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Abstract. We first introduce a second-order Krylov subspace Gn(A,B;u) based on a pair of
square matrices A and B and a vector u. The subspace is spanned by a sequence of vectors defined
via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and
an initial vector u. It generalizes the well-known Krylov subspace Kn(A;v), which is spanned by
a sequence of vectors defined via a first-order linear homogeneous recurrence relation with a single
coefficient matrix A and an initial vector v. Then we present a second-order Arnoldi (SOAR)
procedure for generating an orthonormal basis of Gn(A,B;u). By applying the standard Rayleigh–
Ritz orthogonal projection technique, we derive an SOAR method for solving a large-scale quadratic
eigenvalue problem (QEP). This method is applied to the QEP directly. Hence it preserves essential
structures and properties of the QEP. Numerical examples demonstrate that the SOAR method
outperforms convergence behaviors of the Krylov subspace–based Arnoldi method applied to the
linearized QEP.
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1. Introduction. The Krylov subspace

Kn(A;v) = span{v,Av,A2v, . . . ,An−1v}(1.1)

based on a square matrix A and a vector v plays an indispensable role in modern
numerical techniques for solving large-scale matrix computation problems, such as the
linear eigenvalue problem of the form Ax = λx. A Krylov subspace–based method is
often the method of choice due to its simplicity, its availability of reliable and efficient
processes for generating its orthonormal basis, and the superiority of convergence
behaviors [5, 6, 12, 15, 16]. Many state-of-the-art Krylov subspace methods for solving
large-scale eigenvalue problems are presented in [3].

The generalized eigenvalue problem of the form Ax = λBx must be reduced, ex-
plicitly or implicitly, to the linear eigenvalue problem in a form such as (B−1A)x = λx,
and then a Krylov subspace–based method can be applied. The quadratic eigenvalue
problem (QEP) of the form

(λ2M + λD + K)x = 0(1.2)

is usually processed in two stages, as recommended in most literature, public domain
packages, and proprietary software today. At the first stage, it transforms the QEP
into an equivalent generalized eigenvalue problem:

Cy = λGy,(1.3)
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where yT =
[
λxT xT

]
, and C and G are in forms such as

C =

[
−D −K
I 0

]
, G =

[
M 0
0 I

]
,

where we assume throughout the report that M is nonsingular. At the second stage,
it reduces the generalized eigenvalue problem (1.3) to a linear eigenvalue problem
“Ax = λx” and then applies a Krylov subspace–based method. Such an approach
takes advantages of Krylov subspace–based methods, such as the fast convergence
rate and the simultaneous convergence of a group of eigenvalues. However, it also suf-
fers some disadvantages, such as having to solve the generalized eigenvalue problem
(1.3) of twice the dimension of the original QEP and, more importantly, the loss of
the original structures of the QEP in the process of linearization. For example, when
coefficient matrices M, D, and K are symmetric positive definite, the transformed gen-
eralized eigenvalue problem (1.3) has to be either intrinsically nonsymmetric, where
one of C and G has to be nonsymmetric, or symmetric indefinite, where both C
and G are symmetric but neither will be positive definite. Subsequently, essential
spectral properties of the QEP are not guaranteed to be preserved. The reader is
referred to [24] for a recent survey on theory, applications, and algorithms of the
QEP.

For years, researchers have been studying numerical methods which can be ap-
plied to the large-scale QEP directly. In these methods, they do not transform the
QEP into an equivalent linear form; instead, they project the QEP onto a properly
chosen low-dimensional subspace to reduce to a QEP directly with matrix dimen-
sion of lower order. The reduced QEP problem can then be solved by a standard
dense matrix technique. The Jacobi–Davidson method [17, 18] is one such method.
The method targets one eigenvalue at a time with local convergence versus Krylov
subspace methods in which a group of eigenvalues is approximated with global conver-
gence. A direct Krylov-type subspace method with a generalized Arnoldi procedure
is briefly described in [13]. However, the procedure presented in [13] in fact does not
compute an orthonormal basis of the desired Krylov-type subspace. In [7], Arnoldi-
and Lanczos-type processes are developed to construct projections of the QEP. The
convergence of these methods is usually slower than a Krylov subspace method applied
to the mathematically equivalent linear eigenvalue problem. Finally, a subspace ap-
proximation method that uses perturbation theory of the QEP was recently presented
in [8]. The success of the method is strongly dependent on the initial approximation,
although Rayleigh quotient iteration can be used for acceleration.

Motivated by striking an ideal method which not only can be applied to the QEP
directly to preserve the essential structures of the QEP but also achieves the supe-
rior global convergence behaviors of Krylov subspace methods via linearization, in
this paper, we first introduce a second-order Krylov subspace Gn(A,B;u) based on a
pair of square matrices A and B and a vector u. The basis vectors of the subspace
are defined via a linear homogeneous recurrence of degree 2 with coefficient matri-
ces A and B. Consequently, a second-order Arnoldi (SOAR) procedure is presented
for generating an orthonormal basis of Gn(A,B;u). As an application of the SOAR
procedure, a Rayleigh–Ritz orthogonal projection technique based on Gn(A,B;u) is
discussed for finding a few of the largest magnitude eigenvalues and the correspond-
ing eigenvectors of the large-scale QEP (1.2). This method is applied to the QEP
directly. Hence it preserves essential structures and properties of the QEP. Numerical
examples presented in section 5 demonstrate that the new QEP solver outperforms
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convergence behaviors of the Krylov subspace–based Arnoldi method when applied
to the linearized QEP.

In order to solve the large-scale QEP and, more generally, the matrix polynomial
eigenvalue problem efficiently, the necessity for the extension of the standard Krylov
subspace to explicitly involve more than one matrix has been recognized. In section
2, we will see that the definition of the subspace Gn(A,B;u) is a natural extension in
the context of solving the QEP by a projection technique. It has been an interesting
problem to find a scheme which can efficiently construct an orthonormal basis of
Gn(A,B;u) that is comparable to the Arnoldi process for generating an orthonormal
basis of the standard Krylov subspace Kn(A;u). The first procedure presented in this
paper is inspired by the work of Su and Craig [22], to which we are gratefully indebted.

