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The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue
problems is a computational bottleneck in quantum mechanical methods employing
a nonorthogonal basis for ab initio electronic structure calculations. We propose a
hybrid preconditioning scheme to effectively combine global and locally accelerated
preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-
of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing
a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent
method is a cost-effective eigensolver, outperforming current state-of-the-art global
preconditioning schemes, and comparably efficient for the ill-conditioned generalized
eigenvalue problems produced by PUFE as the locally optimal block preconditioned
conjugate-gradient method for the well-conditioned standard eigenvalue problems pro-
duced by planewave methods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

First principles (ab initio) quantum mechanical simulations based on density functional theory (DFT) [21,24] are a vi-
tal component of research in condensed matter physics and molecular quantum chemistry. Using DFT, the many-body
Schrödinger equation for the ground state properties of an interacting system of electrons and nuclei is reduced to the
self-consistent solution of an effective single-particle Schrödinger equation, known as the Kohn–Sham equation:

Hψi(r) =
[
−1

2
∇2 + V eff

(
r,ρ(r)

)]
ψi(r) = εiψi(r), (1)
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where εi are particle energies (eigenvalues) and ψi are the associated wavefunctions (eigenfunctions). The Hamiltonian H
consists of kinetic energy operator − 1

2 ∇2 and effective potential operator V eff(r,ρ(r)). The effective potential V eff depends
on the electronic charge density

ρ(r) =
∑

i

f i
∣∣ψi(r)

∣∣2
, (2)

where 0 � f i � 2 is the electronic occupation of state i and the sum is over all occupied states. Since ψi depends on V eff
which depends on ρ(r) which depends again on ψi , the Kohn–Sham equation (1) is a nonlinear eigenvalue problem.

The importance of ab initio calculations stems from their underlying quantum-mechanical nature, yielding insights in-
accessible to experiment and robust, predictive power unattainable by more approximate empirical approaches. However,
because ab initio calculations are computationally intensive, a vast range of real materials problems remain inaccessible by
such accurate, quantum mechanical means. To address this limitation, there has been substantial effort in recent years to
develop ab initio methods that use efficient, local bases in order to both reduce degrees of freedom and facilitate large-scale
parallel implementation: augmented planewave plus local orbital (APW+lo) [48,49], atomic-orbital (AO), e.g., [3,8], and real-
space methods [6,54,40] such as finite-difference [11,12,10], wavelet [13,2,17], finite-element (FE) [55,35], partition-of-unity
finite element (PUFE) [53,37,36], and discontinuous Galerkin (DG) [26] methods, among many others, see for example [29].

In the vast majority of ab initio methods, the dominant computational cost is the iterative diagonalization of the sequence
of large linear eigenvalue problems produced by the discretization of Eq. (1) in the chosen basis [42,25,59,41,40,60,57,39].
The linear eigenvalue problems produced by highly efficient physics based APW+lo, AO, and PUFE bases, while smaller
than those of other bases, present a particular challenge as they are generalized eigenvalue problems with ill-conditioned
coefficient matrices, and are much more difficult to precondition than those produced by conventional planewave based
methods, due to the lack of diagonal dominance and absence of an efficient representation for the inverse Laplacian.

Here, building on prior work [58,47,33,1,39,7], we propose a hybrid preconditioning scheme for rapid iterative diagonal-
ization of the sequence of ill-conditioned generalized Hermitian eigenvalue problems produced by modern orbital based
electronic structure methods, such as APW+lo, AO, and PUFE. The hybrid preconditioning scheme effectively combines a
global shifted-inverse preconditioner as in [33,1,7] and locally accelerated shifted-inverse preconditioners as in [58,47,33,
1,39] that target eigenpairs of interest individually. The global preconditioner serves as sole preconditioner in early self-
consistent iterations and as convergence accelerator for local preconditioners in subsequent iterations. We have conducted
extensive tests of the proposed hybrid preconditioning scheme with the block steepest descent method in PUFE pseudopo-
tential density functional calculations on a variety of systems, including the difficult case of triclinic metallic CeAl. This
system has deep atomic potentials and 15 electrons per unit cell in valence, thus requiring the computation of many,
strongly localized eigenfunctions, which in turn requires the addition of correspondingly many orbital enrichments in the
PUFE electronic structure method. Our results reveal that in terms of average numbers of inner and outer iterations, the hy-
brid preconditioner performs markedly better than global or local preconditioners alone, and the resulting solver performs
as well on the ill-conditioned generalized eigenvalue problems produced by the PUFE ab initio method as does the lo-
cally optimal block preconditioned conjugate-gradient (LOBPCG) method on well-conditioned standard eigenvalue problems
produced by the planewave method.

The remainder of the paper is organized as follows. In Section 2, we outline the self-consistent field (SCF) procedure
and iterative diagonalization process in an algebraic setting, and discuss the ill-conditioned generalized eigenvalue problems
produced by the PUFE electronic structure method. In Section 3, we describe the hybrid preconditioning scheme and its use
in the block steepest descent method. Implementation details are presented in Section 4. Numerical results are presented in
Section 5 and we close with final remarks in Section 6.

