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Abstract. Radio-frequency (RF) MEMS resonators, integrated into CMOS
chips, are of great interest to engineers planning the next generation of com-
munication systems. Fast simulations are necessary in order to gain insights into
the behavior of these devices. In this paper, we discuss two structure-preserving
model-reduction techniques and apply them to the frequency-domain analysis of
two proposed MEMS resonator designs.

1 Introduction

Radio-frequency (RF) electromechanical resonators used in frequency references and
filters are critical to modern communication systems. For RF engineers using quartz, ce-
ramic, and surface acoustic wave devices, surface-micromachined MEMS resonators in
development offer an attractive alternative. Because they can be integrated into CMOS,
MEMS resonators have the potential to cost less area, power, and money than existing
alternatives [10]. Such integrated high-frequency filters could qualitatively change the
design of cell phones, making it possible to build a cheap phone to work with mul-
tiple networks operating at different carrier frequencies, and lowering power and size
constraints to the point that inexpensive “Dick Tracy” watch phones could be a reality.

Researchers working on integrated MEMS resonators currently rely on a trial-and-
error design process. There is a clear need for quick, accurate simulations to minimize
the labor and fabrication costs of trial-and-error design. Lumped-parameter models and
simple modal analyses do not adequately describe subtle continuum-level effects and
mode interactions which strongly affect device behavior. We therefore rely on model-
reduction methods to perform frequency-response computations quickly.

Energy losses in high-frequency resonators are critical to designers. The quality
factor (Q), a ratio of energy stored in a resonator to energy lost in each cycle, must
be high for a resonator to be useful in a filter or frequency reference. Despite their
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importance, the details of energy loss in MEMS resonators are not well understood, and
accurate loss modeling remains an area of active research. Among other mechanisms,
energy can be lost through viscous damping, through thermoelastic effects, or through
elastic waves carrying energy away into the substrate [8]. Each mechanism leads to
a different structure in the model equations. A mechanical system subject to viscous
damping is modeled by a second-order system of equations with a nonzero first-order
term; the thermoelastic equations are coupled first- and second-order equations; while
infinite-domain problems can be modeled by a coordinate transformation resulting in
complex symmetric mass and stiffness matrices. Here we consider viscous and anchor
losses. Viscous loss models are relatively common, but to our knowledge, ours is the
first physical model of anchor loss in a bulk-mode MEMS resonator.

In this paper, we describe two model reduction techniques for computing the fre-
quency response of MEMS resonators. We first describe how to reduce second order
systems using a Second-Order Arnoldi (SOAR) algorithm which preserves the second-
order structure of the equations; we use this technique to simulate a checkerboard-shaped
mechanical filter. We then describe how we model infinite-domain problems using a
perfectly-matched layer (PML), and describe a model-reduction technique which pre-
serves the structure of the PML; we use this technique to study the frequency response
of a disk resonator.

2 Model Reduction for Second-Order Systems

2.1 Second-Order Systems and SOAR

Since they are partly mechanical, most MEMS models are naturally second-order in
time. Depending on the device, there may also be equations which are first order in time
or algebraic, such as the equations for heat transport or for electrostatics. The linearized
equations for the coupled system can be written as a continuous time-invariant single-
input single-output second-order system

ΣN :

{
Mq̈(t) + Dq̇(t) + Kq(t) = b u(t)

y(t) = lT q(t)
(2.1)

with initial conditions q(0) = q0 and q̇(0) = q̇0. Here t is time; q(t) ∈ RN is a vector of
state variables;N is the state-space dimension;u(t) ∈ R and y(t) ∈ R are the input force
and output measurement functions; M , D, K ∈ RN×N are system mass, damping, and
stiffness matrices; and b and l are input distribution and output measurement vectors.
The state-space dimension N of the system ΣN is typically large and it can be slow
to use for practical analysis and design. Therefore, model-order reduction techniques
are needed to construct compact models which both retain important properties of the
original model and are fast to simulate.

A common approach to model-order reduction for the second-order model ΣN is
to add variables for the velocities q̇(t), and so create a first-order model of twice the
dimension of the original. Then the first-order model is reduced. However, the reduced
first-order model may not correspond to any second-order model, and may lack properties
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of the original model, such as stability and passivity. There have been a number of
efforts toward such structure-preserving model-order reduction methods; we focus on
a subspace projection method based on a second-order Arnoldi (SOAR) procedure that
not only preserves the second-order structure, but also matches the same number of
moments as the standard Arnoldi-based Krylov subspace method via linearization for
about the same amount of work. For the rest of this subsection, we present a SOAR-based
model-order reduction method from the view discussed in [2].