The rest of this report is organized as follows. In section 2, we introduce the
second-order Krylov subspace Gn(A,B;u) and a simple SOAR procedure for gener-
ating an orthonormal basis of the subspace. In section 3, we discuss the possible
deflation and breakdown situations of the SOAR procedure, and we present a revised
version of the SOAR procedure with deflation and memory saving. In section 4, we
present a Rayleigh–Ritz procedure for solving the QEP (1.2). For completeness, we
also present the basic Arnoldi method for solving the equivalent generalized eigenvalue
problem (1.3). Numerical examples are presented in section 5. Discussion and future
work are in section 6.

Throughout the paper, we follow the notational convention commonly used in
matrix computation literature. Specifically, we use boldface letters to denote vectors
(lower cases) and matrices (upper cases), I for the identity matrix, ej for the jth
column of the identity matrix I, and 0 for zero vectors and matrices. The dimensions
of these vectors and matrices are conformed with dimensions used in the context. We
use ·T to denote the transpose. N denotes the order of the original matrix triplet
(M,D,K) and associated QEP (1.2). span{q1,q2, . . . ,qn} and span{Q} denote the
space spanned by the vector sequence q1,q2, . . . ,qn and the columns of the matrix
Q, respectively. ‖·‖1 and ‖·‖2 denote the 1-norm and 2-norm, respectively, for vector
or matrix. x(i : j), as used in MATLAB, denotes the ith to jth entries of the vector
x. A(i : j, k : �) denotes the submatrix of A by the intersection of rows i to j and
columns k to �.

2. A second-order Krylov subspace. In this section, we first define a gen-
eralized Krylov subspace induced by a pair of matrices A and B and a vector u.
Then we discuss the motivation for such a generalization and present an Arnoldi-like
procedure for generating an orthonormal basis of the generalized Krylov subspace.

Definition 2.1. Let A and B be square matrices of order N , and let u �= 0 be
an N vector. Then the sequence

r0, r1, r2, . . . , rn−1,(2.1)

where

r0 = u,
r1 = Ar0,
rj = Arj−1 + Brj−2 for j ≥ 2,

is called a second-order Krylov sequence based on A, B, and u. The space

Gn(A,B;u) = span{r0, r1, r2, . . . , rn−1}

is called an nth second-order Krylov subspace.
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First, we note that the subspace Gn(A,B;u) generalizes the standard Krylov
subspace Kn(A;u) in the way that when B is a zero matrix, the second-order Krylov
subspace is the standard Krylov subspace, namely,

Gn(A,0;u) = Kn(A;u).

Second, we know that the Krylov subspace Kn(A;u) has an important character-
ization in terms of matrix polynomials, which forms a foundation for convergence
analysis of a Krylov subspace–based method. There is a similar one for the second-
order Krylov subspace Gn(A,B;u). With the starting vector u, the first few vectors
in the second-order Krylov sequence can be written as

r0 = u,

r1 = Au,

r2 = (A2 + B)u,

r3 = (A3 + AB + BA)u,

r4 = (A4 + A2B + ABA + BA2 + B2)u.

In general, the jth vector rj in the second-order Krylov sequence defined by a linear
homogeneous recurrence relation of degree 2 with coefficient matrices A and B can
be written as

rj = pj(A,B)u,

where pj(α, β) are polynomials in α and β, defined by the recurrence

pj(α, β) = α · pj−1(α, β) + β · pj−2(α, β)

with p0(α, β) ≡ 1 and p1(α, β) = α.
We now discuss the motivation for the definition of the second-order Krylov sub-

space Gn(A,B;u) in the context of solving the QEP (1.2). Recall that the QEP (1.2)
can be transformed into an equivalent generalized eigenvalue problem (1.3). If one
applies a Krylov subspace technique to (1.3), then an associated Krylov subspace
would naturally be

Kn(H;v) = span{v,Hv,H2v, . . . ,Hn−1v},(2.2)

where v is a starting vector of length 2N , and

H = G−1C =

[
−M−1D −M−1K

I 0

]
.(2.3)

Let A = −M−1D, B = −M−1K, and v = [uT 0]T; then we immediately derive that
the second-order Krylov vectors {rj} of length N defined in (2.1) and the standard
Krylov vectors {Hjv} of length 2N defined in (2.2) are related as the following form:[

rj
rj−1

]
= Hjv for j ≥ 1.(2.4)

In other words, the generalized Krylov sequence {rj} defines the entire standard
Krylov sequence based on H and v. Equation (2.4) indicates that the subspace
Gj(A,B;u) of RN should be able to provide sufficient information to let us directly
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work with the QEP, instead of using the subspace Kn(H;v) of R2N for the linearized
eigenvalue problem (1.3). We will discuss this further in section 4.

We now turn to the question of how to construct an orthonormal basis {qi} of
Gj(A,B;u). Namely,

span{q1,q2, . . . ,qj} = Gj(A,B;u) for j ≥ 1.

The following is a procedure to implicitly apply to the sequence of the second-order
Krylov vectors {rj} to generate an orthonormal basis {q1,q2, . . . ,qj}. Later we will
see that it is an Arnoldi-like procedure. We call it an SOAR (second-order Arnoldi)
procedure.

Algorithm 1. SOAR procedure.
1. q1 = u/‖u‖2

2. p1 = 0
3. for j = 1, 2, . . . , n do
4. r = Aqj + Bpj

5. s = qj

6. for i = 1, 2, . . . , j do
7. tij = qT

i r
8. r := r − qitij
9. s := s − pitij

10. end for
11. tj+1 j = ‖r‖2

12. if tj+1 j = 0, stop
13. qj+1 = r/tj+1 j

14. pj+1 = s/tj+1 j

15. end for

We note that matrices A and B are referenced only via the matrix-vector mul-
tiplications in line 4 of the algorithm above. Therefore, it is ideal for large and
sparse matrices A and B. Sparsity or structures of A and B can be exploited in the
matrix-vector multiplications. This enjoys the same feature as the Arnoldi process
for generating an orthonormal basis of the standard Krylov subspace Kn.

