
Electronic Transactions on Numerical Analysis.
Volume 7, 1998, pp. 1-17.
Copyright  1998, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

ERROR ESTIMATION OF THE PAD É APPROXIMATION OF TRANSFER
FUNCTIONS VIA THE LANCZOS PROCESS �

ZHAOJUN BAIy AND QIANG YEz

Abstract. Krylov subspace based moment matching algorithms, such as PVL (Pad´e approximation Via the
Lanczos process), have emerged as popular tools for efficient analyses of the impulse response in a large linear
circuit. In this work, a new derivation of the PVL algorithm is presented from the matrix point of view. This
approach simplifies the mathematical theory and derivation of the algorithm. Moreover, an explicit formulation of
the approximation error of the PVL algorithm is given. With this error expression, one may implement the PVL
algorithm that adaptively determines the number of Lanczos steps required to satisfy a prescribed error tolerance. A
number of implementation issues of the PVL algorithm and its error estimation are also addressed in this paper. A
generalization to a multiple-input-multiple-output circuit system via a block Lanczos process is also given.
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1. Introduction. In early 1990s, the AWE (Asymptotic Waveform Evaluation) algo-
rithm [25] based on Pad´e approximations was the method of choice for efficient analyses of
large linear systems. Its success in tackling real-world problems attracted signifigant inter-
est and spawned a substantial amount of related research and applications [6]. However, the
AWE algorithm suffers from a number of fundamental numerical limitations for high order
approximation. In the recent work of Feldman and Freund [10], a new efficient and nu-
merically stable algorithm, called the Pad´e approximation via the Lanczos process (PVL), is
proposed which produces more accurate results with higher-order approximations compared
with AWE and its derivatives. In [12], Gallivan, Grimme and Van Dooren also propose to use
the Lanczos process to implicitly construct the Pad´e approximation in the AWE technique.

The idea of the Pad´e approximation using the Lanczos process can be traced back to a
number of fundamental papers in the numerical analysis community from 1950’s to 1970’s.
In particular, in the 1970’s, Gragg was the first to use the Lanczos process to interpret the
Padé approximation and related continued fraction algorithms [15]. This work was further
developed in [16]. This connection was also discussed in [18]. In [22], a general mathematical
framework for the model reduction of a transfer function based on any tridiagonalization
process, which includes the Lanczos process, was established.

However, most discussions in the literature are concerned with the order of approxima-
tion for the Pad´e approximation of a transfer function. It is important in engineering applica-
tions to have an explicit formulation on the approximation error of the transfer function, [6].
Without such error estimation, it is difficult to determine the order of approximation required
(or a stopping criterion in the Lanczos process) to achieve a desired accuracy in practical
applications of the moment matching AWE or the PVL techniques.

In [20, 17], the authors derive expressions for the error in terms of residuals of the associ-
ated linear systems involved in the transfer function. These general expressions do not partic-
ularly exploit the Lanczos method used to derive the PVL approximation. As results, intrinsic
properties associated with Pad´e approximation and the convergence of the PVL method may
not be revealed. In this work, we present a new derivation of the PVL algorithm from a ma-
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trix point of view. With this approach, the mathematical derivation of the Pad´e approximation
used in the AWE and PVL techniques is significantly simplified. Moreover, the approxima-
tion error of the Pad´e approximation of the transfer function is explicitly given. In contrast to
the work of [20, 17], our approximation error expression transfers their formal linear system
residual based error expressions into a detailed and essentially computable expression which
explicitly reveals convergence properties of the PVL method. With this error expression, it
is possible to implement the PVL algorithm that adaptively determines the number of itera-
tive steps in the Lanczos process required in order to reduce the error to satisfy a prescribe
tolerance value. Furthermore, we have also had a further understanding of why the PVL al-
gorithm will work for a large range of frequency by increasing order of the approximation.
A number of implementation issues in the implementation of the PVL algorithm and its error
estimation are also addressed in this current work. Another advantage of this matrix approach
is its straightforward generalization to a multiple-input-multiple-output circuit system via the
block Lanczos process, which will also be given.

In Section 2, we outline the Lanczos process and its governing equations. We will also
recall some basic properties associated with a tridiagonal matrix. In Section 3, we present
a straightforward derivation of the PVL algorithm and its error estimation for linear circuit
systems with single input and single output. Implementation issues of the PVL algorithm and
error estimation are discussed in Section 4. Numerical results are presented in section 5 to
demonstrate the effectiveness of the error bound. Section 6 is devoted to a generalization of
the PVL algorithm and the error bound for multiple input and multiple output linear circuit
systems.