2. SCF, iterative diagonalization, and ill-conditioned GHEPs

Electronic structure methods such as APW+lo, AO, and PUFE methods incorporate information from local atomic solu-
tions to construct efficient bases for molecular or condensed matter calculations. This information is typically incorporated
in the form of localized, atomic-like basis functions (orbitals), which generally leads to a nonorthogonal basis. Discretization
of the Kohn–Sham equation (1) in such a basis then leads to a nonlinear algebraic eigenvalue problem

H(V eff)Ψ = SΨ E, (3)

where H(V eff) is the discrete KS-Hamiltonian matrix and consists of a local part H (loc)(V eff) and, when pseudopotentials [29]
are employed, nonlocal part H (nl):

H(V eff) = H (loc)(V eff) + H (nl).

H (loc)(V eff) is a Hermitian matrix which depends on the effective potential V eff, which in turn depends on the electronic
density ρ(r) computed from the eigenvectors Ψ . H (nl) is a low-rank Hermitian matrix associated with the nonlocal part of
the pseudopotential. S is the overlap (Gram) matrix of the basis and is Hermitian positive-definite. The nonlocal matrix H (nl)

and overlap matrix S are independent of V eff, and hence do not depend on ρ(r) or Ψ . In condensed matter calculations,
it is required to sample the Brillouin zone [29] at a sufficient number of k-points, making the above matrices complex
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Fig. 2.1. Self-consistent field (SCF) procedure.

Hermitian rather than real symmetric. In addition, for methods whose basis functions are localized, such as wavelet, FE,
PUFE, DG, and (to a lesser extent) AO-type methods, the above matrices are sparse: for example, in the case of PUFE, having
a few hundred nonzero entries per row, independent of problem size.

The nonlinear eigenvalue problem (3) is solved by fixed-point iteration (see [29]): starting with an initial guess for the
input charge density ρ in and associated effective potential V in

eff and iterating until the difference between the input and
output effective potentials, V in

eff and V out
eff , is within a specified tolerance τscf; i.e., the process is terminated at the is-th

iteration if

v(is)

dif = ‖V out
eff − V in

eff‖
‖V in

eff‖
� τscf. (4)

This process is known as a self-consistent field (SCF) procedure. A schematic of the SCF procedure is shown in Fig. 2.1.
At the is-th SCF iteration, with an approximate effective potential Ṽ eff extrapolated from previous SCF iterations [38], the

nonlinear eigenvalue problem (3) becomes the following linear generalized Hermitian eigenvalue problem (GHEP):

H (is)Ψ (is) = SΨ (is)E(is), (5)

where

H (is) = H (loc)(Ṽ eff) + H (nl),

H (loc)(Ṽ eff) is a Hermitian matrix, H (nl) is a low-rank Hermitian matrix, S is Hermitian positive definite, and all matrices
are sparse when arising from discretization in a localized basis such as PUFE. As the SCF iteration proceeds, changes in Ṽ eff,
and thus H (loc)(Ṽ eff), Ψ (is) , and E(is) become smaller and smaller until convergence to the specified tolerance is achieved.

Since in the first few SCF iterations Ṽ eff is not yet well converged, the GHEP (5) need not be solved to high accuracy. All
that is necessary is that the accuracy be sufficient to allow the outer SCF iteration to converge without incurring significant
additional iterations relative to exact solution. As the SCF iterations proceed and Ṽ eff converges, the accuracy requirement
for the solution of the GHEP (5) increases. Specifically, from the previous SCF iteration, we have an estimate {̂E0, Ψ̂0} of the
lowest m eigenpairs with the maximum residual norm

τ
(is)

eig,0 = Resmax [̂E0, Ψ̂0], (6)

where if Ê = diag(̂ε1, ε̂2, . . . , ε̂m) and Ψ̂ = [ψ̂1, ψ̂2, . . . , ψ̂m] are approximate eigenpairs, then

Resmax [̂E, Ψ̂ ] = max
1�i�m

Res[ ε̂i, ψ̂i],

and Res[̂εi, ψ̂i] is the relative residual norm for the approximate eigenpair (̂εi, ψ̂i) of GHEP (5):

Res[̂εi, ψ̂i] ≡ ‖ri‖
‖H (is)ψ̂i‖

, (7)

and ri = H (is)ψ̂i − ε̂i Sψ̂i .
Our objective at the is-th SCF iteration is to compute the improved estimate {̂El, Ψ̂l} satisfying

Resmax [̂El, Ψ̂l]� τ
(is) (8)
eig,l
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Table 2.1
Condition numbers of H(1) and S matrices in PUFE calculations of CuAl as a function of enrichment support radius.

n0 re ndof κ(H(1)) κ(S)

6 0.0 1512 7.4e02 3.0e03
6 1.0 1532 6.5e07 3.5e08
6 2.0 1685 3.3e08 3.3e09
6 3.0 2112 5.6e09 6.2e10
6 4.0 2518 3.0e10 4.5e11

Fig. 2.2. Partial distribution of energy eigenvalues for CuAl, showing the clustering and proximity of the lowest 8 computed values to the remainder of the
spectrum.

