can be written in the form

[7‘07‘1 T2 "'T’n—l] _ |:Un

0rgry -+ Tpo2

It shows that we can generate an orthonormal basis @, of G,, by orthonormal-
izing the U-block vectors or the W-block vectors. The leads to the Q-Arnoldi
method to be described in §4.1. The SOAR in §4.2 is a procedure to compute
the orthonormal basis (),, directly, without computing the U- or W-block first.

Before we present these procedures, we note that one can show that the
Krylov subspace K,,(—G1C;7o) can be embedded in the second-order Krylov
subspace G, (4, B;rg), namely
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span{V,,} C span{ [%" gﬂ] } .

This is a very useful observation and can be applied to a number of cases, for
example, to prove the moment-matching theorem. See [BS04a] for details.

4.1 Q-Arnoldi procedure
Recall from (10) that

—-K7'D-K='M
1 _
—G U= I 0
From the second block row of the governing equation (11) of the Arnoldi
procedure, we have R

Uy, =Wy Hy. (15)

We can exploit this relation to avoid the storage of the U-vectors with a slight
increase of the computational cost. All products with U, are to be replaced by
the products of Wy, 41 and H,,. This observation has been made in [MR03] for
the solution of the quadratic eigenvalue problem and parametrized equations.
With the motivation of constructing an orthonormal basis of the second-order
Krylov subspace G,,, we derive the following algorithm.

Algorithm 2 Q-Arnoldi procedure (W -version)

Input: M,D,K,rg,n
Output: Q,

1. u=rg/||roll2 and w1 =0

2 forj=1,2,...,n do

3. r=—K~'(Du+ Muwj)

4. t=u

5 b — HI  (Wlr)y+ W]t
7 uTr+w}Z-Tt

6 r=r—[W;u] ([HJOI (1)] hj)

7. t=t—W;h;

8. hjti,g = (Il + [18]15)'/?

9. stop ’I,f hj+1,j =0

10. u = T/hj.,.l’j

11. wiy1 = t/hjy1,5

12.  end for

18, Qni1 = orth([Wpy1 u]) % orthogonalization

We note that the function orth(X) in step 13 stands for the modified
Gram-Schmidt process or QR decomposition for generating an orthonormal
basis for the range of X.
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An alternative approach of the Q-Arnoldi method is to avoid the storage
of the W-vectors. By equation (15) and noting that wy = 0, we have

Wot1(52:n+1) =U,H2:n+1,1:n)"" . (16)

Operations with W,, can then use the expression (16). We obtain another
modified Arnoldi procedure.

Algorithm 3 Q-Arnoldi procedure (U-version)
Input: M,D,K,rg,n

Output: Qn,

1. uy =ro/l|roll2 and w =10

2 forj=1,2,...,n do

3 r=—K 1(Du; + Mw)

4 t= Uj

5 h; =U%r + [ ~ 0 ] t
’ 7T H2:j,1:j-1)1TUL,
6 r= T—Ujhj

7 t=t= [0V B@: 4,15 - 1) by
8. hitig = (713 + [1£13)'/2

9. stop if hjy1,; =0

10. ujrr =1/hjy1,;

11. w = t/hj_H’j

12.  end for

18, Qny1 = orth(Upy1) % orthogonalization

__ Note that both modified Arnoldi procedures 2 and 3 produce the same
H,, as the Arnoldi procedure in exact arithmetic. If we would compute the U
block using (15) after the execution of Algorithm 2, we would obtain exactly
the same U block as the one produced by Algorithm 3. The breakdown of both
Q-Arnoldi procedures happens in the same situation as the standard Arnoldi
procedure.

4.2 Second-order Arnoldi procedure

The Second-Order ARnoldi (SOAR) procedure computes an orthonormal ba-
sis of the second-order Krylov subspace G,, directly, without first computing
the U- or W-block. It is based on the observation that the elements of the
upper Hessenberg matrix H, in the governing equation (11) of the Arnoldi
procedure can be chosen to enforce the orthonormality of the U-vectors di-
rectly. The procedure is first proposed by Su and Craig [SCJ91], and further
improved in the recent work of Bai and Su [BS04b]. The simplest version of
the procedure is as follows.

Algorithm 4 SOAR procedure
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Inputs: M,D,K,rq,n

Output: Q,

1. @ =ro/llroll

2. w=0

3. forj=1,2,...,n do

4. r=—-K~1(Dg; + Mw)
5. hj=Qjr

6. ri=7r—Q;h;

7. hivaj = lIrll2

8. stop if hj+1j = 0,

9. Gj+1 =1/hjt1;

10. solve Hi(2:j+1,1:j)g=e; forg
11. w=Qjg

12.  end for

Special attention needs to be paid to the case of breakdown for the SOAR
procedure. This occurs when h;41; = 0 at iteration j. There are two possible
cases. One is that the vector sequence {r;}/Z; is linearly dependent, but the
double length vector sequence {[r ¥ ,]T}Z; is linearly independent. We
call this situation deflation. With a proper treatment, the SOAR procedure
can continue. Deflation is regarded as an advantage of the SOAR procedure.
A modified SOAR procedure with the treatment of deflation is presented in
[BS04b]. Another possible case is that both vector sequences {r;}_; and
{[r¥ #¥ 17} are linearly dependent, respectively. In this case, the SOAR
procedure terminates. We call this breakdown. At the breakdown of the SOAR,
one can prove that the transfer functions h(s) and h;(s) of the original system
X'y and the reduced system X; are identical, the same as in the linearization
method [BS04a].