2. Lanczos Process.Given anN � N matrixA and initial vectorsp1; q1 2 C
N with

pH1 q1 = 1, the Lanczos process is embodied by the following three-term recurrences

bj+1p
H
j+1 = p̂Hj+1 = pHj A� ajp

H
j � cjp

H
j�1;(2.1)

qj+1cj+1 = q̂j+1 = Aqj � qjaj � qj�1bj ;(2.2)

for j = 1; 2; : : : ; k with p0 = q0 = 0. If we let

Pk = [ p1; p2; : : : ; pk ]; Qk = [ q1; q2; : : : ; qk ]

and

Tk =

2
66664

a1 b2

c2 a2
...

...
... bk
ck ak

3
77775 ;(2.3)

then the matrix forms of the three-term vector recurrences (2.1) and (2.2) are

AHPk = PkT
H
k + [ 0 0 � � � 0 p̂k+1 ];(2.4)

AQk = QkTk + [ 0 0 � � � 0 q̂k+1 ]:(2.5)

Furthermore, the computed Lanczos vectorsfpjg and fqjg satisfy thebi-orthonormality
property

PH
k Qk = Ik(2.6)

andPH
k q̂k+1 = 0 andp̂Hk+1Qk = 0. Therefore we have

PH
k AQk = Tk:(2.7)
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There is also freedom to normalize either the left or right Lanczos vectors and so we assume
kpjk = 1.

An alternative scaling scheme can also be used to normalize all Lanczos vectorsfpjg
andfqjg, wherePH

k Qk = 
k, where
k is ak�k diagonal matrix [11, 22]. It can be shown
that these two scaling schemes are similar under diagonal transformation [3].

The Lanczos process can break down prematurely, namely, when a division by zero
occurs. There are several methods available to deal with this problem [3, 11, 24, 30]. We
point out that simply restarting the algorithm with different initial vectors is not an option in
this application because the left and right initial vectors are fixed by the vectors that define
the input and output relation.

Assume that the Lanczos process can be carried out to stepN (the last step). (If break
down occurs and one of the break down recovery schemes must be used,TN below will not
be tridiagonal but similar properties still hold.) ThenPN andQN areN �N square matrices
andPH

N QN = IN . Therefore,

Q�1N AQN = TN ;(2.8)

whereTN is anN�N tridiagonal matrix. Clearly,Tk is the leadingk�k principal submatrix
of TN for anyk � N .

Before we discuss applications of the Lanczos process to the approximation of transfer
functions, we first present the following properties associated with the tridiagonal structure
of TN . The lemma below was derived in [29, Lemma 3.1 and Theorem 3.3] to analyze
convergence of the Lanczos algorithm for eigenvalue computation.

LEMMA 2.1. For any0 � j � 2k � 1,

eH1 T
j
Ne1 = eH1 T

j
ke1

and forj = 2k,

eH1 T
2k
N e1 = eH1 T

2k
k e1 + b2b3 � � � bkbk+1 � ck+1ck � � � c3c2:

Furthermore,

eH1 T
j
kek =

�
0; 0 � j < k � 1
b2b3 � � � bk; j = k � 1

and

eHk T
j
ke1 =

�
0; 0 � j < k � 1
ck � � � c3c2; j = k � 1;

here and hereafter,ej denotes the standardjth coordinate vector, i.e., a vector with all zeros
except for thejth component which is1. The dimension ofej will conform with other vectors
and matrices involved.

3. Approximation of Transfer Functions and Error Estimation. In this section, we
present a derivation of using the Lanczos process for the approximation of the transfer func-
tion of a linear system with single input and single output. The resulting method is essentially
the same as the PVL algorithm of Feldman and Freund [10], which is also theoretically equiv-
alent to the AWE (moment matching) method. The present derivation is straightforward and,
more importantly, it provides an error estimation of the PVL approximation.
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Consider the following state space formulation of a single input and single output linear
system

C _x(t) = �Gx(t) + b u(t);(3.1)

y(t) = lHx(t) + d u(t);(3.2)

wherex(t) 2 RN is the state vector,u(t) 2 R is the input andy 2 R is the output of
interest. In the electronic circuits applications,x(t) represents the circuit variables at time
t, and the termsb u(t) andd u(t) represent excitation from independent sources.N � N
matricesG andC represent the contribution of memoryless elements (such as resistors) and
memory elements (such as capacitors and inductors), respectively.l 2 RN . For the sake of
simplicity, we can assume the initial conditionx(0) = 0.