The for-loop in lines 6–10 is an orthogonalization procedure with respect to the
{qi} vectors. The vector sequence {pj} is an auxiliary sequence. In section 3, we
will present a modified version of the algorithm to remove the requirement of explicit
reference of the sequence {pj}. This will reduce the memory requirements by almost
half.

Algorithm 1 stops prematurely when the norm of r computed at line 12 vanishes
at a certain step j. In this case, we encounter either deflation or breakdown. We delay
the discussion of deflation and breakdown till the next section.

We now consider basic relations between quantities generated by the algorithm.
If Qn denotes the N × n matrix with column vectors q1,q2, . . . ,qn, Pn denotes the
N × n matrix with column vectors p1,p2, . . . ,pn, and Tn denotes the n × n upper
Hessenberg matrix with nonzero entries tij as defined in the algorithm, then the
following relations hold:

AQn + BPn = QnTn + qn+1e
T
n tn+1n,(2.5)

Qn = PnTn + pn+1e
T
n tn+1n(2.6)

with the orthonormality of the vector sequence {q1,q2, . . . ,qn,qn+1}. Let T̂n be an

(n + 1) × n upper Hessenberg matrix of the form T̂n = [
Tn

eT
ntn+1 n

]. Then equations
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(2.5) and (2.6) can be rewritten in the compact form[
A B
I 0

] [
Qn

Pn

]
=

[
Qn+1

Pn+1

]
T̂n.(2.7)

This relation assembles the similarity between the SOAR procedure and the well-
known Arnoldi procedure [1]. Let us recall the following Arnoldi procedure for gener-
ating an orthonormal basis {v1,v2, . . . ,vn} of the Krylov subspace Kn(H;v), where
H and v are defined in (2.4).

Algorithm 2. Arnoldi procedure.
1. v1 = v/‖v‖2

2. for j = 1, 2, . . . , n do
3. r = Hvj

4. for i = 1, 2, . . . , j do
5. hij = vT

i r
6. r := r − vihij

7. end for
8. hj+1 j = ‖r‖2

9. if hj+1,j = 0, breakdown
10. vj+1 = r/hj+1 j

11. end for

If Vn denotes the 2N × n matrix with column vectors v1,v2, . . . ,vn and Hn de-
notes the n×n Hessenberg matrix with nonzero entries hij as defined in the algorithm,
then the Arnoldi procedure can be compactly expressed by the equation

HVn = VnHn + vn+1e
T
nhn+1n

or be cast in the form similar to (2.7),[
A B
I 0

]
Vn = Vn+1Ĥn,(2.8)

where Vn+1 =
[
Vn vn+1

]
is a (2N) × (n + 1) orthonormal matrix, and Ĥn =

[
Hn

eT
nhn+1 n

] is a (n + 1) × n upper Hessenberg matrix. By comparing (2.7) and (2.8),

we see that the essential difference between the SOAR procedure and the Arnoldi
procedure is that in SOAR, the nonzero elements tij of the (n+ 1)×n upper Hes-

senberg matrix T̂n are chosen to enforce the orthonormality of the vectors {qj} of
dimension N , whereas in Arnoldi, the nonzero elements hij of (n+ 1)×n upper Hes-

senberg matrix Ĥn are determined to ensure the orthonormality of the vectors {vj}
of dimension 2N . In the next section, we will further exploit the relationship between
SOAR and Arnoldi to derive a revised version of the SOAR procedure, which remedies
the deflation and saves half the memory requirement and floating point operations.

For the rest of this section, we prove that the vector sequence {q1,q2, . . . ,qn}
indeed is an orthonormal basis of the second-order Krylov subspace Gj(A,B;u). First,
we have the following lemma, which reveals the connection between decomposition
characteristics in (2.7) and (2.8) and a related Krylov subspace.

Lemma 2.2. Let A be an arbitrary n× n matrix. Let Vm+1 =
[
Vm vm+1

]
be

an n× (m + 1) rectangular matrix that satisfies

AVm = Vm+1Ĥm
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for an (m + 1) ×m upper Hessenberg matrix Ĥm. Then there is an upper triangular
matrix Rm such that

VmRm =
[
v1 Av1 · · · Am−1v1

]
.(2.9)

Furthermore, if the first m− 1 subdiagonal elements of Ĥm are nonzero, then Rm is
nonsingular and

span{Vm} = Km(A,v1).(2.10)

Proof. We first prove (2.9) by induction on m. When m = 1, (2.9) holds with
R1 = 1. Assume that (2.9) holds for m− 1. Then for m,[

v1 Av1 · · · Am−1v1

]
=

[
v1 A

[
v1 Av1 · · · Am−2v1

] ]
=

[
v1 AVm−1Rm−1

]
=

[
Vme1 VmĤm−1Rm−1

]
= Vm

[
e1 Ĥm−1Rm−1

]
≡ VmRm.

The fact of the upper triangularity of Rm is immediately followed by its definition.
Furthermore, note that the diagonal elements of Rm are 1 and the products of the
first m − 1 subdiagonal elements of Ĥm. Therefore, if these subdiagonal elements
are nonzero, then Rm is nonsingular. Finally, (2.10) is established by (2.9) and the
nonsingularity of Rm.

We note that in Lemma 2.2, the column vectors of Vn span the Krylov subspace
Kn(A,v1) as long as (2.9) is satisfied and Rm is nonsingular. It is still true even
when some of the columns of Vn are zero vectors. Lemma 2.2 can be viewed as a
generalization of the second part of Theorem 1.1 in [21, p. 298]. We will apply this
fact when we discuss the deflation in the SOAR procedure. We now prove that
Algorithm 1 generates an orthonormal basis of the second-order Krylov subspace
Gj(A,B;u).