4.3 Complexity

Table 1 summarizes the memory requirements and computational costs of the
Arnoldi and modified procedures discussed in this section.

Table 1. Complexity of Arnoldi procedure and modifications

Procedure memory flops
Arnoldi 2(n+1)N 2Nn(n + 3)
Q-Arnoldi (W-version)| (n+1)N 2Nn(n+1)
Q-Arnoldi (U-version) | (n+2)N 2Nn(n + 3)
SOAR (n+2)N (3/2)Nn(n+4/3)

We only consider the storage of the Arnoldi vectors, since this is the dom-
inant factor. The storage of Q41 in W-version of the Q-Arnoldi procedure
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(Algorithm 2) uses the same locations as W41 and in U-version procedure
(Algorithm 3) the same locations as U,y1. The storage of w; is not required
since it is zero. This explains the slightly lower cost for the W-version of
Q-Arnoldi procedure.

For the computational costs, first note that the matrix-vector products in-
volving matrices M, D and K are typically far more expensive than the other
operations. All three procedure use the same number of matrix-vector prod-
ucts. The remaining cost is dominated by the orthogonalization procedures.
For the Q-Arnoldi procedures, the cost is dominated by the inner products
with W; and Uj respectively. The cost of the U-version is slightly higher, be-
cause wi is zero. For SOAR, we assume that there are no zero columns in
@n+1- These costs do not include the computation of ()41 in Step 13 of the
Q-Arnoldi procedures 2 and 3. This cost is of the order of Nn?.

5 Structure-preserving dimension reduction algorithm

We now present the Q-Arnoldi or SOAR-based method for structure-preserving
dimension reduction of the second-order system Xy .

In practice, we are often interested in the approximation of the original
system Xy around a prescribed expansion point sg # 0. In this case, the
transfer function h(s) of Xy can be written in the form:

h(s) =1T(s>M +sD+ K) " 'f
=1T((s — $0)>M + (s — s0)D + K)~'f,

where B B
D=2s¢M+D and K =s3M+syD + K.

Note that sg can be an arbitrary, but fixed value such that the matrix K is
nonsingular. The moments of h(s) about sg can be defined in a similar way
as in (3).

By applying the Q-Arnoldi or SOAR procedure, we can generate an or-
thonormal basis @,, of the second-order Krylov subspace G, (A, B;ro):

Spall{Qn} = gn(Aa B7 TO)

with o B B
A=—-K'D, B=—-K 'Mandro = K~f.
Following the orthogonal projection technique as discussed in section 2,
the subspace spanned by the columns of @), can be used as the projection

subspace, and subsequently, to define a reduced system X, as in (6). The
transfer function h,(s) of X, about the expansion point sq is given by

hn(s) =17 ((s — 50)> My + (s — 50) Dy + Kn) "' fn,
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where M,, = QTMQ,, D, = QTDQ,, K, = QTKQ,, and IT = Q71 and
¥ = QT f. By a straightforward algebraic manipulation, h,,(s) can be simply
expressed as

ho(s) = 15(s* My, + 8Dy + K) " s (17)

where
M, = QZ’MQTH D, = QZ:DQM K, = QZ:KQn; Iy = Qzl, fn = ng

In other words, the transformed matrix triplet (M, f), K ) is used to generate
an orthonormal basis @, of the projection subspace G,,, but the original matrix
triplet (M, D, K) is directly projected onto the subspace G,, to define a reduced
system Y, about the selected expansion point sg.

The moment-matching theorem in section 2 is still applied here. We can
show that the first n moments about the expansion point sq of h(s) and hy,(s)
are the same. Therefore, h,(s) is an n-th Padé-type approximant of h(s) about
sg. Furthermore, if X is a symmetric second-order system, then the first 2n
moments about sg of h(s) and h,(s) are the same, which implies that h,(s)
is an n-th Padé approximant of h(s) about sq.

The following algorithm is a high-level description of the second-order
structure-preserving dimension reduction algorithm based on Q-Arnoldi or
SOAR procedure.

Algorithm 5 Structure-preserving dimension reduction algorithm

1. Select an order n for the reduced system, and an erpansion point sg.

2. Run n steps of Q-Arnoldi or SOAR procedure to generate an orthonormal
basis Q. of Gn(A,B;ro), where A= —K~'D, B=—-K~'M and rq =
K-1f.

3. Compute M,, = QT MQ,., D, = QXDQ,., K,, = QT KQn, I, = QT1, and
fn=QLf. This defines a reduced system X, as in (6) about the selected
expansion point Sg.