The standard way of relating the input and output signals is to use a transfer function (or
impulse response in the time domain) of the linear circuit. Applying the Laplace transform to
equations (3.1) and (3.2), we obtain

sCX(s) = �GX(s) + b U(s);(3.3)

Y (s) = lHX(s) + dU(s);(3.4)

whereX(s); Y (s) andU(s) are the Laplace transforms ofx(t); y(t) andu(t), respectively.
Then the transfer function of the linear system is the following rational function

H(s) =
Y (s)

U(s)
= lH(sC +G)�1b+ d:(3.5)

To determine the impulse-response in the circuit analysis and other applications, it is im-
portant to compute the transfer function over a wide range of the frequency parameters.
Direct computations ofH(s) becomes inefficient or even prohibitive for a large scale system,
namely, when the orderN of the matricesC andG is large.

To computeH(s), we follow [10] and expandH(s) about some points0, i.e., write
s = s0 + �. Then

H(s0 + �) = lH(I � �A)�1r + d;

where

A = �(s0C +G)�1C and r = (s0C +G)�1b:

Since the crucial computation ofH(s0 + �) lies in the first part, we can assume without loss
of generality thatd = 0.

Let

l = p1b1 and r = q1c1

with pH1 q1 = 1. ThenlHr = b1c1 and

H(s0 + �) = (lHr) � pH1 (I � �A)�1q1:

Applyingk steps of the Lanczos process with the tripletfA; p1; q1g, we obtain the equa-
tions (2.4) and (2.5). Then a reduced-order transfer function

Hk(s0 + �) = (lHr) � eH1 (I � �Tk)
�1e1(3.6)
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can be defined as an approximation ofH(s0 + �). Indeed using the Neumann series expan-
sion, we have

Hk(s0 + �) = (lHr) �
1X
j=0

�jeH1 T
j
ke1

provided thatj�j < 1=�(Tk), where�(M) denotes the spectral radius of a matrixM , and by
(2.8)

H(s0 + �) = (lHr) � pH1 (I � �QNTNQ
�1
N )�1q1

= (lHr) � pH1 QN (I � �TN )
�1Q�1N q1

= (lHr) � eH1 (I � �TN )
�1e1

= (lHr) �
1X
j=0

�jeH1 T
j
Ne1;

provided thatj�j < 1=�(A), where we have also used the factspH1 QN = eH1 andPH
N q1 = e1.

Thus by Lemma 1 in Section 2,

H(s0 + �)�Hk(s0 + �) = (lHr) �
1X

j=2k

�j(eH1 T
j
Ne1 � eH1 T

j
ke1)

= (lHr) � �2k � b2b3 � � � bkbk+1 � c2c3 � � � ckck+1 +O(�2k+1):

Therefore, the approximationHk(s0+�) has the order2k of � that defines the Pad´e approx-
imation of the transfer function (or AWE reduction method of moments matching up to the
order of2k � 1 as it would be called in the interconnect analysis community). The coeffi-
cient of the leading�2k term of the approximation is given explicitly. But note that since the
frequency parameter� of interest may be large, the leading term generally does not indicate
the correct order of approximation in that case. Fortunately, the following theorem gives an
explicit expression of the approximation error.

THEOREM 3.1. If I � �A andI � �Tk are invertible, then

jH(s0 + �)�Hk(s0 + �)j
= jlHrj j�2�1k(�)�k1(�)j jp̂Hk+1(I � �A)�1 q̂k+1j(3.7)

= j�j2kjlHrj jb2b3 � � � bkc2c3 � � � ckjjdet(I � �Tk)2j jp̂Hk+1(I � �A)�1q̂k+1j(3.8)

where

�1k(�) = eH1 (I � �Tk)
�1ek and �k1(�) = eHk (I � �Tk)

�1e1;

i.e., they are the(1; k) and (k; 1) entries of the inverse of the tridiagonal matrixI � �Tk.
Furthermore, forj�j < 1=kAk, wherek � k can be any induced matrix norm, we have

jH(s0 + �)�Hk(s0 + �)j � jlHrj j�2�1k(�)�k1(�)j kp̂k+1k kq̂k+1k
1� j�j kAk :(3.9)

Proof. From (2.4) and (2.5), it is easy to see that

(I � �Tk)
�1PH

k = PH
k (I � �A)�1 � �(I � �Tk)

�1ekp̂
H
k+1(I � �A)�1(3.10)
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and

Qk(I � �Tk)
�1 = (I � �A)�1Qk � �(I � �A)�1q̂k+1e

H
k (I � �Tk)

�1:(3.11)

Multiplying the equation (3.11) on the left bypH1 and on the right bye1, we have

eH1 (I � �Tk)
�1e1 = pH1 (I � �A)�1q1 � �pH1 (I � �A)�1q̂k+1e

H
k (I � �Tk)

�1e1;

where we have used the fact thatpH1 Qk = eH1 . Multiplying the equation (3.10) on the left by
eH1 and on the right bŷqk+1, we have

0 = pH1 (I � �A)�1q̂k+1 � �eH1 (I � �Tk)
�1ekp̂

H
k+1(I � �A)�1q̂k+1;

where we used the factPH
k q̂k+1 = 0. Combining the above two equations, we obtain