Theorem 2.3. If tj+1,j �= 0 for j≥ 1 in Algorithm 1, then the vector sequence
{q1,q2, . . . ,qj} forms an orthonormal basis of the second-order Krylov subspace
Gj(A,B;u), i.e.,

span{Qj} = Gj(A,B;u) for j ≥ 1(2.11)

and qT
i qk = 0 if i �= k and qT

i qi = 1 for i, k = 1, 2, . . . , j.
Proof. Equation (2.11) is established by the following sequence of equalities:

Gj(A,B; r0) = span{r0, r1, . . . , rj−1}

= span

{[
I 0

] [ r0 r1 · · · rj−1

0 r0 · · · rj−2

]}
= span

{[
I 0

] [
v1 Hv1 . . . Hj−1v1

]}
by (2.4)

= span

{[
I 0

] [Qj

Pj

]
Rj

}
by (2.7) and Lemma 2.2

= span

{[
I 0

] [Qj

Pj

]}
by the assumption that Rj is nonsingular

= span {Qj} .
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Finally, the orthogonality of the basis vectors {q1,q2, . . . ,qj} is directly obtained
from the orthogonalization inner for-loop (lines 6–10) and the normalization step at
line 13 of the SOAR procedure.

3. An SOAR procedure. As we pointed out in the previous section, Algo-
rithm 1 stops prematurely when the norm of r computed at line 12 vanishes at a
certain step j. There are two possible explanations for this. One is that the vector
sequence {ri} for i = 0, 1, . . . , j−1 is linearly dependent, but the double length vector
sequence {[ rT

i rT
i−1 ]T} is linearly independent. We call this situation deflation. We

will show that with a proper treatment, the SOAR procedure can continue. Another
possible explanation is that both vector sequences {ri} and {[ rT

i rT
i−1 ]T} are linearly

dependent at a certain step j. In this situation, the SOAR procedure terminates. We
call this breakdown.

The Arnoldi procedure (Algorithm 2) terminates when the norm of the vector r
computed at line 9 vanishes at a certain step j. It happens when the vector sequence
{Hiv} = {[ rT

i rT
i−1 ]T} for i = 0, 1, . . . , j − 1 is linearly dependent. This is known as

the breakdown of the Arnoldi procedure.
In this section, we first discuss the deflation and then the breakdown. We will

show the connection of breakdowns between the SOAR and Arnoldi procedures.

3.1. Deflation. We now present the following modified version of Algorithm 1,
which remedies the deflation.

Algorithm 3. SOAR procedure with deflation.
1. q1 = u/‖u‖2

2. p1 = 0
3. for j = 1, 2, . . . , n do
4. r = Aqj + Bpj

5. s = qj

6. for i = 1, 2, . . . , j do
7. tij = qT

i r
8. r := r − qitij
9. s := s − pitij

10. end for
11. tj+1 j = ‖r‖2

12. if tj+1 j = 0
13. if s ∈ span{pi | i : qi = 0, 1 ≤ i ≤ j}
14. breakdown
15 else % deflation
16. reset tj+1 j = 1
17. qj+1 = 0
18. pj+1 = s
19. end if
20. else % normal case
21. qj+1 = r/tj+1 j

22. pj+1 = s/tj+1 j

23. end if
24. end for

We note that in the modified SOAR procedure above, when deflation is detected
(line 15), it simply takes qj+1 = 0 and sets the scaling element tj+1 j to a nonzero
value (line 16). Then the procedure continues.
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Without repeating the discussion in section 2, we state that quantities generated
by Algorithm 3 hold the same relations as Algorithm 1, e.g., (2.7) is still true and
the vector sequence {q0,q1, . . . ,qn−1} still spans the second-order Krylov subspace
Gn(A,B;u), except that some of the q vectors are zero vectors when deflations occur
at the corresponding steps. The set of nonzero q vectors forms an orthonormal basis
of Gn(A,B;u).

3.2. Breakdown. Let us discuss the situation where breakdown occurs. We
have the following theorem.

Theorem 3.1. The SOAR procedure (Algorithm 3) with matrices A and B and
starting vector u breaks down at a certain step j if and only if the Arnoldi procedure
with matrix H and starting vector v breaks down at the same step j.

To prove Theorem 3.1, we need the following lemma.
Lemma 3.2. For a sequence of linearly independent vectors {v1,v2, . . . ,vn}

with partition vi = {[qT
i pT

i ]T}, if there exists a subsequence {qi1 ,qi2 , . . . ,qik}
of the q vectors that are linearly independent and the remaining vectors are zeros,
qik+1

= qik+2
= · · · = qin = 0, then a vector v = {[0 pT ]T} ∈ span{v1,v2, . . . ,vn}

if and only if p ∈ span{pik+1
,pik+2

, . . . ,pin}.
Proof. If v ∈ span{v1,v2, . . . ,vn}, then there exist scalars αi, such that

v =
∑n

i=1 αivi. By the assumption that v = {[0 pT ]T} ∈ span{v1,v2, . . . ,vn} and

some zero vectors in the q vector sequence, we have 0 =
∑n

j=1 αjqj =
∑k

j=1 αijqij .
Since vectors qi1 ,qi2 , . . . ,qik are linearly independent, it yields that αij = 0 for
j = 1, 2, . . . , k. Hence v =

∑n
j=k+1 αijvij , which means that p =

∑n
j=k+1 αijpij or,

equivalently, p ∈ span{pik+1
,pik+2

, . . . ,pin}.
Proof of Theorem 3.1. Let us first consider that the Arnoldi procedure breaks

down at a certain step j. This implies that

dim(Kn(H,v)) = j and Hnv ∈ Kj(H,v) for n ≥ j(3.1)

From (2.7) and Lemma 2.2, we have

span

{[
Qj

Pj

]}
= Kj(H,v).

Since dim(Kj(H,v)) = j, [ Qj

Pj
] is full column rank. By Lemma 2.2 again and (3.1),

we have [
r
s

]
∈ span

{[
Qj

Pj

]}
.(3.2)

We now show that r = 0 (at line 11 of Algorithm 3). Suppose r �= 0. Since rTqi = 0
for i = 1, 2, . . . , j, it implies that

r �∈ span{q1,q2, . . . ,qj},

which indicates that [
r
s

]
�∈ span

{[
Qj

Pj

]}
.

