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Abstract 

Multiconductor transmission line (MTL) analysis is a popular technique for evaluating high-speed electrical intercon- 
nects. Typically, MTLs are modeled in the Laplace domain and similarity transformations are used to decouple the MTL 
equations. For high-speed systems, however, direct solution of the MTL equations at a large number of frequencies is 
computationally very expensive. Recent studies have employed moment matching techniques to approximate the solution 
for the MTL equations and improve the computational efficiency. In this study, a generalization of the method of char- 
acteristics is further studied for solving the MTL equations for lossy transmission lines. An efficient recursive solution 
for generating the moments of eigenvalues and eigenvectors is presented. Numerical results of this moment matching 
technique agree with the direct solution methods up to 10GHz. 

Keywords." Multiconductor transmission line (MTL) equations; Moment matching technique; Interconnect analysis; Eigen- 
value decomposition 
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I. Introduction 

The electronics industry has entered an age where electrical interconnects between components 
present the most significant limitations on the overall performance of a high-speed digital system. 
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It is, therefore, imperative that the signal propagation on these interconnects be accurately modeled 
in a design simulation. Multiconductor transmission line (MTL) theory is a very popular method for 
analyzing interconnect cables and data buses. In order to accurately represent the interconnects, the 
transmission lines must be modeled as lossy conductors. The solution for the lossy MTL equations 
is straightforward if solved in the frequency domain for a single frequency. Typically, the MTLs are 
modeled in the Laplace domain and a similarity transformation is used to decouple the equations at 
the desired frequency. However, the power spectrum of these digital signals is very wideband due to 
high clock speeds and very short-time transients and, hence, single-frequency analysis is inadequate. 
One approach to evaluating the equations over a broad range of frequencies is to perform similarity 
transformations for a near continuum of frequencies using the single-frequency technique. This is 
computationally inefficient as eigendecompositions must be performed for each frequency. 

The problem encountered in the eigendecomposition for lossy multiconductor transmission lines is 
that the transformation matrices used to diagonalize the system matrices are functions of the complex 
frequency s. For an arbitrary number of transmission lines, it is not feasible to determine the exact 
analytical expressions for the frequency-dependent eigensolution. An approximate series solution for 
the eigendecomposition was proposed by Bracken et al. [3] using a generalization of the method of 
characteristics [4]. The eigenvalue and eigenvector matrices are expanded as functions of s and a 
moment matching technique using recursion was proposed for determining an approximate series so- 
lution for the eigendecomposition. It is the recursive solution technique that is the focus of this paper. 

The rest of this paper is organized as follows. In Section 2, the MTL equations used to characterize 
the voltages and currents on a transmission line are presented in the time and frequency domains. 
It is more straightforward to obtain the solution of these MTL equations in the Laplace domain. 
Various methods for the numerical solution of the MTL equations are reviewed. In Section 3, we 
discuss the structure of the eigendecomposition of the transformation matrix M(s)  for the MTL 
equations in frequency domain. The existence of the power-series expansions of the eigenvalues and 
eigenvectors of M(s)  and numerical computation of the coefficients of the series are presented. The 
numerical solution of the MTL equations by the moment expansion method of the eigendecomposition 
of M(s)  is presented in Section 4. Issues on the convergence radius and rate of moment expansion of 
the eigendecomposition of M(s)  are addressed there. Numerical results for solving MTL equations 
of interconnect models are in Section 5. Concluding remarks are in Section 6. 

2. MTL equations and frequency-domain analysis 

The MTL equations are the governing equations for n-uniform lossy coupled transmission lines: 

~---~v(x, t) + Ri(x, t) ÷ L-~i(x, t) = O, ( 1 ) 

--~xi(X,t) + Gv(x,t) + C v(x,t) = 0, (Z)  

where v(x,t) and fix, t) are the vectors of line voltages and line currents, O<~x<~d, f the length of 
transmission line, and t the time variable. L, C, R and G are the inductance, capacitance, resistance 
and conductance matrices, respectively. All of these matrices are n x n and symmetric. Further, 
we also require that the conductance matrix G be nonsingular. In the majority of applications, the 
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voltages v(x,t) and currents i(x,t) are of most interest at the inputs (v(O,t), i(O,t)) and outputs 
(v(f , t) ,  i(~,t)) of the transmission lines. In that regard, the solutions of (1) and (2) provide the 
relationship between the voltages at the input and output. In order to uniquely solve these equations, 
(1) and (2) are augmented with equations describing the initial conditions. 