where the tolerance τ
(is)

eig,l is chosen to achieve a desired reduction relative to τ
(is)

eig,0 and/or v(is)

dif . In practice, one or two
orders of magnitude reduction is typically sufficient for the SCF procedure to converge in a comparable number of iterations
to exact solutions (i.e., reduction to zero).1

Since during the course of the SCF iteration to convergence, a wide range of accuracies are required for the solution of
the GHEP (5) and excellent approximations are available for all eigenpairs at each SCF iteration after the first few, iterative
diagonalization methods such as Davidson [14] and steepest descent [27,47] can be much more efficient than direct meth-
ods, especially as problem sizes increase and memory constraints become a significant concern. However, while iterative
solution methods make much larger computations possible, diagonalization remains the key bottleneck in large-scale ab
initio calculations. Due to the nonorthogonal basis sets employed in electronic structure methods such as APW+lo, AO, and
PUFE, the resulting numerical eigenvalue problems can be ill-conditioned. In particular, H (is) and S coefficient matrices can
be ill-conditioned and share a large common near-null subspace. Furthermore, there is in general no clear gap between
the eigenvalues that are sought (i.e., occupied states) and the rest. Moreover, the ill-conditioning and difficulty of iterative
diagonalization become especially pronounced as bases become saturated with orbital functions with long tails in order to
attain high accuracy.

Table 2.1 shows the condition numbers κ(H (1)) and κ(S) of coefficient matrices H (1) and S , respectively, at the first
SCF iteration of PUFE calculations of metallic CuAl, using HGH pseudopotentials [20]. There are two atoms in the triclinic
unit cell, which is subject to Bloch-periodic boundary conditions [53]. The Brillouin zone is sampled at the Γ -point and at
k = (0.12,−0.24,0.37). The lattice vectors for the unit cell are:

a1 = a(1.00,0.02,−0.04),

a2 = a(0.06,1.05,−0.08),

a3 = a(0.10,−0.12,1.10),

with lattice parameter a = 5.7 Bohr. The Cu and Al atoms are located at lattice coordinates τ 1 = (0.01,0.02,0.03) and τ 2 =
(0.51,0.47,0.55), respectively. Total energy calculations with PUFE are carried out on a uniform n0 × n0 × n0 cubic-order
finite element mesh, re is the enrichment support radius, and ndof is the resulting dimension of the GHEP (5).

In Table 2.1, the classical FE method corresponds to the case of no orbital enrichment, i.e., re = 0 [35]. In this case, both
matrices H (1) and S are well-conditioned. However, once re > 0 and orbital enrichments are added, the condition numbers
of H (1) and S increase sharply. In addition, we observe that H (1) and S share a large common near-null subspace. For
example, when n0 = 6 and re = 1.0, there is a subspace of dimension ne = 20 spanned by the columns of an orthogonal
matrix V with ‖V ‖ = 1 such that ‖H (1)V ‖ = ‖S V ‖ = O (10−4). Furthermore, some eigenvalues are clustered and there is
no obvious gap between the eigenvalues of interest and the rest. Fig. 2.2 shows the lowest 8 (3% of the eigenvalues of H (1)

and S) of interest and higher states in the vicinity.
Ill-conditioned generalized eigenvalue problems in quantum mechanical calculations with large nonorthogonal basis sets

have been studied for decades, since the introduction of such bases, see for example [28,22]. The challenges of solving
ill-conditioned problems arising from the partition-of-unity FE method is an active research area, see for example [52,18].

1 By backward error analysis [5, Chapter 5], there exists a matrix 	H with ‖	H‖ = ‖ri‖/‖ψ̂i‖ such that (̂εi , ψ̂i) is an exact eigenpair of the matrix pair

(H(is) + 	H, S). Consequently, we have

‖	H‖
‖H (is)‖ = ‖ri‖

‖H (is)‖‖ψ̂i‖
� ‖ri‖

‖H (is)ψ̂i‖
.

Therefore, Res[̂εi , ψ̂i ]� tol implies relative backward error of (̂εi , ψ̂i) less than tol.
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In the next section, we propose a hybrid preconditioning technique for the rapid iterative diagonalization of ill-conditioned
GHEPs (5), as occur in orbital based ab initio methods such as APW+lo, AO, and PUFE.

3. Hybrid preconditioning and LABPSD

In this section, we consider the rapid iterative diagonalization of the GHEP (5). Specifically, we start with the approxi-
mates {̂E0, Ψ̂0} of the lowest m eigenpairs of (5) from the previous SCF iteration. The objective at the is-th iteration is to
compute improved approximate eigenpairs {̂El, Ψ̂l} satisfying (8).