This contradicts (3.2). Therefore r = 0. Thus Algorithm 3 proceeds to execute
line 13. By (3.2) and Lemma 3.2, we have

s ∈ span{pi | i : qi = 0, 1 ≤ i ≤ j}.
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Therefore, Algorithm 3 also breaks down (line 14 of Algorithm 3).
Conversely, if Algorithm 3 breaks down at a certain step j, then[

r
s

]
=

[
0
s

]
∈ span

{[
Qj

Pj

]}
.(3.3)

Note that (2.7) still holds with the choice of tj+1 j = 1. Thus by Lemma 2.2, we have

span

{[
Qj

Pj

]}
= Kj(H,v) and span

{[
Qj+1

Pj+1

]}
= Kj+1(H,v).

On the other hand, by induction, we can show that after j − 1 steps in Algorithm 3,
we have

rank

([
Qj

Pj

])
= j.(3.4)

Combining (3.3) and (3.4), it yields that dim(Kj(H,v)) = j and Kj(H,v) = Kj+1

(H,v). These two conditions ensure that the Arnoldi procedure breaks down at the
same step j.

In the Arnoldi procedure, when breakdown occurs, it indicates that the Krylov
subspace Kj(H,v) is an invariant subspace of H, and the vector sequence
{v1,v2, . . . ,vj} is an orthonormal basis of the subspace. It is regarded as a lucky
breakdown. For the SOAR procedure (Algorithm 3), by (2.7) we know that the col-

umn vectors of the 2N × j matrix [ Qj

Pj
] also span an invariant subspace of H, but it

is not an orthonormal basis.

3.3. An SOAR procedure. Now we further exploit the relations in Algorithm
3 to derive a new version, which avoids the explicit references and updates of the p
vectors at lines 9 and 22. The resulting algorithm reduces memory requirement by
almost half.

First, by (2.6) and noting that p1 = 0, we have

Qn = Pn+1T̂n = Pn+1(:, 2 : n + 1) · T̂n(2 : n + 1, 1 : n).

Then (2.5) can be rewritten as

AQn + BQnSn = QnTn + qn+1e
T
n tn+1n,(3.5)

where Sn is an n× n strictly upper triangular matrix of the form

Sn =

[
0 T̂n(2 : n, 1 : n− 1)−1

0 0

]
.

Equation (3.5) suggests a method for computing vector qj+1 from q1,q2, . . . ,qj . This
leads to the following algorithm, which needs only about a half of the memory and
floating point operations of Algorithm 3.
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Algorithm 4. SOAR procedure with deflation and memory saving.
1. q1 = u/‖u‖2

2. f = 0
3. for j = 1, 2, . . . , n do
4. r = Aqj + Bf
5. for i = 1, 2, . . . , j do
6. tij = qT

i r
7. r := r − qitij
8. end for
9. tj+1 j = ‖r‖2

10. if tj+1 j �= 0,
11. qj+1 := r/tj+1 j

12. f = QjT̂(2 : j + 1, 1 : j)−1ej
13. else
14. reset tj+1 j = 1
15. qj+1 = 0

16. f = QjT̂(2 : j + 1, 1 : j)−1ej
17. save f and check deflation and breakdown
18. end if
19. end for

Note that at line 17 of the algorithm above, if f belongs to the subspace spanned
by previously saved f vectors, then the algorithm encounters breakdown and termi-
nates. Otherwise, there is a deflation at step j; after setting tj+1 j to 1 or any nonzero
constant, the algorithm continues. Those saved f vectors are the pi vectors corre-
sponding to the vector qi = 0 in Algorithm 3. To check whether f is in the subspace
spanned by the previously saved f , we can use a modified Gram–Schmidt procedure
[21]. It is not necessary to use extra storage to save those f vectors. They can be
stored at the columns of Qn where the corresponding qi = 0.

4. A projection method applied directly to the QEP. In this section,
we apply the concept of the second-order Krylov subspace and its orthonormal basis
generated by the SOAR procedure to develop a projection technique to solve the QEP
(1.2). We follow the orthogonal Rayleigh–Ritz approximation procedure to derive a
method which approximates a large-scale QEP by a small-scale QEP.

Following the standard derivation, to apply the Rayleigh–Ritz approximation
technique based on the subspace Gn(A,B;u) with A = −M−1D and B = −M−1K,
we seek an approximate eigenpair (θ, z), where θ ∈ C and z ∈ Gn(A,B;u), by imposing
the following orthogonal condition, also called the Galerkin condition:

(θ2M + θD + K)z ⊥ Gn(A,B;u)

or, equivalently,

vT(θ2M + θD + K)z = 0 for all v ∈ Gn(A,B;u).(4.1)

Since z ∈ Gn(A,B;u), it can be written as

z = Qmg,(4.2)

where the N ×m matrix Qm is an orthonormal basis of Gn(A,B;u) generated by the
SOAR procedure (Algorithm 4), and g is an m vector and m ≤ n. When there are
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deflations, m < n. By (4.1) and (4.2), it yields that θ and g must satisfy the reduced
QEP:

(θ2Mm + θDm + Km)g = 0(4.3)

with

Mm = QT
mMQm, Dm = QT

mDQm, Km = QT
mKQm.(4.4)

The eigenpairs (θ,g) of (4.3) define the Ritz pairs (θ, z). The Ritz pairs are approxi-
mate eigenpairs of the QEP (1.2). The accuracy of the approximate eigenpairs (θ, z)
can be assessed by the norms of the residual vectors (θ2M + θD + K)z.

We note that by explicitly formulating the matrices Mm, Dm, and Km, essential
structures of M, D, and K are preserved. For example, if M is symmetric positive
definite, so is Mm. As a result, essential spectral properties of the QEP will be pre-
served. For example, if the QEP is a gyroscopic dynamical system in which M and
K are symmetric, one of them is positive definite, and D is skew-symmetric, then the
reduced QEP is also a gyroscopic system. It is known that in this case, the eigenval-
ues λ are symmetrically placed with respect to both the real and imaginary axes [10].
Such a spectral property will be preserved in the reduced QEP.

The following algorithm is a high-level description of the Rayleigh–Ritz projection
procedure based on Gn(A,B;u) for solving the QEP (1.2) directly.