The MTL equations (1) and (2) can be decoupled into the second-order partial differential 
equations: 

(~2 ~2 Cq 
~xiV(X, t )=  LC-~sv(x, t) + (RC + LG)-~v(x, t) + RGv(x, t), (3) 

0 2 0 2 8 
~xxii(x, t) = CL-~i(x ,  t) + (CR + GL)-~i(x, t) + GRi(x, t). (4) 

These are also called the generalized wave equations. In general, there are no closed-form (explicit) 
solutions for these equations [7, 10]. 

Taking the Laplace transform of (1) and (2) produces a linear homogeneous system of 2n equations 

0 
-~xV(X,S) = - ( R  + sL)i(x,s), (5) 

0 
-~xi(X, s) = - ( G  + sC)v(x, s), (6) 

where s is a frequency parameter. Define the transformation matrix 

[ 0 
M(s)  = G + sC 

then (5) and (6) can be written in the compact matrix form as 

= [ v(x,,) ] r  x,s l 0 
-~x L i(x,s) j i(x,s) j" 

By the standard theory of linear systems of ordinary differential equations [6], the solution of (7) is 
of the form 

i(x,s) J L i(O,s) j '  (8) 

where v(O,s) and i(O,s) are initial conditions. The matrix e -xM(*) is called a fundamental matrix of 
the system or chain parameter matrix in the interconnect analysis [11]. The initial values v(0,s) and 
frO, s) are determined through additional equations that incorporate the terminal conditions in the 
electrical network. 

If the transformation matrix M(s)  is diagonalizable and M(s)  = T- l (s )A(s)T(s)  is an eigende- 
composition of M(s),  then the solution of (7) can be written as 

i(x,s) J --r-l(s)e-xA(*)T(s) (9) 
L i(O,s) j" 

A number of numerical approaches for solving Eqs. (5) and (6) are discussed in [11, 5]. There are 
essentially two classes of methods. The first class of methods explicitly computes the chain parameter 
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matrix e -xM(~) or the eigendecomposition of the transformation matrix M ( s )  at each frequency point s. 
We refer to that as a direct method. The direct method is a general technique. High-quality sot~ecare 
for computing the matrix exponential and eigendecomposition are widely available; e.g. the public- 
domain software package LAPACK [1]. However, this class of  methods can be very time consuming 
if the number of transmission lines are large and the responses at a large number of  frequencies 
are desired. It requires an order of  n 3 operations to compute either the matrix exponential or the 
eigendecomposition. The total cost will be on the order of kn 3, where k is the number of the 
frequencies. 

The second class of methods is based on the asymptotic waveform evaluation (AWE) technique. 
AWE is a moment matching technique first used in the analysis of  linear circuit systems [12]. 
Namely, one expands the chain parameter matrix e -xM(s) [5] or the eigendecomposition of M ( s )  [3] 
in the power series of  the frequency parameter s. The coefficients of  the power series are called 
the moments of  the system. Once these coefficients are computed, the computation of the chain 
parameter matrix e -xM(s) or the eigendecomposition of M ( s )  only costs an order of n 2 operations 
at each frequency. The total cost of  this class of  methods is, in general, on the order of  n 3 q- kn 2, 
where k is the number of the frequencies. Therefore, the AWE-based technique is an attractive 
way to solve the MTL equations and can be significantly more efficient than the direct method. 
However, because of power-series expansions and approximations, the central problems become 
how to efficiently compute the coefficients and accurately determine the convergence radius and rate 
of  the series expansions. 

In this paper, we will further study the moment matching method for computing the eigendecom- 
position of  the transformation matrix M ( s ) ,  which is first presented in the work of  Bracken et al. [3]. 
We will first discuss the structure of the eigendecomposition of  M ( s ) ,  and then propose an efficient 
method to compute the coefficients in the power-series expansion of  the eigenvalue and eigenvector 
matrices of  M(s ) .  Numerical examples will be presented to demonstrate the accuracy and limitations 
of this approach. 