The block preconditioned steepest descent (BPSD) method [23], also known as a simultaneous Rayleigh quotient min-
imization method [27], proceeds as follows. Assume {̂E
−1, Ψ̂
−1} are obtained from (
 − 1)-st BPSD iteration with the
residuals

R = HΨ̂
−1 − SΨ̂
−1 Ê
−1,

where for simplicity, the superscript is of H (is) is dropped here and in the remainder of this section. For the 
-th approxi-
mate eigenpairs, we first compute search space vectors:

pi = −Kiri for i = 1,2, . . . ,m,

where ri is the i-th column of R , and Ki is the corresponding preconditioner. pi is also called a preconditioned residual. Let
Z = [Ψ̂
−1 P ] with P = [p1, p2, . . . , pm], then the 
-th approximate eigenpairs {̂E
, Ψ̂
} are obtained via the Rayleigh–Ritz
procedure with the projection subspace matrix Z , i.e., Ê
 = Γ , Ψ̂
 = Z W , and {Γ, W } are the lowest m eigenpairs of the
reduced matrix pair (HR, SR) = (Z H H Z , Z H S Z).

The convergence of the BPSD method depends critically on the preconditioners Ki . As we have discussed in Section 2, due
to the nonorthogonal basis sets employed in electronic structure methods such as APW+lo, AO, and PUFE, the GHEP (5) can
be ill-conditioned. It is well known that the presence of large off-diagonal entries in H and S from local orbital components
of such bases render standard preconditioning techniques based on the diagonal of H − σ S no longer effective [39,7].

In the recent work of Blaha et al. [7] on iterative diagonalization in the context of the APW+lo method, the following
preconditioner is proposed:

Ki = (H − ε̄S)−1 ≡ K ε̄ for all i, (9)

where ε̄ is a parameter chosen close to the eigenvalues of interest, and the matrices H and S are chosen from a fixed
(usually the first) SCF iteration and do not change in the entire SCF procedure. We call K ε̄ a global preconditioner. Such a
global preconditioner has been proposed in the context of FE [1] and planewave [44] based methods as well.

To apply the global preconditioner (9), in [7], a dense LDLT factorization of K ε̄ is first computed and stored on disk.
During the entire SCF procedure, the factorization is read in to perform the required matrix-vector multiplications. In [1],
in the context of an FE basis, the search space vectors {pi} are computed approximately by an iterative linear solver.
Unfortunately, as we show in Section 5, such a preconditioner leads to stagnation in the context of less well-conditioned
PUFE matrices.

In [58,47,33,1,39], the following preconditioners are proposed to individually target eigenpairs of interest:

Ki = (H − ε̂i S)−1 ≡ K ε̂i for i = 1,2, . . . ,m, (10)

where ε̂i are Ritz values from the previous BPSD iteration, i.e., diagonal elements of Ê
−1. The basic motivation can be
understood as follows (e.g., [58,47,15]). Given current approximation {ψ̂i, ε̂i} to eigenpair {ψi, εi}, we seek correction pi
such that ψ̂i + pi is exact, i.e.,

(H − εi S)(ψ̂i + pi) = 0. (11)

While the exact eigenvalue εi is unknown, the Rayleigh quotient

ε̂i = ψ̂ H
i Hψ̂i

ψ̂ H
i Sψ̂i

(12)

provides an excellent approximation, with an error that is second order in the error of ψ̂i . Replacing εi with ε̂i in (11) then
gives

(H − ε̂i S)(ψ̂i + pi) = ri + (H − ε̂i S)pi = 0 (13)

or

pi = −(H − ε̂i S)−1ri, (14)

as in (10). Note, however, that as ε̂i approaches εi , the matrix H − ε̂i S becomes singular and hence the inverse exists only
in the subspace orthogonal to ψi and any vectors degenerate with it [47,15,51]. Furthermore, for ε̂i �= εi , the inverse exists
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and returns the correction pi = −ψ̂i , providing no correction to the direction of ψ̂i whatsoever. In practice, since the inverse
is computed only approximately, neither of these issues is a particular concern; however, they can affect convergence at
higher accuracies [51]. In the present case, we solve the equation

(H − ε̂i S)pi = −ri, (15)

inexactly, i.e., find p̂i satisfying∥∥(H − ε̂i S )̂pi + ri
∥∥� η‖ri‖, (16)

where η is a prescribed tolerance.
An asymptotic analysis of superlinear convergence of the preconditioner K ε̂1 for computing the smallest eigenpair has

been studied in [43,30]. This convergence analysis is extended for the case of multiple eigenpairs in our recent work.
Since the preconditioners {K ε̂i }m

i=1 accelerate the convergence of individual eigenpairs {ψ̂i, ε̂i}, we refer to them as locally
accelerated preconditioners.

It is a computational challenge to apply the locally accelerated preconditioners at each BPSD iteration in a cost-effective
way. In [39], it is suggested to first compute the full spectral decomposition of the matrix pair (H, S) at some SCF iteration.
However, the spectral decomposition is prohibitively expensive for large-scale systems. In [33,1], the conjugate-gradient
method is used for solving (15). This allows for very larger-scale calculations. However, the CG method (or MINRES for
indefinite systems) suffers slow convergence and stagnation due to the ill-conditioning of the coefficient matrices, in the
PUFE context in particular.