Algorithm 5. SOAR method for solving the QEP directly.
1. Run the SOAR procedure (Algorithm 4) with A = −M−1D and B = −M−1K

and a starting vector u to generate an N ×m orthogonal matrix Qm whose
columns span an orthonormal basis of Gn (A,B;u).

2. Compute Mm, Dm, and Km as defined in (4.4).
3. Solve the reduced QEP (4.3) for (θ,g) and obtain the Ritz pairs (θ, z), where

z = Qmg/‖Qmg‖2.
4. Test the accuracy of Ritz pairs (θ, z) as approximate eigenvalues and eigen-

vectors of the QEP (1.2) by the relative norms of residual vectors:

‖(θ2M + θD + K)z‖2

|θ|2‖M‖1 + |θ|‖D‖1 + ‖K‖1
.(4.5)

A few remarks are in order:
• At step 1, the matrix-vector product operations −M−1Du and −M−1Ku for

an arbitrary vector u must be provided to run the SOAR procedure (Algo-
rithm 4). A factorized form of M, such as the LU factorization, should be
made available outside of the first for-loop of Algorithm 4 for computational
efficiency.

• At step 2, the orthonormal basis matrix Qm computed in step 1 is used to ex-
plicitly compute the projection matrices Mn, Dn, and Kn. This can be done
by using matrix-vector product operations Mq, Dq, and Kq for an arbitrary
vector q. This is an overhead comparison of the method based on the Arnoldi
procedure, in which the projection of the matrix is obtained as a by-product
without any additional cost (see Algorithm 6 below). This overhead could
be significant in some applications. However, this is a numerically better
way to use the computed orthonormal basis Qm since we can preserve the
structures of coefficient matrices as we discussed early. Structure preserva-
tion often outweighs the extra cost of floating point operations in the modern
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computing environment. For the numerical examples, presented in the next
section, we observed that this step takes a small fraction of the total work,
due to extreme sparsity of the matrices M, D, and K in practical problems
we encountered. The bottleneck of computational costs is often associated
with the matrix-vector multiplication operations involving M−1 at step 1.

• At step 3, to solve the small QEP (4.3), we transform it to a generalized
eigenvalue problem in the form of (1.3) and then use a dense matrix method,
such as the QZ algorithm [5, 6], to find all eigenvalues and eigenvectors (θ,g)
of the small QEP.

• At step 4, we use the relative residual norms (4.5) as the accuracy assessment
to indicate the backward errors of the approximate eigenpairs (θ, z). The
discussion of forward errors of approximate eigenvalues and eigenvectors is
beyond the scope of this report; the interested reader is referred to [11, 23, 24].

Let us review the basic Arnoldi method for solving the QEP (1.2) based on
linearization (1.3). At this stage of our study, we are concerned only with the funda-
mental properties and behaviors of the SOAR method. It is implemented in a straight-
forward way as outlined in Algorithm 5. Therefore, we will compare the SOAR method
with the following simple implementation of the Arnoldi method for solving the QEP
via linearization.

Algorithm 6. Basic Arnoldi method for linearized QEP.
1. Transform the QEP (1.2) into the equivalent generalized eigenvalue problem

(1.3).
2. Run the Arnoldi procedure (Algorithm 2) with the matrix H = G−1C and the

vector v = [uT 0 ]T to generate an orthonormal basis {v1,v2, . . . ,vn} of the
Krylov subspace Kn(H;v). Let Vn = [v1,v2, . . . ,vn].

3. Solve the reduced eigenvalue problem

(VT
nHVn)t = θt

and obtain the Ritz pairs (θ,y) of the eigenvalue problem of the single matrix
H, where y = Vnt. Note that by (2.8), VT

nHVn = Hn(1 : n, 1 : n) is an
n × n upper Hessenberg matrix returned directly from the Arnoldi procedure
without additional cost.

4. Extract the approximate eigenpairs (θ, z) of the QEP (1.2) and test their ac-
curacy by the residual norms as described in (4.5), where z = y(N + 1 :
2N)/‖y(N + 1 : 2N)‖2.

Finally, we discuss a hybrid method of the SOAR method (Algorithm 5) and the
Arnoldi method (Algorithm 6) to solve the QEP directly. This method provides a
good verification for the SOAR method. Let Kn denote the matrix of the explicit
Krylov basis of Kn(H,v):

Kn = [ v Hv H2v · · · Hn−1v ].

Then it is well known (for example, see [21, section 5.1]) that Vn, generated by the
Arnoldi procedure with H and v, is the Q-factor of the QR factorization of Kn:

Kn = VnRn.

By (2.4), the equation above can be written in the form[
r0 r1 · · · rn−1

0 r0 · · · rn−2

]
=

[
V

(1)
n

V
(2)
n

]
Rn,
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where Vn is partitioned into a 2 × 1 block matrix with N × n subblocks V
(1)
n and

V
(2)
n . From the first N rows of the previous equation, we have[

r0 r1 · · · rn−1

]
= V(1)

n Rn.(4.6)

Hence, we have

Gn(A,B;u) = span{V(1)
n }.

Therefore, an alternative way to generate an orthonormal basis of Gn(A,B;u) is to
first run the Arnoldi procedure with 2N × 2N matrix H and starting vector

v = [ uT 0]T, then orthonormalize the first block V
(1)
n of Vn to obtain an orthonormal

basis of the projection subspace Gn(A,B;u). This method provides a good verification
for the SOAR method, although it is expensive in terms of memory and computa-
tional requirements. For numerical results presented in the next section, we observed
that the convergence rate and behaviors of this method and the SOAR method are
essentially the same.

5. Numerical examples. In this section, we present numerical examples to
demonstrate the promises of the SOAR method (Algorithm 5) for solving the QEP
(1.2). Following the discussion presented in the previous sections, we focus on the il-
lustration of the fundamental properties of the SOAR method in terms of the following
two aspects:

1. The convergence behaviors of the SOAR method applied directly to the QEP
are generally comparable to the Arnoldi method applied to the linearized
QEP. Specifically,
(a) eigenvalues with the largest magnitude converge first;
(b) the convergence rate of the SOAR method is at least as fast as the

Arnoldi method.
2. The SOAR method preserves the essential structures of the QEP, such as

symmetry and positive definiteness in coefficient matrices M, D, and K. As
a result, we should expect the preservation of spectral properties of the large
QEP (1.2) in the reduced QEP (4.3).