To end this section, we note that the linear system (5) and (6) could be decoupled into second- 
order systems: 

t? 2 
Os 2 v(x ,s)  = (R + sL ) (G  + sC)v(x , s ) ,  

~2 
Os 2 i(x, s)  = (G + sC) (R  + sL)i(x,  s), 

which have solutions of  the forms 

v(x, s) = v(O, s)e --~(~)~, 

i(x, s) = i(O, s)e +'xs)x, 

where 7(s) is the complex propagation mode constant. Substituting the solution form into the wave 
equations yields the matrix eigenvalue problems, 

[(R + sL) (G + sC)  - 72(s)I]v(O,s) = O, 

[(G + s C ) ( R  + sL)  - 72(s)I]i(O,s) = O. 
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A similar moment expansion method can also be developed for this second-order system. But, since, 
we can efficiently solve the original first-order system, it is less desirable to solve the second-order 
system. In particular, if there is a significant delay between the input aad output signals, the solutions 
of second-order equations may suffer in accuracy [3]. 

3. Power-series expansion of eigendecomposition of transformation matrix M(s) 

To efficiently compute the power-series expansion of the eigenvalues and eigenvectors of  the 
transformation matrix M(s), let us first study the structure of  the eigenvalues and eigenvectors. 
We first note that M2(s) is a block diagonal matrix, 

M2(s)= I (R + sL)(G + sC ) 0 1 
0 (G ÷ sC)(R ÷ sL) " 

It can be shown that the matrices (R + sL)(G + sC) and (G + sC)(R + sL) have the same eigenvalues 
and, furthermore, if at least one of  the matrix G+sC or R+sL is nonsingular, then (R+sL)(G+sC) 
and (G + sC)(R + sL) are similar. Let 

A(s)(R + sL)(G ÷ sC)A-l(s) = FZ(s) 

be the eigendecomposition of (R + sL)(G + sC), where AH(s) is the left eigenvector matrix and 
FZ(s) is the corresponding eigenvalue matrix. Here it is assumed that the matrix (R + sL)(G + sC) 
is diagonalizable, say all eigenvalues of  (R + sL)(G + sC) are distinct. Then it is straightforward to 
verify that if G + sC is nonsingular, then 

B(s) = - r ( s ) A ( s ) ( G  + sO) -1 

gives the eigendecomposition of (G + sC)(R + sL) 

B(s)(G + sC)(R ÷ sL)B-l(s) = F2(s). 

By some algebraic manipulation, one immediately shows that the eigendecomposition of  the trans- 
formation matrix M(s) poses the following structure: 

M(s) = T-l(s)A(s)T(s), (lO) 

where 

1 0 l [ A ( s ) - B ( s ) J  and A ( s ) =  F(s) 

The structural eigendecomposition (10) of M(s) reveals that although M(s) is a 2n × 2n matrix, its 
eigenvector matrix is formed by two n × n matrices A(s) and B(s). Furthermore, the eigenvalues of 
M(s) appear in pairs of  ±2.  In the following, we will exploit this fact for computing the power-series 
expansion of eigenvalues and eigenvectors of M(s) and solving the MTL equations (5) and (6). 
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Note that the inverse of T(s) is given by 

[A(s) B(s) ]-1 1 [A-I(s)  A-I(s) ] 
T-I(s)  = 

LA(s) -a(s)J = 2 [B-I(s)  --a-m(3')J 

and furthermore, the columns of T-I(s) are the right eigenvectors of the transformation matrix M(s). 
It needs to be determined whether the eigenvalues and eigenvectors of M(s) can be expressed 

as power series in s. In other words, determine whether they are holomorphic (regular analytic) 
functions of s in the neighborhood of s = 0. We may write M(s) as 

o ~]+~[o oJ. M(s) = [ a 

i.e., M(s) may be viewed as the perturbed matrix of 

[0o :1 
By linear operator perturbation theory [9], we know that if this matrix has distinct eigenvalues, 
then the eigenvalues and eigenvectors of M(s) are the analytic functions for sufficiently small Isl. 
Specifically, the eigenvalue matrix A(s) and the eigenvector matrix T(s) of the transformation matrix 
M(s) can be written in power-series forms in the neighborhood of s = 0: 