H(s0+�)�Hk(s0+�) = (lHr)�2eH1 (I��Tk)�1ekp̂Hk+1(I��A)�1 q̂k+1eHk (I��Tk)�1e1:

Note that the inverse matrix ofI � �Tk can be expressed as

(I � �Tk)
�1 =

adj(I � �Tk)

det(I � �Tk)
;

whereadj(I � �Tk) stands for the classical adjoint matrix made up of(k � 1) � (k � 1)
cofactors ofI � �Tk. Thus, we have

eHk (I � �Tk)
�1e1 =

�k�1(c2c3 � � � ck)
det(I � �Tk)

;

and

eH1 (I � �Tk)
�1ek =

�k�1(b2b3 � � � bk)
det(I � �Tk)

:

Therefore

H(s0 + �)�Hk(s0 + �) = �2k(lHr)
b2b3 � � � bkc2c3 � � � ck

det(I � �Tk)2
p̂Hk+1(I � �A)�1q̂k+1:

This completes the proof of (3.7) and (3.8). Finally, (3.9) is proved by applying the Cauchy-
Schwarz inequality

jp̂Hk+1(I � �A)�1q̂k+1j � kp̂Hk+1k k(I � �A)�1k kq̂k+1k

and the simple inequality

k(I � �A)�1k � 1

1� j�j kAk(3.12)

provided thatj�j < 1=kAk.
Note that in Theorem 5.1 of Grimme [17], an error expression is given in terms of two

residual vectors of a general Rational Krylov-subspace-based approximation of transfer func-
tion. Since these residuals can be formulated in terms of the Lanczos vectors for the PVL
method, a similar error expression of (3.7) can also be derived based on Theorem 5.1 of [17].

As pointed out in [17], it is important to monitor the trends in the residual behavior ass
andk vary. Direct attempting to gauge these trends is very expensive in practice. Fortunately,
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for the general Rational Krylov algorithm, the residual expression can be simplified [17,
Lemma 5.1]. For the PVL algorithm we are concerned with, our bound (3.8) shows that
there are two factors in the modeling error:j�2�1k(�)�k1(�)j andjp̂Hk+1(I � �A)�1q̂k+1j.
As shown in (3.8), the quantityj�2�1k(�)�k1(�)j is of order�2k. Numerical experiments
indicate that the termsj�1k(�)j andj�k1(�)j decrease steadyly as the number of Lanczos it-
erations increases while the values of the termjp̂Hk+1(I � �A)�1q̂k+1j essentially remain on
the same order of magnitude near convergence.j�1k(�)j andj�k1(�)j are the primary con-
tributors to the convergence of the PVL approximation. This phenomenon can be explained
by the following theorem. Note that it is also related to the discussion on decay rate of the
elements of the inverse of a tridiagonal matrix, see [8, 21].

THEOREM 3.2. If I � �Tk is invertible, then

j�k1(�)j
keHk (I � �Tk)�1k2

�
p
N �k

where

�k = min
h2�k�1;h(0)=1

kh(I � �A)q1k2

and�k denotes the set of all polynomials of degreek. A similar inequality holds forj�1k(�)j.
Proof. For any polynomialh 2 �k�1 with h(0) = 1, we writeh(x) = 1 + xg(x) with

g 2 �k�2. Thus using Lemma 1 again, we have

j�k1(�)j = jeHk (I � �Tk)
�1e1j

= jeHk
�
(I � �Tk)

�1 + g(I � �Tk)
�
e1j

= jeHk (I � �Tk)
�1h(I � �Tk)e1j

� keHk (I � �Tk)
�1k2kh(I � �Tk)e1k2

= keHk (I � �Tk)
�1k2kh(I � �TN)e1k2

= keHk (I � �Tk)
�1k2kPH

N h(I � �A)QNe1k2
� keHk (I � �Tk)

�1k2kPNk2kh(I � �A)q1k2:
With the normalizationkpjk2 = 1, kPNk2 �

p
N . This proves the theorem.

The theorem shows thatj�k1(�)j, relative to the absolute values of other entries in the
kth row of (I � �Tk)

�1, is bounded by�k, which decreases as the order of approximation
k increases. However, the decreasing rate of�k depends on the spectral distribution ofA.
This has been widely studied in the convergence theory of Krylov subspace based algorithms
(see [27], for example).