To overcome the slow convergence of higher eigenpairs using the global preconditioner and high computational cost and
stagnation of the locally accelerated preconditioners, we propose the following hybrid preconditioning scheme:

1. In the initial few SCF iterations, apply only the global preconditioner K ε̄ to compute all search space vectors P =
[p1, p2, . . . , pm], i.e.,

P = −K ε̄ R = −(H − ε̄S)−1 R.

2. If the i-th approximate eigenvalue ε̂i is localized, apply the locally accelerated preconditioner K ε̂i in two stages:

(a) Compute an initial search space vector p̂(0)
i by applying the global preconditioner K ε̄:

p̂(0)
i = −K ε̄ri = −(H − ε̄S)−1ri .

(b) Iteratively refine p̂(0)
i to find the search space vector p̂i satisfying (16).

This two-stage application of locally accelerated preconditioners K ε̂i addresses the issue of slow convergence of iterative

methods for computing p̂i . Using a good initial approximation p̂(0)
i , the iterative refinement is expected to converge in

just a few iterations, typically 2 to 5. The pre-application of the global preconditioner is efficient since the factorization
of the global preconditioner is already available from the initial SCF iteration. As shown in Section 5, the proposed hybrid
preconditioning scheme amortizes the cost of the global preconditioner and significantly reduces the cost of the more ag-
gressive locally accelerated preconditioners, yielding a cost-effective preconditioning scheme for the iterative diagonalization
of ill-conditioned GHEPs.

We shall refer to the combined algorithm, BPSD with above hybrid preconditioning, as the Locally Accelerated Block Pre-
conditioned Steepest Descent (LABPSD) method. An outline of the method is as follows:

1. Input initial approximate eigenpairs {E,Ψ }, where Ψ ∈ C
n×(m+m0)

2. Compute tol0 = Resmax[E,Ψ ]
3. Compute matrix-vector products ΨH = HΨ and ΨS = SΨ

4. Compute residual vectors R = ΨH (:,1:m) − ΨS (:,1:m)E(1:m,1:m)

5. Test for convergence to tolerance τ
(is)

eig . If converged, exit
6. Set up search subspace Z = [Ψ P ] with preconditioned residual vectors P computed as follows:

(a) Apply global preconditioner: P = −K (i0)
ε̄ R

(b) If εi = E(i,i) is localized for some i and 1 � i � m, refine pi = P (:,i) with locally accelerated preconditioner, i.e.,
compute correction vector δpi by solving refinement equation

(H − εi S)δpi = −δri

inexactly, where δri = (H − ε̄S)pi + ri . Set P (:,i) := pi + δpi
7. Perform matrix-vector products P H = H P and P S = S P
8. Set up coefficient matrices of reduced GHEP

HR = [Ψ P ]H [ΨH P H ] and SR = [Ψ P ]H [ΨS P S ]
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9. Compute lowest m + m0 eigenpairs {W , E} of (HR, SR):

HRW = SRW E

10. Compute new approximate eigenvectors Ψ := [Ψ P ]W
11. Update ΨH := [ΨH P H ]W and ΨS := [ΨS P S ]W
12. Go to step 4.

A few remarks are in order.

1. The initial approximations Ψ are eigenvectors Ψ (is−1) from the previous SCF iteration, i.e., Ψ = Ψ (is−1) . Having the
extra m0 vectors is important. It can accelerate convergence substantially when there are multiple (degenerate) or
clustered eigenvalues at or near the m-th. In practical calculations (with multiplicities limited by symmetries in the
underlying physical problem), a small m0 is generally sufficient, for example m0 = m/10. The larger the m0, the faster
the convergence, but also the more matrix-vector products required. Similar findings pertain for other solvers in the
electronic structure context as well, see for example [25,39,7].

2. The LABPSD iteration is considered to be converged if Resmax[E(1:m,1:m),Ψ(:,1:m)]� τ
(is)

eig .
3. Line 6 is only executed for residual vectors corresponding to unconverged eigenpairs. The implementation details are

presented in Section 4.
4. The i-th approximate eigenpair {εi,ψi} = {E(i,i),Ψ(:,i)} is deemed “localized” if the following conditions are satisfied:

Res[εi,ψi]� τ1 and
∣∣εi − ε
−1

i

∣∣� τ2
∣∣ε
−1

i

∣∣,
where ε
−1

i is the i-th approximate eigenvalue from the previous (
− 1) BPSD iteration. Both τ1 and τ2 are parameters.
In our numerical tests, we set τ1 = τ2 = 0.1. The above localization condition thus provides an indication that the i-th
approximate eigenvalue εi has settled down sufficiently with respect to BPSD iterations 
 to be used as a shift for
preconditioning.

5. By storing the block vectors ΨH , ΨS , P H and P S , the matrices H and S are accessed only once per BPSD iteration, other
than in preconditioning step 6.