01 [: 0] 0] 
0 F0 + s  F1 +s2 0 F2 + " "  (11) 

and 

[Ao I LAa ~--- -4-S -~-S 2 + ' ' ' .  
-do -Bo A1 -BI  A2 -B2 

(12) 

The coefficients of s k are called the kth moments of the eigenvalues or eigenvectors, respectively. 
In most studies of the perturbation of linear operators, one is only interested to find the coefficients 
of the first (s) and second (s 2) terms of the series [9]. However, because s may not be small, 
in general, we are interested to compute an arbitrary number of the coefficients (moments) A;, Bi 
and/7,. 

From the eigendecomposition (10) of M(s) and the power-series expansions (11) and (12) of 
A(s) and T(s), the coefficients of the s°-terms give the equation 

[~i ~o [0o :] [:  01° [:0 ° ] =0 .  (13) 

This is just an eigendecomposition of M(s) at s = 0. 
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Equating the coefficients of the sl-terms in the eigendecomposition (10) yields 

_BII [0 R] _ [-~ ~o] [~: BI 
-BI ] 

o][ o ,o][o 
0 F1 Ao -Bo Ao -Bo 

In general, equating the coefficients of the sk-terms, one can find the following equation for the 
coefficients Ak, Bk and Fk for any k ~> 1: 

[oo :1_ o0 
0 ~ Ao -Bo [Ak-I --Bk-l] C 

+~i=~ 0 ~ [Ak-i --Bk_i " 

By further algebraic simplification, one can show that Eqs. (13) and (14) can be reduced to 

AoR + FoBo = 0, (15) 

BoG + FoAo = 0 (16) 

and 

AkR + FoBk + FkBo = Ek-1, (17) 

BkG + FoAk + FkAo =Fk-1 (18) 

for k t> 1, where 

k - I  k - 1  

Ek-1 : - A k _ l L -  y ~  I~iBk-i and Fk-l = - B k _ I C -  ~ FiAk-i. 
i=l i=l 

We now derive a method to solve Eqs. (15)-(18) for Fk, A~ and Bk for k=0 ,  1,2,.... First, when 
k = 0,  let 

Ao(RG)Ao 1 = lo 2 

be the eigendecomposition of RG and let 

Bo = - FoAo G -1. 

It can be immediately recognized that Ao, Bo and Fo satisfy Eqs. (15) and (16) simuRaneously. Note 
that Bo is also the left-eigenvector matrix of GR, namely Bo(GR)Bo 1 = i-ol. 
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For any k~>l, by multiplying the matrix Bo 1 on the right-hand side of  (17) and the matrix Ao 1 
on the right-hand side of  (18) and using Eqs. (15) and (16), we obtain 

- A k A o l  Fo + FoBkBo 1 + Fk = Ek_lBo 1, (19) 

- B k B o l  Fo 4- FoAkAo 1 -~ Fk = F k _ I A o  1. (20) 

Subtracting Eq. (19) from (20) yields 

XkFo + FoXk = Fk_lAo 1 - E k _ l B o  1, (21) 

where Ark is an auxiliary matrix defined as 

Xk = AkAo 1 - BkBo 1. 

Eq. (21) is a well-known Sylvester matrix equation with unknown Ark [8]. Since F0 is a diagonal 
matrix, the solution Xk is immediately given by 

1 
(Xk )ij --  ~i ~ - ~  (Fk-lA°l - -  g k - l B ° l  )ij 

for i , j  = 1 ,2 , . . . ,n ,  where 7i are the diagonal entries of F0, F0 = diag(7i) and (Z)ij denote the ( i , j )  
elements of a matrix Z. 

On the other hand, adding Eq. (19) to (20) yields 

--Ykl'o q- FoYk -q- 2Fk = Fk_lAo 1 + gk_lBo 1 , 

where Yk is the second auxiliary matrix and defined as 

Yk = AkAo 1 + BkBo 1. 