Finally, we show that under certain assumption, the termj�2�1k(�)�k1(�)j is a mono-
tonic function ofj�j. Therefore, for a certain range of� of interest, we only need to compute
the bound for the value of� at the extremal point of the interested range. Specially, if we are
interested in� with � = j�jei� for a fixed� (e.g. the upper pure imaginary axis if� = �=2),
then from Theorem 1,

j�2�1k(�)�k1(�)j = j�j2kjb2b3 � � � bkc2c3 � � � ckj
jdet(I � �Tk)2j

=
jb2b3 � � � bkc2c3 � � � ckj

j(j�j�1 � ei��1)j2 � � � j(j�j�1 � ei��k)j2

=
jb2b3 � � � bkc2c3 � � � ckj

[(j�j�1 � �1)2 + �21 ] � � � [(j�j�1 � �k)2 + �2k ]
;
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where�j (for 1 � j � k) are the eigenvalues ofTk and we have denotedei��j = �j + i�j .
It is easy to see from the last expression thatj�2�1k(�)�k1(�)j is monotonic increasing inj�j
in the range0 � j�j � j�0j < 1=kTkk for a fixed�0 = j�0jei�. Thus for all� in that range,
the bound need only be computed at one point�0.

4. Comments on Implementation. In this section, we discuss some implementation
details for the PVL algorithm with error estimation.

A. Estimation of kAk: The norm used in Theorem 1 can be any of the operator induced
norms, e.g. the 1-norm or the1-norm. The 1-norm or1-norm of the matrix

A = �(s0C +G)�1C

can be easily estimated using just the operations of matrix-vector productsAz andAHz,
which are the same operations used during the implementation of Lanczos process (see Sec-
tion 2). A detailed description of the algorithm can be found in [19]. An implementation is
provided in LAPACK [2].

B. Computing eT1 (I � �Tk)
�1e1, eT1 (I � �Tk)

�1ek and eTk (I � �Tk)
�1e1: These values

are needed in computing the values of the reduced-order transfer functionHk(s0 + �) and
the error bound (3.9). A common practice is to first compute the eigendecomposition ofTk:

Tk = Sk�kS
�1
k = Skdiag(�1; �2; : : : ; �k)S

�1
k

and set

f = SHk e1; g = S�1k e1:

Then we obtain the so-called poles and residues representation of the reduced-order transfer
function

Hk(s0 + �) = (lHr) � eH1 (I � �Tk)
�1e1

=

kX
j=1

lHr � fjgj
1� ��j

= �1 +

kX
j=1;�j 6=0

�lHr � fjgj=�j
� � 1=�j

;

wherefj andgj are the components of the vectorsf andg and where the term�1 may result
if one of the eigenvalues ofTk is zero. This form is also suitable for computing the inverse
Laplace transform.

Similarly, the quantities�1k(�) = eT1 (I � �Tk)
�1ek and�k1(�) = eTk (I � �Tk)

�1ek
used in the error estimation can also be easily computed using the eigen-decomposition of
Tk. However, we point out that all of these quantities are just the(1; 1), (1; k) (k; 1) elements
of the inverse of the tridiagonal matrixI � �Tk. They can be computed incrementally in the
Lanczos process with very few additional operations. References [21, 13, 4] give more details
(see also Theorem 3 in section 6.2).

It should also be pointed out that if some eigenvalues or eigenvectors ofTk are ill-
conditioned, the computation via the eigendecomposition may be numerically unstable. In
such a case, a direct computation (solving a linear system ofTk for each frequency value)
might be preferred.
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C. Balancing in computing the transfer function: The entries of the matrix

A = �(s0C +G)�1C

(andC andG) could be poorly scaled because of physical units involved. A poorly scaled
matrix could cause numerical difficulty in the implementation of Lanczos process. In ad-
dition, a large norm of the matrixA could limit the applicability of the error bound in the
desired range of frequency. Therefore, a procedure forbalancinga matrix and reducing its
norm should be considered. For any nonsingular matrixD,

H(s0 + �) = lH(I � �A)�1r

= lHDD�1(I � �A)�1DD�1r

= lHD
�
I � �(D�1AD)

��1
D�1r:

For example, one may choose a proper nonsingular matrixD such that
� the columns and rows ofD�1AD are properly balanced and
� kD�1ADk is as small as possible.

An algorithm to do this has been widely used in computing the eigendecomposition of non-
symmetric matrices (for example, it is used in EISPACK, MATLAB and LAPACK). It was
originally proposed by Parlett and Reinsch [23]. Although the scheme has been mainly used
only in the dense matrix eigensolvers, recently Chen and Demmel [5] have implemented this
scheme for sparse matrices, provided that the nonzero entries of a sparse matrix can be ac-
cessed directly. Unfortunately, since the entries of the matrixA are not available explicitly
(i.e., the matrixA = �(s0C+G)�1C is never formed explicitly), a balancing scheme which
uses the matrix-vector products is desirable here. In [5], a sparse matrix balancing algorithm
uses only matrix-vector multiplication is also presented.