The second-order system ΣN is represented in the time domain in (2.1). Equiva-
lently, one can represent the system in the frequency domain via the Laplace transform.
Assuming homogeneous initial conditions, the frequency-domain input U(s) and output
Y (s) are related by the transfer function

H(s) = lT (s2M + sD + K)−1b =
∞∑

�=0

m�(s − s0)�, (2.2)

where the coefficients m� in the Taylor series about s0 are called moments. The moments
can be written as m� = lT r�, where the second-order Krylov vector sequence {r�} is
defined by the following recurrence:

r0 = K̂−1b

r1 = −K̂−1D̂r0 (2.3)

r� = −K̂−1(D̂r�−1 + Mr�−2) for � = 2, 3, . . .

where K̂ = s2
0M + s0D + K and D̂ = 2s0M + D.

The subspace Gn = span{r�}n−1
�=0 is called a second-order Krylov subspace. Let Qn

be an orthonormal basis of Gn. We seek an approximation q(t) ≈ Qnz(t) ∈ Gn; this is
often referred to as a change of state coordinates. By imposing the Galerkin condition:

MQnz̈(t) + DQnż(t) + KQnz(t) − b u(t) ⊥ Gn,

we obtain the following structure-preserving reduced-order model:

Σn :

{
Mnz̈n(t) + Dnżn(t) + Knz(t) = bn u(t)

ỹ(t) = lTn z(t)
, (2.4)

where Mn = QT
nMQn, Dn = QT

nDQn, Kn = QT
nKQn, bn = QT

n b and ln = QT
n l.

It can be shown that the first n moments of the reduced model Σn agree with those of
the original model ΣN . Furthermore, if M , D, and K are symmetric and b = l, then
the first 2n moments of the models are the same. This method has the same order of
approximation as the standard Arnoldi-based Krylov subspace method via linearization.

We produce an orthonormal basis Qn for the second-order Krylov subspaceGn using
a Second-Order ARnoldi (SOAR) procedure proposed by Su and Craig [12] and further
improved by Bai and Su [3]. At step j, the algorithm computes

r = −K̂−1(D̂qj + Mw) (2.5)

where w is an auxiliary vector computed at the end of the previous step. Then r is
orthogonalized against Qj and normalized to produce qj+1 and w is recomputed.
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In contrast to the standard Arnoldi algorithm, the transformed matrix triplet
(M, D̂, K̂) is used to generate an orthonormal basis Qn of Gn, but the original matrix
triplet (M, D, K) is directly projected onto the subspace Gn to define the reduced-order
model Σn. By explicitly formulating the matrices Mn, Dn and Kn, essential structures
of M , D and K are preserved. For example, if M is symmetric positive definite, so is
Mn. As a result, we can preserve the stability, symmetry and physical meaning of the
original second-order model ΣN . This is in the same spirit as the widely-used PRIMA
algorithm for passive reduced-order modeling of linear dynamical systems arising from
interconnect analysis in circuit simulations [11].

The SOAR-based model-order reduction algorithm has many desirable properties
compared to the linearization approach. The reduced system Σn not only preserves the
second-order structure, but also matches the same number of moments as the standard
method of projecting a linearized system onto a basis of n Arnoldi vectors. SOAR-based
algorithms require less space and fewer flops (for a subspace of the same dimension),
and also provide more accurate results.

2.2 Modeling of a Checkerboard Resonator

As an application, we build a reduced-order model from a finite element simulation
of a prototype MEMS filter. The goal for this device is to produce a high-frequency
bandpass filter to replace, for example, the surface acoustic wave (SAW) devices used in
cell phones. The device (Figure 1) consists of a checkerboard of silicon squares which
are linked at the corners [6]. The “checkers” are held at a fixed voltage bias relative to the
drive and sense electrodes placed around the perimeter. A radio-frequency (RF) voltage
variation on drive electrodes at the northwest corner creates an electrostatic force which
causes the device to move in plane. The motion induces changes in capacitance at the
sense electrodes at the southwest corner of the device. The induced motion is typically
very small; the checker squares are two microns thick and tens of microns on a side, and
the maximum displacement is on the order of tens of nanometers.
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Fig. 1. Illustration of a checkerboard resonator. The SEM picture (left) shows a fabricated device,
and the simulation (right) shows one resonant mode excited during operation. The motion is
excited at the northwest corner and sensed at the southeast corner (center)

A single square pinned at the corners exhibits a “Lamé mode.” If the interaction
between squares was negligible, the system would have a five-fold eigenvalue corre-
sponding to independent Lamé-mode motions for each square. The coupling between
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Fig. 2. Bode plots from finite element model and reduced order model for a 3-by-3 checkerboard
resonator

the squares causes the five eigenvalues to split, so there are several poles near each
other; consequently, the array has low motional resistance near the target frequency. The
same idea of using weakly coupled arrays has also been applied to other RF resonator
designs [9].