Note that the diagonal entries of  -YkFo+FoYk are all zeros and that the desired matrix Fk is diagonal. 
We know have 

Fk = ½diag(F~_lAo 1 + Ek_IB o' ), 

where diag(Z) denotes the diagonal matrix with diagonal entries of  a matrix Z. Furthermore, the 
off-diagonal entries ( i , j )  of the matrix Yk are determined by 

1 
( gk )ij --  - - ( F k - l A o  1 -~- Ek- ,Bol  )ij 

~j -- ~2 i 

for i , j  = 1,2 . . . .  ,n and i # j .  Hence, the diagonals of Yk can arbitrarily be chosen. 
After determining the auxiliary matrices Xk and Yk, the desired coefficient matrices Ak and Bk are 

given by 

A~ + Xk)Ao, =½(Y  

Bk = ½(Yk - Xk)Bo. 
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In summary, we have the following algorithm for computing the coefficient matrices Fk, Ak and 
Bk of  the first m + 1 terms in the power series expansion of the eigenvalue and eigenvector matrices 
A(s) and T(s) for the transformation matrix M(s): 

M o m e n t - G e n e r a t i n g  A l g o r i t h m  
- -  compute the eigendecomposition of RG: Ao(RG)Ao 1 = F02, F0 = diag(7~), 
- -  Bo =-FoAoG -1, 
- -  for k = 1 ,2 , . . . ,m 

• ek_l = - A k _ , L -  5B -j, 

• Fk-1 = - B k _ l C -  E~Z 1 FjAk_j, 
• Ek-i :=Ek-lBo l, 
• Fk_ 1 :~---Fk_lAo 1, 
• Xk = F k - 1 -  Ek-1, 
• (Xk)~j:=(Xk)~j/(y~ +Tj)  for i , j =  1,2, . . . ,n ,  
• Yk =Fk_l + E k - 1 ,  
• F~ = ½diag(Yk), 
• set the diagonal entries of  Yk to be zero, 
• (Yk)ij:=(Yk)ij/(Tj- 7i); for i , j :  1,2, . . . ,n ,  i C j ,  
• Ak +Xk)Ao, 

• Bk = ½(Yk -- X,~)Bo, 
- -  end 

The initial cost for computing the eigendecomposition of RG is about 25n 3 ÷ O(n 2) [8]. In the 
loop of k, the cost of  computing one set of  coefficients F~,Ak and Bk is 12n 3 + 2kn 2 ÷ O(n 2) flops. 
In summary, the total cost of  computing the first m ÷ 1 terms of the power-series expansion of the 
eigenvalue and eigenvector matrices of M(s) is (30 + 12m)n 3 + m(m + 1)n 2 + O(n 2) flops. 

The above discussion can be generalized to the power-series expansion of the eigenvalue and 
eigenvector matrices of  M(s) about any given frequency So # 0 and c¢, namely the Laurent expansion. 
In principle, to expand M(s) at any given point So, it can be re-written as 

[ 0 [0 L 1 
M ( s ) =  G+soC 0 + ( S - S o )  C 0 ' 

i.e., M(s) can be viewed as the perturbed matrix of  

I 0 R ÷ soL 1" 
G ÷ soC 0 

With the assumption that the eigenvalues of this unperturbed matrix are distinct, then the eigenvalues 
A(s) and eigenvectors T(s) of M(s) can be expanded as 

A(s) = 0] E 10] 01 + (s - So) + (s - s0) 2 + . . .  
0 F0 0 5 0 5 
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and 

= + (s  - So) + (s  - So)2 + . . .  
A0 -B0 A1 - B I  A2 -B2  J 

at the neighborhood of So. With R+soL and G+soC to replace the matrices R and G, all of coefficient 
matrices Fk, Ak and Bk can be computed using the moment-generating algorithm described above. 
A multi-point Pad6 approximation might be also applicable in this context [2]. It remains to be 
investigated. 