Note that we may approach our particular problem by balancingC andG, respectively.
The entries of these matrices are immediately available. Specifically, for any nonsingular
matricesD1 andD2, let

eC = D�11 CD2; eG = D�11 GD2:

Then

D�12 AD2 = D�12 (s0C +G)�1D�11 D1CD2 = (s0 eC + eG)�1 eC:
With this balancing idea, the question becomes how to choose the nonsingular matricesD1

andD2 so that the rows and columns ofD�12 AD2 are properly balanced and the norm
kD�12 AD2k is as small as possible. There is a scheme for balancing a pair of matrices
used in the generalized eigenvalue problem [28], which is implemented in LAPACK. The
applicability of the scheme to our current problem is the subject of further study.

D. Stopping Criterion and an Adaptive Implementation: With the availability of an error
expression on the reduced-order transfer functionHk(s0 + �), one may develop an adaptive
scheme to increase the number of matching moments (i.e., the number of Lanczos iterations)
until a prescribed tolerance value of error is satisfied. Since the numberk of Lanczos itera-
tions is small in practice,k � N , Tk is ak � k tridiagonal matrix, the cost of computing the
term j�2�1k(�)�k1(�)j, which contributes to the convergence of the PVL approximation, is
only a small fraction of the cost of Lanczos iterations. The major concern is on the estimation
of the termjp̂Hk+1(I � �A)�1q̂k+1j. For small�, namely,j�j < 1=kAk, the upper bound
in (3.9) can be used for stopping criterion. Forj�j � 1=kAk, however, it is no longer valid
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because of the inequality (3.12). Heuristically, the termjp̂Hk+1(I � �A)�1q̂k+1j remains on
the same order of magnitude after first few iteration. Since only an estimate of the magnitude
of this quantity is required, we may simply use the quantityjp̂Hk+1q̂k+1j to replace the term
jp̂Hk+1(I � �A)�1 q̂k+1j. Numerical experiments, some to be presented in next section, show
that it matches the actually error very well. Unfortunately, there is no theoretical justification
of this strategy at this time and whether it works for more general problems is still an open
question.

5. Numerical Examples. In this section, we present three numerical examples to dem-
onstrate the effectiveness of the error estimation of PVL algorithm discussed above.

Example 1. The first example is from a lumped-pi model of a three-conductor transmission
line arranged to study near-end crosstalk [7]. The order of matricesC andG is 11. The
expansion points0 = 0 andkAk = O(10�8). We examine the convergence ofHk(s0 + �)
for � = s� s0 = 2�jf for frequencyf up to 1GHz. Numerical results of the approximation
and error estimation for 4 and 5 PVL iterations are plotted in Figures 5.1 and 5.2, respectively.

In the top plots of both figures, the solid lines are the absolute values of original transfer
functionH(s0 + �). The dash lines are the reduced-order transfer functionHk(s0 + �). The
bottom plots are the exact errorjH(s0+�)�Hk(s0+�)j (solid line), and its estimates (dash-
dot and dash lines). Specifically, the dash-dot lines are plotted according to the estimator

jlHrj j�2�1k(�)�k1(�)j kp̂k+1k kq̂k+1kj1� j�j kAkj(5.1)

for all j�j, including whenj�j � 1=kAk. The dash lines are based on the following estimator

jlHrj j�2�1k(�)�k1(�)j jp̂Hk+1 q̂k+1j:(5.2)

From the figures, we see that overall, the error estimation by formula (5.1) gives an upper
bound of the actual error, but the estimates by (5.2) are much closer to the actual error. In the
figures, there is a frequency interval where the actual errors are larger than either of estimators
(5.1) and (5.2). This is due to the moderate ill-conditioning ofI��A and the roundoff errors
in the presence of finite precision arithmetic when computing the original transfer function
H(s0+ �). See the error analysis of linear system solvers based on the Gaussian elimination
in [14].

Example 2. The second example is from an extracted RLC circuit. The matrix pair(C;G)
is of order 52. The numerical results of 25 PVL iterations are plotted in Figure 5.3. All
plots use the same legend as described in Example 1. The formula (5.2) is a very good error
estimator. However, the estimator (5.2) severely under-estimates the error at high order range
of frequencies. Again, the discrepancies between the computed exact errors and the error
estimators given by (5.1) and (5.2) at low frequency are due to the moderate ill-conditioning
of matrixI � �A and the roundoff errors in the presence of finite precision arithmetic.