We model the checkerboard with linear 2D plane stress elements and an empirical
viscous damping model. Even for a small mesh (N = 3231), model reduction is benefi-
cial. Using a reduced model with 150 degrees of freedom, we obtain a Bode plot which
is visually indistinguishable from the plot for the unreduced system (Figure 2). We have
also created a visualization tool which designers can use to see the forced motion at
different frequencies (Figure 3). With a reduced model, we can compute the shape of the
motion at a specified frequency within tens of milliseconds instead of seconds, quickly
enough for the user to interactively scan through frequencies of interest. Designers can
use these visualizations to build intuition about different strategies for constructing an-
chors, connecting resonator components, and placing drive and sense electrodes.

3 Model Reduction for Perfectly-Matched Layers

3.1 Perfectly-Matched Layers and Symmetry-Preserving Projection

In several high MHz or GHz frequency resonator designs, the dominant loss mechanism
appears to be radiation of elastic energy through anchors. In these designs, the resonating
device is so much smaller than the silicon substrate that waves leaving the anchor are so
attenuated by material losses as to render negligible any reflections from the sides of the
chip. That is, the bulk of the chip can be modeled as a semi-infinite medium. We model
this semi-infinite domain using a perfectly matched layer (PML), which absorbs waves
at any angle of incidence [4].
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Fig. 3. Screenshot of a visualization tool for observing forced response shapes for in-plane res-
onators. Using a reduced model, the tool can compute and plot the response shape quickly enough
for interactive use

Bérenger invented the perfectly matched layer for problems in electromagnetics [5],
but it was almost immediately re-interpreted as a complex-valued change of coordinates
which can be applied to any linear wave equation [14,13]. The weak form of the PML
equations for time-harmonic linear elasticity [4] is∫

Ω

ε̃(w)T Dε̃(u)J̃ dΩ − ω2

∫
Ω

ρw · uJ̃ dΩ =
∫

Γ

w · t dΓ (3.6)

where u and w are displacement and weight functions on the domain Ω; t is a traction
defined on the boundary Γ ; ρ and D are the mass density and the elasticity matrix; ε̃ is a
transformed strain vector; and J̃ is the Jacobian determinant of the PML transformation.
This weak form is nearly identical to the standard weak form of linear elasticity, and
when we discretize with finite elements, we have the familiar system

(K − ω2M)q = b (3.7)

where K and M are now complex symmetric.
To make the attenuation through the PML frequency-independent, the coordinate

transformations in [4] are frequency-dependent. Using a frequency-dependent transfor-
mation, the transfer function is given by

H(iω) = lT
(
K(ω) − ω2M(ω)

)−1
b (3.8)

and complex resonances satisfy the nonlinear eigenvalue equation

det
(
K(ω) − ω2M(ω)

)
= 0. (3.9)

However, when the frequency range of interest is not too wide – when the maximum
and minimum frequency considered are within a factor of two or three of each other –
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the parameters of the PML may be chosen once to give acceptable attenuation over the
desired frequency range. So for ω near enough to ω0, we approximate H(iω) by

H0(iω) = lT
(
K(ω0) − ω2M(ω0)

)−1
b. (3.10)

Similarly, the nonlinear eigenvalue problem (3.9) may be replaced by a (generalized)
linear eigenvalue problem.

In [1], Arbenz and Hochstenbach suggest a variant of the Jacobi-Davidson al-
gorithm for complex symmetric eigenvalue problems. In this method, the standard
Rayleigh quotient estimate of the eigenvalue, θ(v) = (vHKv)/(vHMv), is replaced by
ψ(v) = (vT Kv)/(vT Mv). Assuming vT Mv �= 0, ψ(v) converges quadratically to an
eigenvalue of a complex-symmetric pencil as v approaches an eigenvector, while θ(v)
converges only linearly. The extra order of accuracy comes from the symmetry of the
quadratic forms

uT Mv = vT Mu and uT Kv = vT Ku.