6. The reduced dense GHEP (HR, SR) can be solved by standard routines such as LAPACK ZHEGVX.

4. Implementation details

In this section, we discuss implementation details of the hybrid preconditioning scheme in step 6 of the LABPSD method.
First, we consider the global preconditioning step 6(a). As discussed in Section 3, the global preconditioner K ε̄ is fixed

throughout the SCF iterations. Typically, the coefficient matrices H (1) and S in the first SCF iteration are sufficient to con-
struct an effective K ε̄ , i.e., i0 = 1 in line 6(a) of LABPSD. Therefore, let us consider how to exploit the structure of H (1) and S
to efficiently compute

P = −K (1)
ε̄ R = −(

H (1) − ε̄S
)−1

R. (17)

From the definition (5) of H (1) , the global preconditioner K (1)
ε̄ is the inverse of a Hermitian matrix plus low-rank update:

K (1)
ε̄ = (

H (loc,1) − ε̄S + H (nl))−1
, (18)

where H (loc,1) − ε̄S is Hermitian and H (nl) has the rank-revealing decomposition

H (nl) = F G F H , (19)

where F is n-by-k and G is k-by-k Hermitian. The rank k is the number of projectors in the pseudopotential formulation,
typically k � n. For localized bases such as PUFE, H (loc,1) and S are sparse.2

To compute P , we first compute the following factorization of the matrix H (loc,1) − ε̄S:

Π	(
H (loc,1) − ε̄S

)
Π = LDLH , (20)

where Π is a permutation matrix, L is a unit lower triangular matrix, and D is a block diagonal matrix with only 1-by-1
and 2-by-2 blocks on the diagonal. Algorithms for the factorization (20) are well-established, see for example [45,46,16].
Since the global preconditioner is unchanged during the SCF iterations, the factorization (20) is computed just once and
used throughout the SCF process. This is along the lines of the global preconditioning scheme suggested in [7]. However, in
the context of a localized basis and sparse matrices, such as PUFE, we use a sparse factorization rather than dense one as
in [7].

2 In PUFE, H(loc,1) and S share the same sparsity pattern.
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With the low-rank representation (19) and factorization (20), we can compute the global-preconditioned search space
vectors P using the Sherman–Morrison–Woodbury (SMW) formula [19] as follows:

1. Compute F̂ = (H (loc,1) − ε̄S)−1 F using the factorization (20)
2. F := F G
3. T = I + F H F̂
4. F := F T −H

5. Compute P = −(H (loc,1) − ε̄S)−1 R using the factorization (20)
6. P := P − F̂ F H P

Here we have arranged the order of computations such that the first four steps are executed just once. By storing F and F̂ ,
P can be computed using only the last two steps.

Turning now to the locally accelerated preconditioning step 6(b), the iterative refinement of initial approximate p̂(0)
i =

P (:,i) computed in step 6(a) can be recast as solving the following linear system:(
H (is) − εi S

)
pi = −ri, (21)

with starting vector p̂(0)
i . Since H (is) − εi S is Hermitian and indefinite, MINRES [32,56] is a natural choice. Although the

coefficient matrix H (is) − εi S of (21) can become highly ill-conditioned, as we show below, we observe that it takes just 2
to 5 iterations for MINRES to converge to the desired tolerance starting from the pre-processed vectors p̂(0)

i from the global
preconditioner.

5. Results

In this section, we provide numerical results to demonstrate the efficiency of the LABPSD algorithm for the rapid iterative
diagonalization of ill-conditioned generalized eigenvalue problems produced by the PUFE electronic structure method [53,
37,36], which employs a strictly local nonorthogonal basis combining atomic orbitals for efficiency and finite elements for
generality and systematic improvability.

We have conducted extensive tests of the LABPSD method in PUFE calculations of a variety of materials systems. Here we
show results for two systems representative of opposite extremes: CuAl with a soft, shallow pseudopotential and clustered
or degenerate eigenvalues, and CeAl with a notably hard and deep pseudopotential and nondegenerate spectrum.

CuAl Our first test case is a high-symmetry, cubic CuAl metallic system, with Γ -point Brillouin zone sampling to maximize
degeneracies in the spectrum. The unit cell is body-centered cubic with lattice parameter a = 5.8 Bohr and atomic positions
τ 1 = (0.0,0.0,0.0) (Cu) and τ 2 = (0.5,0.5,0.5) (Al), in lattice coordinates. The Brillouin zone is sampled at the Γ -point
to maximize degeneracies in the spectrum, including degeneracy at the Fermi level, thus providing a stringent test of the
eigensolver’s ability to extract clustered/degenerate eigenpairs. The resulting spectrum has a triple-degeneracy (eigenvalues
of 0.36047 Hartree) and a double-degeneracy (eigenvalues of 0.37553 Hartree), which is also the highest occupied state
with Fermi–Dirac occupation and kB T = 0.01 a.u.

CeAl As a test of the solver’s ability to handle general, nondegenerate spectra, with low-lying eigenvalues and thus broader
overall spectrum, we consider next the case of metallic, triclinic CeAl. This is a particularly challenging system due to
the following properties: (a) The potentials of the atoms are deep, producing strongly localized solutions, with low-lying
eigenvalues, that require larger basis sets to resolve. (b) The atoms are heavy, with many electrons in valence, requiring
many eigenfunctions to be computed. (c) Because the system contains Ce, it requires 17 orbital enrichment functions per
atom (in contrast to Cu for example, which requires only 1), which increases basis size substantially for PUFE. The radial
parts of the orbital enrichment functions (pseudoatomic wavefunctions) for Ce and Al are shown in Fig. 5.3. (d) The lattice is
triclinic with atoms displaced from ideal positions. This provides a completely general problem, with no special symmetries
to exploit and general, nondegenerate spectrum. (e) We do not assume a band gap, but rather solve the general metallic
problem with Fermi–Dirac occupation and kB T = 0.01 a.u.