Example 3.This is the same example used in [10] from a three-dimensional electromagnetic
problem model via PEEC (partial element equivalent circuit) [26]. It is regarded as a bench-
mark and difficult test problem. The order of the matrix pair(C;G) is 306. The expansion
points0 = 2�

p�1� 109 andkAk = O(10�8). The numerical results of 80 PVL iterations
are plotted in Figure 5.4. All plots use the same legend as described in Example 1. Again, the
formula (5.2) is a very good error estimator. The error estimation by (5.1) is over-estimated
for high frequencies.
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FIG. 5.1.Numerical results of 4 PVL iterations of Example 1. Top:jH(s)j (solid line) and its approximation
jH4(s)j (dash line). Bottom: Exact errorjH(s) � H4(s)j (solid line) and its estimation by (5.1) (dash-dot line)
and by (5.2) (dash line)

6. Block Lanczos Process and MIMO Transfer Function Approximation. In this
section, we present a generalizations of error estimation to a matrix-valued transfer function
of a linear multiple input multiple output system. The matrix approach makes this general-
ization straightforward and we therefore omit most of the details in our presentation.

A matrix Padé approximation of a matrix-valued transfer function has been presented
in [9] using a general Lanczos-type process with multiple starting vectors [1]. It is called
MPVL algorithm. We will only use a simple version of the block Lanczos process for illus-
trating our approach. The complete discussion of error estimation of the MPVL algorithm is
beyond the scope of the present paper.

6.1. Block Lanczos Process.We first present a simple block Lanczos process for non-
Hermitian matrices and discuss its basic properties. An adaptive blocksize implementation
for the robustness and efficiency can be found in [3].

The block Lanczos process starts with two initial blocks of vectorsP1 andQ1 2 IRN�p

and implements the three-term recurrences

Bj+1P
H
j+1 = bPH

j+1 = PH
j A�AjP

H
j � CjP

H
j�1(6.1)

Qj+1Cj+1 = bQj+1 = AQj �QjAj �Qj�1Bj :(6.2)

As in the unblock case, if we let

Pk = [P1; P2; : : : ; Pk ]; Qk = [Q1; Q2; : : : ; Qk ]

and

Tk =

2
66664

A1 B2

C2 A2
...

...
... Bk

Ck Ak

3
77775 ;(6.3)
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FIG. 5.2.Numerical results of 5 PVL iterations of Example 1. Top:jH(s)j (solid line) and its approximation
jH5(s)j (dash line). Bottom: Exact errorjH(s) � H5(s)j (solid line) and its estimation by (5.1) (dash-dot line)
and by (5.2) (dash line)

then the three-term recurrences (6.1) and (6.2) have the matrix forms

PH
k A = TkPH

k +Ek
bPH
j+1;(6.4)

AQk = QkTk + bQj+1E
H
k ;(6.5)

whereEk is akp � p tall thin block matrix whose entries are zero except the bottom square
which is thep � p identity matrix. Furthermore, the computed Lanczos vectorsPk andQk

satisfy thebi-orthonormalityproperty

PH
k Qk = I:(6.6)

From the above equations, we have

PH
k AQk = Tk:(6.7)

When the blocksize isp = 1, this is just the unblocked case that we discussed in Section 2.
If the above algorithm is carried to the end withn being the last step, thenPn andQn

areN �N square matrices andPH
n Qn = I . Thus

Q�1n AQn = Tn;(6.8)

whereTn is a block tridiagonal matrix.Tk is a leading principal submatrix ofTn for any
k � n.

The following lemma is a generalization of Lemma 1 to the block case. The proofs are
similar to those in [29, Lemma 3.1, Theorem 3.3] and are therefore omitted here.

LEMMA 6.1. For any0 � j � 2k � 1,

EH
1 T

j
nE1 = EH

1 T
j
kE1
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FIG. 5.3.Numerical results of 25 PVL iterations of Example 2. Top:jH(s)j (solid line) and its approximation
jH25(s)j (dash line). Bottom: Exact errorjH(s) �H25(s)j (solid line) and its estimation by (5.1) (dash-dot line)
and by (5.2) (dash line).

and forj = 2k,

EH
1 T

2k
n E1 = EH

1 T
2k
k E1 +B2 � � �BkBk+1Ck+1Ck � � �C2:

Furthermore,

EH
1 T

j
kEk =

�
0; 0 � j � k � 1
B2B3 � � �Bk; j = k � 1:

and

EH
k T

j
kE1 =

�
0; 0 � j � k � 1
Ck � � �C3C2; j = k � 1:

Hereafter,Ej denotes a tall thin matrix whose bottom square is an identity matrix and is zero
elsewhere. The dimension ofEj will conform with other vectors and matrices involved.