In the following examples, the starting vector u of the SOAR method is chosen as
a vector with all components equal to 1. v = [uT 0]T is used as the starting vector of
the Arnoldi-based methods (Algorithms 6 and 7). The so-called exact eigenvalues of
the QEP are computed by the dense method, namely, the QZ method for computing
all eigenvalues and eigenvectors of the generalized eigenvalue problem (1.3). The
deflation and breakdown thresholds are set to be the same, namely, 10−10. In fact,
with this threshold, deflation and breakdown were detected only in Example 1.

Example 1. This example shows the deflation and breakdown phenomena in the
SOAR procedure (Algorithm 4). The matrices M, D, and K are from the modeling
of a simple vibrating spring-mass system with damping in linear connection [5, 9]. M
and D are diagonal matrices, and K is tridiagonal. For this particular run, we choose
50 × 50 matrices, where M = 0.1 × I, D = I, and

K =

⎡⎢⎢⎢⎢⎢⎣
0.2 −0.1

−0.1 0.2 −0.1
. . .

. . .
. . .

−0.1 0.2 −0.1
−0.1 0.1

⎤⎥⎥⎥⎥⎥⎦ .
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Fig. 5.1. Random nonsymmetric QEP; exact and approximate eigenvalues (left), and relative
residual norms (right) (Example 2).

This example illustrates the following two main issues:
1. Deflation occurs at every even step of the SOAR procedure, i.e., qj = 0 for

all even number j.
2. Suppose the starting vector u is chosen as a linear combination of κ eigen-

vectors of the matrix K corresponding to the κ eigenvalues closest to 0. For
κ= 1, 2, 3, both the SOAR procedure (Algorithm 4) and the Arnoldi pro-
cedure (Algorithm 2) break down at steps j = 2κ. However, for large κ,
breakdown has not been detected due to numerical noises.

Example 2. The purpose of this example is to show that the convergence be-
haviors of the SOAR and Arnoldi methods are generally the same for a “general”
QEP. Let M, D, and K be 200 × 200 random nonsymmetric matrices. Elements of
these matrices are chosen from a normal distribution with mean zero, variance one,
and standard deviation one. The left plot of Figure 5.1 shows the partial approx-
imate eigenvalues computed by two methods with the reduced dimension n = 20.
The right plot of Figure 5.1 shows the relative residual norms. This example shows
that the convergence behaviors of the two methods are essentially the same, as we
expected.

Example 3. As in Example 2, this example is to show that the convergence
rates of the SOAR and Arnoldi methods are comparable. However, only the SOAR
method preserves the essential properties of the QEP. Specifically, M, D, and K
are chosen as 200 × 200 random matrices with the elements chosen from a normal
distribution with mean zero, variance one, and standard deviation one. Furthermore,
M is symmetric positive definite, D is skew-symmetric, and K is symmetric negative
definite, as one encounters in a gyroscopic dynamical system. The gyroscopic system
is a widely studied system. There are many interesting properties associated with
such a system. For example, it is known that the distribution of the eigenvalues of the
system in the complex plane is symmetric with respect to both the real and imaginary
axes. The left plot of Figure 5.2 shows the approximate eigenvalues computed by two
algorithms with n= 20. The right plot of Figure 5.2 shows the relative residual norms.
This example shows that the SOAR method (Algorithm 5) preserves the gyroscopic
spectral property. Furthermore, the residual norms indicate that the SOAR method
has a slightly better convergence rate.



SECOND-ORDER ARNOLDI METHOD 655

–150 –100 –50 0 50 100 150
–6

–4

–2

0

2

4

6

real part

im
ag

in
ar

y 
pa

rt

Approximate Eigenvalues

Exact
SOAR (Alg.5)
Arnoldi (Alg.6)

0 5 10 15 20 25 30 35 40
10

–20

10
– 15

10
– 10

10
– 5

10
0

Relative Residual Norms of Approximate Eigenpairs

eigenvalue index

re
si

du
al

 n
or

m

SOAR (Alg.5)
Arnoldi (Alg.6)

Fig. 5.2. Random gyroscopic QEP; exact and approximate eigenvalues (left) and relative resid-
ual norms (right) (Example 3).

–300 –200 –100 0 100 200 300 400 500
–5000

–4000

–3000

–2000

–1000

0

1000

2000

3000

4000

real part

im
ag

in
ar

y 
pa

rt

Approximate Eigenvalues

Exact
SOAR (Alg.5)
Arnoldi (Alg.6)

Fig. 5.3. Acoustic QEP; exact and approximate eigenvalues (Example 4).

Example 4. This is a QEP encountered in modeling the propagation of sound
waves in a room in which one wall was made of a sound-absorbing material. This is
a scaled-down version of the test problem as presented in [18]. The matrices M, D,
and K are of order 1331. Furthermore, M and K are real symmetric positive definite,
and D is complex non-Hermitian. The largest magnitude eigenvalue computed by the
standard dense matrix method (for all eigenvalues) and by the SOAR and Arnoldi
methods with n = 30 are

λmax = −1.952652244810165 × 102 − 4.314162072894026 × 103i (“exact”),

λS
max = −1.952652244809287 × 102 − 4.314162072894454 × 103i (SOAR),

λA
max = −1.952652250694968 × 102 − 4.314162072541710 × 103i (Arnoldi).

We observed that both the SOAR and Arnoldi methods converge to the largest magni-
tude eigenvalue first. The relative errors are |λS

max −λmax|/|λmax| = 2.64× 10−12 and
|λA

max − λmax|/|λmax| = 1.95 × 10−8, respectively. The largest magnitude eigenvalues
produced by the SOAR method (Algorithm 5) are more accurate than the Arnoldi
method (Algorithm 6). Furthermore, Figure 5.3 shows that all eigenvalues of the
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Fig. 5.4. Scaled relative residual norms of Example 5.

original QEP are distributed in the left half of the complex plane, known as stable
eigenvalues. The reduced QEP by the SOAR method inherits such a property in the
process of approximation. On the other hand, the linearized QEP used in the Arnoldi
method loses this important property.