To compute the power-series expansion of the eigenvalue and eigenvector matrices of M ( s )  at e¢, 
M ( s )  can be re-written as 

- -  ° 

s G 0 

The transformation matrix M ( s )  is now viewed as the perturbed matrix of 

With the assumption of the eigenvalues of this unperturbed matrix being distinct, then the eigenvalues 
A(s)  and eigenvectors T(s) of M ( s )  can be expanded as 

[:  o I [: o] [_:o 
A ( s ) = s Fo + F1 + s - l F2 

and 

]+s2E 01 
o r3 + 

[ IB11 [A2 2] _]_S -1 _]_S -2 -q- . . . .  
Ao -Bo A1 -B1 .42 -B2 

With L and C to replace the matrices R and G, all of coefficient matrices Fk, Ak and Bk can again 
be computed using the moment-generating algorithm described above. 

4. Solution of MTL equations 

Once the first m + 1 terms of the coefficients ~, Ai and B; are computed, the eigendecomposition 
(10) of the transformation matrix M ( s )  can be approximated by 

T2l(s)Am(s)Tm(s) = 
"Am(s) Bin(s) 

Am(s) -Bm(s) 

where 

Am(s) =,40 q- sA1 q- $2A2 + . . .  + smAm, 

-1 -r.(s) o ] [a.(s) 
o Vm(S) /Am(s) 

BIn(S) = BO ~- sB1 -Jr- s2B2 + . . .  + smBm, 

B~(s) ] (22) 
-Bin(s) ' 

F,n(S) = Fo +sE +sEFz + . . -  +StaG. 
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For a given frequency s, the matrix polynomials Fro(s), Am(s) and Bin(s) c a n  be efficiently evaluated 
with Homer's rule. For example, Am(s) can be evaluated as follows: 

Horner's rule for matrix polynomial evaluation 
• W = A m ,  
• f o r i = m - 1  down to 0; 

- -  W : = s W  + Af; 
• end 

On the return W = Am(s). The cost of  computing Am(s) is only 2ran 2 floating point operations. 
Furthermore, with an additional order of  n 2 operations, the rows of Tin(s) (i.e., the left approximate 
eigenvectors of M ( s ) )  can be normalized to have unit length. 

With the approximate eigendecomposition (22) of the transformation matrix M(s) ,  using Eq. (9), 
approximate solutions of  MTL equations in the frequency domain are given by 

Om(X , S ) z - -  ½Am l(S)[(e -xr'~s) + e xr.~s) )Am(s)v(O, s) + (e -xr'~s) - e xr'~) )B,,(s)i(O, s)] 

and 

im(X,S) = -½B~l(s )[ (e  -xr~(s) - eXr~(s))Am(S)v(O,s) + (e -xr~(s) + eXr'(S))B,,(s)i(O,s)]. 

Note that since Fro(s) is a diagonal matrix, the matrix exponential e ~r'(s) is also a diagonal matrix, 
which can be computed directly. The total cost of  solving the MTL equations in the frequency 
domain for k frequencies is about (36 + 12m)n 3 + 2kmn 2. 

To determine an expansion point So and the required number of  moments m to achieve the desired 
accuracy of  the approximate eigendecomposition, one must know the radius and rate of  the conver- 
gence of  the power series expansion of  the eigenvalues and eigenvectors A(s)  and T(s) of  M(s) .  
There is no known practical method to quantitatively determine the expansion point So and the number 
of the moments m. This remains an open problems for the moment matching method. For example, a 
study of  convergence radii and error estimates of  power series expansions of  eigenvalues and eigen- 
vectors for a linear operator is presented in [9, p. 88]. However, the results are largely theoretical. 

In practice, we can easily evaluate the backward accuracy of the approximate eigendecomposition 
(22) by computing the quantity 

II Tm(s)M(s) - am(s)T,n(S)l I 

IIM(s)[[llZm(s)ll ' ( 2 3 )  

where the matrix norm can be chosen as the 1-norm or the c<)-norm, which can be computed with 
an order of n 2 operations. We propose to use this measure to heuristically determine whether we 
need to select a new expansion point So and increase the number of  moments m. More discussion 
follows by examples in next section. 