The triclinic unit cell for CeAl has lattice vectors

a1 = a(1.00,0.02,−0.04),

a2 = a(0.01,0.98,0.03),

a3 = a(0.03,−0.06,1.09),

with lattice parameter a = 5.75 Bohr. Atomic lattice coordinates are τ 1 = (0.01,0.02,0.03) (Ce) and τ 2 = (0.51,0.47,0.55)

(Al). The Brillouin zone is sampled at the Γ -point and at k = (0.12,−0.24,0.37). Therefore, there are two independent
sequences of GHEPs in the SCF procedure.

For all simulations, the SCF procedure is terminated at the is-th iteration if the relative change of input and output
effective potentials satisfies
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Fig. 5.3. PUFE orbital enrichment functions for CeAl. Radial parts for (a) Ce and (b) Al.

v(is)

dif = ‖V out
eff − V in

eff‖
‖V in

eff‖
� τscf (22)

for a prescribed tolerance τscf. As reference, total energies are also calculated by the abinit planewave code [9] with well-
converged planewave cutoff. By virtue of the orbital functions in the PUFE basis, the dimension of the PUFE GHEP is about
a factor of 5 smaller than that of a planewave calculation of the same accuracy.

The dimension of the GHEP (5) is ndof = 7n3
0 + ne , where n0 is the number of elements the x-, y- and z-directions

(uniform FE mesh) and ne is determined by the enrichment support radius re and number of atoms. The factor of 7 is due
to the use of cubic serendipity brick elements [53]. By introducing a shift σ0, H (is) := H (is) −σ0 S is made Hermitian positive
definite.3 The PUFE code provides the routines to perform the matrix-vector multiplications H (loc)v , H (nl)v and S v for an
arbitrary vector v . Subsequently, the matrix-vector multiplication (H (is) − σ S)v is readily computable for any shift σ to
facilitate preconditioning.

In addition, termination criteria for the SCF, BPSD, and MINRES iterations are τscf = 10−5, τ
(is)

eig = 1
10 v(is)

dif , and η(is) =
η = 0.25, respectively. The maximum number of outer BPSD and inner MINRES iterations are set to 20, unless otherwise
specified. The outermost SCF iterations are repeated until convergence of the potential as defined in (22) is achieved. The
global shift ε̄ is chosen to be close to the desired eigenvalues of (H (is), S). In particular, ε̄ = −0.3 for CuAl, ε̄ = −1.0 for
CeAl, which are smaller than the estimated smallest eigenvalues of (H (is), S) for the cases considered here. As observed
in [7], our numerical experiments also show ε̄ has little influence on the convergence of the BPSD iteration.

Computations reported in this paper were carried out on a two-socket six-core Intel Xeon 2.93 GHz processor with 94 GB
memory. Intel MKL was used for BLAS and LAPACK operations in the LABPSD method. In addition, the DSS package of MKL
was used for computing the sparse factorization (20) of the global preconditioner. DSS is an interface to PARDISO [45,46]
and provides subroutines to compute (H (loc,1) − ε̄S)−1 v for a given vector v after the sparse factorization is computed.

5.1. SCF convergence

We first examine the convergence of the SCF procedure using LABPSD for the iterative diagonalization of the associated
sequence of GHEPs.

CuAl A uniform 12 × 12 × 12 finite-element mesh and enrichment support radius re = 4 are employed to provide high
accuracy and a strong test of ill-conditioning. The dimension of the GHEP (5) is ndof = 7 × 123 + 8130 = 20 226. The rank of
H (nl) is k = 19. m = 10 eigenpairs are computed in order to accommodate all electrons in valence and achieve convergence
of the effective potential to the desired accuracy.

The left plot of Fig. 5.4 shows the maximum relative residual errors Resmax [̂E, Ψ̂ ] of the sequence of the GHEPs at the
beginning and end of each SCF iteration, where m0 = 10 for the BPSD iterations. The right plot of Fig. 5.4 shows the corre-
sponding difference v(is)

dif of input and output effective potentials (Eq. (4)). As can be seen, with LAPBSD as the eigensolver,

the maximum relative residual error of the GHEP steadily drops at the rate τ
(is)

eig = 1
10 v(is)

dif , along with the input–output
potential difference. If the accuracy of the eigensolves at each SCF iteration is further increased, the convergence of the
effective potential is not substantially affected.

3 Usually, σ0 is selected close to the eigenvalues of interest. In electronic structure calculations, a good estimate of the lowest eigenvalue is generally

available so that a shift σ0 to make H(is) positive definite is readily determined.
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Fig. 5.4. CuAl simulation. The maximum relative backward error of the sequence of GHEPs in the solution of NLEP (3) (left), and the relative difference of
effective potentials V eff (right).