Example 5. This is a QEP problem from the NASTRAN simulation of a fluid-
structure coupling cylinder model with both acoustic elements and structure elements.
The order of the matrices M, D, and K is N = 3600. The following table is a profile
of other properties of the matrix triplet. The last column is an estimated lower bound
for the 1-norm condition number using MATLAB’s condest function.

Nonzeros Symmetry Pos.def. 1-norm Cond.est

M 5521 yes no 36.00 Inf
D 19570 yes no 1.025 Inf
K 59062 yes no 2.19 × 1012 8.42 × 1016

We solved the shift-and-invert QEP

(µ2M̂ + µD̂ + K̂)x = 0,(5.1)

where µ = 1/(λ − σ), M̂ = σ2M + σD + K, D̂ = D + 2σM, and K̂ = M. The
largest (in modulus) eigenvalue µ approximates the eigenvalues λ of the original QEP
closest to the shift σ. These eigenvalues are given by σ+1/µ. With the shift σ = 104,

a lower bound for the 1-norm condition number of the matrix M̂ is 4.09 × 1013.
Figure 5.4 reports the scaled relative residual norms of the two methods with the
subspace dimension n = 100. The scaled relative residual norm for an approximate
eigenpair (θ, z) is defined by

‖(θ2M + θD + K)z‖2

ε (|θ|2‖M‖1 + |θ|‖D‖1 + ‖K‖1)
,

where ε is the machine precision, which is at the order of 10−16 in double precision
arithmetic. Since the norm of the matrix M is at the order of 1012, it is better to
show the scaled relative residual norm. To machine precision backward accuracy, the
scaled relative residual norm should be about one.

Example 6. This final example arises from a finite element analysis of dissipative
acoustics [4, 24]. Our matrix data for the associated algebraic quadratic eigenvalue
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Fig. 5.5. Relative residual norms of Example 6.

problem are from [7]. The dimension of the QEP is N = 9168. Matrix M is sym-
metric positive definite, and matrices D and K are symmetric positive semidefinite.
As described in [7], to find the eigenvalues of interest, we solve the shift-and-invert
QEP (5.1) with the shift σ = −253. Figure 5.5 shows the relative residual norms
for the approximated eigenpairs computed by the SOAR and Arnoldi methods with
n = 50. We observe that SOAR converges faster than Arnoldi. By the Krylov-type
subspace method proposed in [7], it is reported that with the number of iterations
n = 250 to 300, three approximated eigenpairs converge with relative residual norms
less than 10−12. By contrast, the SOAR method delivers twice as many approximated
eigenpairs with the same accuracy but only uses one-fifth of the number of iterations.

6. Discussion and future work. The primary purpose of this paper is to
present the basic concept of the second-order Krylov subspace Gn(A,B;u) and its
straightforward application for solving a large-scale QEP. There are many issues to
examine. Foremost, one can ask whether the subspace Gn(A,B;u) is a better projec-
tion subspace to work with for an iterative solution of the QEP. A partial answer is
based on the following observation. Let A = −M−1D and B = −M−1K; then the
QEP (1.2) is equivalent to the QEP

(λ2I − λA − B)x = 0,(6.1)

which can be written as the linear eigenvalue problem[
A B
I 0

] [
λx
x

]
= λ

[
λx
x

]
.(6.2)

In the Arnoldi basis Vn of the Krylov subspace Kn, the coefficient matrix of (6.2) is
represented by an upper Hessenberg matrix of order n,

VT
n

[
A B
I 0

]
Vn = Hn.(6.3)

On the other hand, using an orthonormal basis Qn of the second-order Krylov sub-
space Gn(A,B;u), the coefficient matrix of (6.2) is represented by a 2×2 block matrix
of order 2n, [

QT
n 0

0 QT
n

] [
A B
I 0

] [
Qn 0
0 Qn

]
=

[
An Bn

In 0

]
.(6.4)
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It can be shown that the subspace spanned by the columns of Vn can be embedded into
the subspace spanned by the columns of the 2×2 block diagonal matrix diag(Qn,Qn),
namely,

span{Vn} ⊂ span

{[
Qn 0
0 Qn

]}
.

Therefore, the 2n × 2n block matrix in (6.4) should deliver at least as many good
approximations of eigenpairs as the n× n Hessenberg matrix Hn does.

We note that the explicit triangular inversion in the SOAR procedure (Algorithm
4) brings the potential numerical instability. Many elaborate and proven techniques
for robust and efficient implementation of Krylov subspace techniques developed over
the years could be considered for the second-order Krylov subspace Gn(A,B;u). The
other subjects of further study include maintaining the orthogonality in the presence
of finite precision arithmetic and a restarting strategy for solving the QEP by the
SOAR method.

Krylov subspaces have an important characterization in terms of univariate ma-
trix polynomials. Convergence theory of a Krylov subspace–based method has been
established based on the theory of univariate polynomials and the distribution of
eigenvalues of the underlying matrix. In section 2, we showed the connection between
the second-order Krylov subspace Gn(A,B;u) and the bivariate polynomials pj(α, β).
It is unclear whether it can be used to develop a convergence theory which is directly
based on the distribution of the matrices A and B.

A closely related problem to the central theme of this paper is that of model-order
reduction of a second-order dynamical system. The problem is about how to produce
a reduced-order system of the same second-order form. One pioneering work is due
to Su and Craig [22] back to 1991. In recent years, this approach has been repeatedly
applied, studied, and improved; for example, see [2, 14, 19, 20]. In particular, the
dissertation work of Slone [19] has essentially extended Su and Craig’s approach to
the model reduction of high-order dynamical systems but is based the popular AWE
(asymptotic waveform evaluation) approach as widely known in interconnect analysis
of integrated circuits and computational electromagnetics. In a forthcoming work,
we will examine the application of the SOAR method for the model reduction of a
second-order dynamical system and its connections to those previous works.
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