5. Numerical example 

In this section, we present an example for a lossy 8-conductor multiconductor transmission line 
over a ground plane. Simulations were also carried out on 4-conductor and 40-conductor transmission 
lines. The results are similar to the ones presented here. 
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Fig. 1. Relative errors of vm(O.5, s) versus the number of moments m. 

The ground plane of  the lossy 8-conductor multiconductor transmission line provides the signal 
return path. The 8 x 8 inductance and capacitance matrices (L and C, respectively) were generated 
using a method of  moments code [11]. The losses are characterized by the resistances and con- 
ductances defined in the R and G matrices, respectively. The line is Y = 0.5 m in length. The lines 
are terminated with 50 ~2 loads. The lines are excited with sources connected to the near end of  
lines 1 and 4 and the far ends of  lines 5 and 6. These initial conditions v(O,s) and i(O,s) were 
determined using the chain parameter method [11]. It is augmented with equations describing the 
terminal conditions (sources, loads) to determine the initial values. 

In this example, all entries of  the inductance matrix L are of  the orders 10-7-10 -9, capacitance 
matrix C entries are of  the orders 10-t l -10 -14, resistance matrix R entries are of  the order 10 and 
conductance matrix G entries are of  the order 10-2-10 -3. 

Fig. 1 plots the relative errors of  Vm(O.5, S) versus the number of  moments used to compute the 
eigendecomposition. The plot for the relative errors of  im(O.5,S) is similar. The relative errors of  
Vm(O.5, S) and im(0.5,s) are measured by 

[ [ / ) m ( 0 . 5 , S ) - -  V o ( 0 - S , s ) I I  and Ilim(0.5,S)-- ie(X,S)[I 
IlvoC0.5,s)ll II/eC0.5,s)ll ' 

where vc(0.5,s) and ie(0.5,S) are computed by the direct eigendecomposition method. The series 
expansions were performed about s = 0. From the figure, one can see that frequency range of  
acceptable error of  the solution increases with the increasing of  the number of  moments m. In 
addition, we also see that when the number of  moments are increased beyond m = 24, the frequency 
range does not continue to increase as the radius of  convergence begins to limit the accuracy of  the 
solution. 
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Fig. 2. Relatives errors of v,,(0.5,s) (top curve with "o") and the backward errors of the eigendecomposition of M(s), 
m=  12. 
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Fig. 3. Amplitudes and phases of /)m(0.5,S) and ve(O.5,s) for line 1. v,,(0.5,s) with m = 12 are the circles ("o") and 
ve(0.5,s) are the solid lines. 

In Fig. 2, the relative errors o f  vm(O.5,s) are plotted versus frequency along with the backward 
errors o f  the eigendecomposit ion o f  the transformation matrix M(s)  computed using (23) .  The plot 
shows that two errors behave in a similar fashion. As stated in Section 4, this similarity can be 
exploited to heuristically determine when to shift the expansion point So to remain inside the con- 
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vergence radius when calculating the moments. This ensures that the moment solution will remain 
accurate over a broad range of  frequencies. 

Fig. 3 shows the plots of  the far-end voltage amplitudes and phases of  line 1 (Vl(0.5,s)). The volt- 
ages are computed using both the direct method (eigendecomposition computed for each frequency) 
and the moment matching method as implemented using the recursion algorithm from Section 3 and 
the expansion point shifting described in Section 4. The moment matching method shows excellent 
agreement with the direct method over the extremely large range of  frequencies evaluated for this 
example. Similarly, the results for the other voltages and the currents also exhibited excellent agree- 
ment between the two methods. The agreement provides validation that the approximate moment 
matching method is a competitive approach for efficiently solving the MTL equations in frequency 
domain. 

6. Concluding remarks 

By exploiting the structure of  the eigendecomposition of  the transformation matrix M(s) ,  an 
efficient algorithm is developed to solve the MTL equations over a wide range of  frequencies. This 
algorithm could be an order of  magnitude faster than the existing direct methods. The accuracy of  
numerical results of  interconnect models is very encouraging over a wide range of  frequencies up 
to 10 GHz. It remains an open problem to determine an a priori convergence radius and rate of  the 
series expansions of  eigenvectors and eigenvectors for the transformation matrix M(s) .  
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