6.2. MIMO systems. We consider the same type of linear systems as in Section 3 but
with a multiple inputu(t) and a multiple outputy(t). The state space formulation of a multi-
ple input multiple output linear system is given as follows

C _x(t) = �Gx(t) +Bu(t)(6.9)

y(t) = LHx(t) +Du(t)(6.10)

wherex(t) 2 RN is the state vector,u(t) 2 R` is the input vector,y(t) 2 Rm is the
output vector andC;G 2 RN�N , B 2 RN�`, L 2 RN�m andD 2 Rm�`. Note that the
dimensionsm and` for the input and output need not be the same. For the sake of simplicity,
we assume again the initial conditionx(0) = 0.
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FIG. 5.4.Numerical results of 80 PVL iterations of Example 3. Top:jH(s)j (solid line) and its approximation
jH80(s)j (dash line). Bottom: Exact errorjH(s)�H80(s)j (solid line) and its estimation by (5.1) (dash-dot line)
and by (5.2) (dash line).

Applying the Laplace transform to the system (6.9) and (6.10), we obtain

sCX(s) = �GX(s) +BU(s)(6.11)

Y (s) = LHX(s) +DU(s)(6.12)

whereX(s); Y (s) andU(s) are the Laplace transforms ofx(t); y(t) andu(t), respectively.
Then the transfer function of the system is given by them� ` rational matrix function

H(s) = LH(sC +G)�1B +D(6.13)

andY (s) = H(s)U(s). For computingH(s), again we assumeD = 0 and expandH(s)
about some points0, i.e., writes = s0 + �. Then

H(s) = H(s0 + �) = LH(I � �A)�1R

where

A = �(s0C +G)�1C and R = (s0C +G)�1B:

In the following, we will simply denoteH(s0 + �) asH(�).
Let p = maxfm; `g andP1; Q1 2 RN�p be orthogonal matrices such that

L = P1B1 and R = Q1C1;

whereB1 andC1 are upper triangular. This this can be obtained by appropriately appending
vectors, say random vectors, toL orR and then computing the QR-factorization. Thus

H(�) � H(s0 + �) = CH
1 P

H
1 (I � �A)�1Q1B1:
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For ease of notation, we shall assumeB1 = C1 = I and therefore

H(�) = PH
1 (I � �A)�1Q1;

Now applying the block Lanczos process to the tripletfA;P1; Q1g, we have the equations
(6.4) and (6.5). Then

H(�) = QH
1 (I � �A)�1P1 = EH

1 (I � �Tn)
�1E1

and we can define the following reduced-order transfer function (a rational matrix function)

Hk(�) = EH
1 (I � �Tk)

�1E1(6.14)

to approximateH(�). This is justified by the following moment matching property (under
similar conditions on� as in Section 3):

H(�)�Hk(�) = �1j=0�
j(EH

1 T
j
nE1 �EH

1 T
j
kE1)

= �1j=2k�
j(EH

1 T
j
nE1 �EH

1 T
j
kE1)

= �2kB2 � � �BkBk+1Ck+1Ck � � �C2 +O(�2k+1);

where we have used Neumann series expansion and Lemma 2. Furthermore, the following
theorem gives an upper bound on the rational matrix approximation error.

THEOREM 6.2. If I � �A andI � �Tk are invertible, then

kH(�)�Hk(�)k � j�j2k�1k(�)k k�k1(�)k k bPH
k+1(I � �A)�1 bQk+1k

= j�j2kkD1B2D2 � � �BkDkk kDkCk � � �D2C2D1k k bPH
k+1(I � �A)�1 bQk+1k

where

�1k(�) = EH
1 (I � �Tk)

�1Ek; and �k1(�) = EH
k (I � �Tk)

�1E1

andDk = (I � �Ak)
�1,

Dj�1 = (I � �Aj�1 � �2BjDjCj)
�1 for j = k; k � 1; � � � ; 2:

Furthermore, forj�j < 1=kAk, we have

kH(�)�Hk(�)k � j�j2k�1k(�)k k�k1(�)k k
bPk+1k k bQk+1k
1� j�j kAk :

Proof. Most of the proof is similar to that of Theorem 1. The main difference is in the
second equality. Here we provide the proof ofEH

k (I��Tk)�1E1 = �k�1DkCk � � �D2C2D1

only. Using the Schur complement, it can be shown that

EH
k (I � �Tk)

�1E1 = �DkCkE
H
k�1(I � � bTk�1)�1E1(6.15)

whereI � � bTk�1 is the block tridiagonal matrix whose blocks are identical toI � �Tk�1
except the(k � 1; k � 1) block entry, which isI � �Ak�1 � �2BkDkCk. Now applying
(6.15) recursively to itself, we obtain the desired equality.

The discussion on the computation of bounds and implementation issues in Section 3 is
also applicable here. Also the same kind of bounds forkEH

1 (I � �Tk)
�1Ekk andkEH

k (I �
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�Tk)
�1E1k as in Theorem 2 can be given. In general, the same kind of behavior as in the

unblocked case would be expected.
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