As we have noticed, by the definitions of the matrices M,,, D,, and K,, in
the reduced system X,,, essential properties of the matrices M, D and K of
the original system X'y are preserved. For example, if M is symmetric positive
definite, so is M,,. Consequently, we can preserve stability, possible symmetry
and the physical meaning of the original second-order system X'y .

The explicit formulation of the matrices M,,, D,, and K, is done by using
first matrix-vector product operations Mq, Dq and K q for an arbitrary vector
q and vector inner products. This is an overhead compared to the lineariza-
tion method discussed in section 3. In the linearization method as described
in section 3, the matrix C,, = —H,, and G,, = I in the reduced system XL
is obtained as a by-product of the Arnoldi procedure without additional cost.
However, we believe that the preservation of the structure of the underlying
problem outweights the extra cost of floating point operations in a modern
computing environment. In fact, we observed that this step takes only a small
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fraction of the total work, due to extreme sparsity of the matrices M and D
and K in practical problems we encountered. The bottleneck of the compu-
tational costs is often associated with the matrix-vector product operations
involving K 1.

6 Numerical examples

In this section, we report our numerical experiments on the performance of
the structure-preserving dimension reduction algorithm based on Q-Arnoldi
and SOAR procedures. The superior numerical properties of the SOAR-based
method over the linearization approach as described in section 3 have been
reported in [BS04a] for examples from structural dynamics and MEMS sys-
tems. In this section, we focus on the performance of the Q-Arnoldi-based and
SOAR-based structure-preserving dimension reduction methods. All numeri-
cal examples do not use reorthogonalization.

Example 1. This example is from the simulation of a linear-drive multi-mode
resonator structure [CZP98]. This is a nonsymmetric second-order system.
The mass and damping matrices M and D are singular. The stiffness matrix
K is ill-conditioned due to the multi-scale of the physical units used to define
the elements of K, such as the beam’s length and cross sectional area, and its
moment of inertia and modulus of elasticity. For this numerical experiment,
the order of 1-norm condition number of K is at O(10'%). We use the expansion
point sg to approximate the bode plot of interest, the same as in [CZP98]. The
condition number of the transformed stiffness matrix K = s2M + soD + K
is is slightly improved to O(10'). In Figure 1, the Bode plots of frequency
responses of the original second-order system Xy of order N = 63, and the
reduced-order systems of orders n = 10 via the Q-Arnoldi (W-version) and
SOAR methods are reported. The corresponding relative errors are also shown
over the frequency range of interest. From the relative errors, we see that
the SOAR-based method is slightly more accurate than the Q-Arnoldi-based
method.

Example 2. This is an example from an acoustic radiation problem discussed
in [PA91]. Consider a circular piston subtending a polar angle 0 < 6§ < 6,
on a submerged massless and rigid sphere of radius d. The piston vibrates
harmonically with a uniform radial acceleration. The surrounding acoustic
domain is unbounded and is characterized by its density p and sound speed
c.

We denote by p and a, the prescribed pressure and normal acceleration
respectively. In order to have a steady state solution p(r,6,t) verifying

B(r,0,t) = Re (p(r,0)e™") ,

the transient boundary condition is chosen as:
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Fig. 1. Bode plots of h(jw) of the resonator, approximations by Q-Arnoldi and
SOAR, and relative errors.

—19p(r,0)

r = p Or

0, 0>0,.

B {ao sin(wt), 0 < 0 < 6,,

The axisymmetric discrete finite-infinite element model relies on a mesh of
linear quadrangle finite elements for the inner domain (region between spher-
ical surfaces r = § and r = 1.5§). The numbers of divisions along radial and
circumferential directions are 5 and 80, respectively. The outer domain relies
on conjugated infinite elements of order 5. For this example we used § = 1(m),
p = 1.225(kg/m?), ¢ = 340(m/s), ap = 0.001(m/s?) and w = 1000(rad/s).

The matrices K, D, M and the right-hand side f are computed by AC-
TRAN [Fre03]. The dimension of the second-order system is N = 2025. For
numerical tests, an expansion point sg = 2 x 1027 is used. Figure 2 shows
the magnitudes (in log of base 10) of the exact transfer function h(s) and
approximate ones computed by the Q-Arnoldi (W-version) and SOAR-based
methods with the reduced dimension n = 100. For this example, the accuracy
of two methods are essentially the same.

7 Conclusions

In this paper, using a unified style, we discussed the recent progress in the
development of Arnoldi-like methods for structure-preserving dimension re-
duction of a second-order dynamical system X'n. The reduced second-order
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Fig. 2. Bode plot of h(jw) of ACTRAN2025, approximations by Q-Arnoldi and
SOAR, and relative errors.

system X, enjoys the same moment-matching properties as the Arnoldi-based
algorithm via linearization. The major difference between the Q-Arnoldi and
SOAR procedures lies in the orthogonalization.

We only focused on the basic schemes and the associated properties of
structure-preserving algorithms. There are a number of interesting research
issues for further study, such as numerical stability and the effect of reorthog-
onalization.
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