We wish to maintain this symmetry in our reduced-order models as well.
To build a reduced-order model, we generate a basis V for the Krylov subspace

Kn((K(ω0)−ω2
0M(ω0))−1, b) with the standard Arnoldi algorithm. We then construct

a symmetry-preserving reduced-order model by choosing an orthonormal projection
basis W such that

span(W ) = span([Re(V ), Im(V )]). (3.11)

The reduced model will be at least as accurate as the usual Arnoldi projection, but
will maintain the complex symmetry of the original system. This reduced model also
corresponds to a Bubnov-Galerkin discretization of the PML equation with a set of
real-valued global shape functions.

3.2 Modeling of a Disk Resonator

As an example of PML model reduction, we study the anchor loss in a disk-shaped
MEMS resonator presented in [15] (Figure 4). The disk sits on a silicon post, and
differences in voltage between the disk and the surrounding drive electrodes pull the disk
rim outward, exciting an axisymmetric motion. The disk is driven near the frequency of

DiskElectrode

Wafer V+

V−

V+

Fig. 4. Schematic of the Michigan disk resonator. An overhead view (right) shows the arrangement
of the resonating disk and the electrodes which force it. An idealized cross-section (left) is used in
an axisymmetric simulation, where the wafer substrate is treated as semi-infinite using a perfectly
matched layer
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the first or second radial mode, and the motion is sensed capacitively by electrodes on
the surface of the substrate.

We model this resonator using axisymmetric finite elements, with a PML region to
mimic the effects of a semi-infinite substrate. We wish to use this model to study sharp-
ness of resonant peaks, as quantified by the quality factor Q. For a resonant frequency
ω = α + iβ, Q is given by α/(2β). For typical RF applications, Q values of at least
1000 are required; higher values are better.

Because the discretization errors in the real and imaginary parts of the computed
eigenvalues are about the same size, we must resolve ω to an overall relative error
significantly less than Q−1 before the computed Q converges. Consequently, we use a
relatively fine mesh of high-order (bicubic) elements with 57475 unknowns in order to
resolve the behavior of this device. With this mesh, the computed Q value of the second
radial mode was 6250; the measured value of an actual device was 7330 (in vacuum).

Because we expect a single sharp peak to dominate the response in the frequency
range of interest, we might expect a single step of shift-invert Arnoldi with a good shift
to produce a reasonable approximation to H0(iω). If the device possesses two nearly
coincident modes, then two Arnoldi iterations are needed. When the two modes are very
close, they strongly interact, and any reduced model must account for both. Furthermore,
when multiple poles are involved, the Q values provided by eigenvalue computations no
longer provide a complete picture of the behavior near a resonant peak. To understand
the response, we use a reduced model with three Arnoldi vectors (two steps of Arnoldi
plus a starting vector), which approximates the full model very closely near the peak
(Figure 5). Though the peak for one of the modes has negligible magnitude compared
to the peak for the other mode, the interaction of the two modes strongly affects the
sharpness of the dominant mode peak: for values of the disk thickness where the two
modes most closely coincide, the computed Q value for the dominant-mode peak varies
over five orders of magnitude [7].

4 Conclusion

In this paper, we have described two model reduction techniques: a method based on the
SOAR (Second-Order ARnoldi) algorithm, which preserves the second-order structure
of a full system; and a method which uses a standard Arnoldi basis in a novel way to pre-
serve the complex-symmetric structure of an infinite-domain problem approximated by
a perfectly matched layer. We have illustrated the utility of these methods by computing
the frequency-response behavior of two real designs of very high-frequency MEMS res-
onators. In each case, the interactions between multiple resonant modes proves critical,
so that naive projection onto a single mode is inadequate for exploring even the local
frequency-response behavior.

As we continue to study energy loss mechanisms in RF MEMS, we expect model re-
duction to play an even more critical role. For example, to study anchor loss in the
checkerboard resonator, we plan to build a 3D finite element model with perfectly
matched layers below the anchors; this model will be much larger than the 2D model
described in this paper. We are also interested in structure-preserving model reduc-
tion for thermoelastic damping, which is an important loss mechanism in at least some
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Fig. 5. Bode plot for a disk resonator with nearly coincident modes. The exact model (solid)
matches the reduced model (dashed) produced from two Arnoldi steps

types of flexural resonators [8]. Finally, to more quickly study how variations in device
geometry affect performance, we plan to investigate methods for building parameterized
reduced-order models and reusable reduced-order models for substructures.
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resonator and checkerboard filter. In Proceedings of MEMS 05, Miami, FL, January 2005.
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