Fig. 5.5. CeAl simulation. The maximum relative backward error of two sequences (ik = 1 and ik = 2) of GHEPs in the solution of NLEP (3) (left), and the
relative difference of effective potentials V eff (right).

We note that in the final SCF iteration, the lowest 10 computed eigenvalues are

−0.1987515094, 0.3604669213, 0.3604669241, 0.3604669358, 0.3755287169,

0.3755287473, 0.5721570004, 0.8464957683, 0.8464958151, 0.8464958184,

with triply degenerate value at ∼ 0.3604669 and doubly degenerate value at ∼ 0.3755287, as in the reference planewave
calculations (deviations from exact degeneracy in the final digits are due to the lower symmetry of the basis than the
crystal [34]). As can be seen, the degenerate values pose no particular difficulty for the LABPSD solver.

CeAl For the CeAl system, we consider a 12 × 12 × 12 finite-element mesh with re = 2.5. The dimension of the GHEP
(5) is ndof = 23 795. The rank of H (nl) is k = 26. In this case, m = 22 eigenpairs are computed to accommodate all valence
electrons with specified Fermi–Dirac occupation. The left plot of Fig. 5.5 shows the reduction of the maximum relative
residual errors Resmax [̂E, Ψ̂ ] of the sequence of the GHEPs, where m0 = 3. The right plot of Fig. 5.5 shows the corresponding
difference v(is)

dif . Again, the maximum relative residual error of the GHEP steadily drops at the rate τ
(is)

eig = 1
10 v(is)

dif , along
with the input–output potential difference. If the accuracy of the eigensolves at each SCF iteration is further increased, the
convergence of the effective potential is not substantially affected.

5.2. Inner and outer iterations

Now, let us examine the efficiency of the LABPSD in terms of the following two quantities:

Hp = Bs and La = Ms
,

Ss × Nk Bs × m
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Fig. 5.6. CuAl simulation: Hp- and La- numbers (see text) for the LABPSD solver for a series of n0 ×n0 ×n0 FE meshes (left) and enrichment support radii re

(right).

Fig. 5.7. CeAl simulation, Hp- and La- numbers (see text) for the LABPSD solver for a series of n0 ×n0 ×n0 FE meshes (left) and enrichment support radii re

(right).

where Ss is the total number of SCF iterations, Bs is the total number of BPSD iterations, and Ms is the total number of
MINRES iterations. Nk is the number of k-points (Nk = 1 in the CuAl case, Nk = 2 in the CeAl case). By the above definition,
Hp is the average number of outer BPSD iterations per SCF iteration for each k-point. A small Hp-number indicates the
efficiency of the hybrid preconditioning technique. Similarly, La is the average number of inner MINRES iterations per outer
BPSD iteration for each eigenpair. A small La-number indicates the efficiency of applying the locally accelerated precondi-
tioners in the proposed two stages.

CuAl The left plot of Fig. 5.6 shows the Hp- and La-numbers for LABPSD for a sequence of refined FE meshes with re = 4
fixed. The right plot is for different enrichment support radii re and fixed 8 × 8 × 8 FE mesh. This constitutes a severe test
of robustness with respect to ill-conditioning since as either the mesh or support radius are increased, the conditioning of
the GHEP worsens dramatically, as shown in Table 2.1. In all cases, the rank of H (nl) is k = 19 and the number of eigenpairs
computed per SCF iteration is m = 10.

CeAl Similarly, for the CeAl system, the left plot of Fig. 5.7 shows the Hp- and La-numbers with re = 2.5. The right plot is
for different enrichment support radii re with the fixed 8 × 8 × 8 FE mesh. This constitutes a severe test of robustness with
respect to ill-conditioning. In this case, the rank of H (nl) is k = 26 and the number of eigenpairs computed per SCF iteration
is m = 22.

For both CuAl and CeAl simulations, as the mesh is refined or re is increased, the error of the computed PUFE total
energy decreases to 10−6 Hartree/atom relative to the well-converged planewave reference. Significantly, we observe that
all Hp-numbers are between 2 and 6, with only mild dependence on conditioning as it worsens considerably with increasing
mesh and support radius. Meanwhile, all La-numbers are between 0 and 4, with no apparent dependence on conditioning. As
we show below (Section 5.4), this is in stark contrast to typical global-only or local-only preconditioning schemes, which
are highly sensitive to the conditioning of the problem. Furthermore, these Hp- and La-numbers are comparable to the
typical numbers of inner and outer iterations required by the LOBPCG method on the well-conditioned standard eigenvalue
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Fig. 5.8. Normalized CPU time and percentages with increasing m in the CeAl simulation.

problems produced by the planewave ab initio method [9]. This indicates that LABPSD is an efficient method for the rapid
iterative diagonalization of ill-conditioned GHEPs produced by nonorthogonal atomic-orbital based methods such as PUFE.

5.3. Timing

We now consider the timing of key steps of LABPSD for increasing numbers m of eigenpairs. For these purposes, we now
focus on the more computationally intensive CeAl system, where the dimension of the GHEPs (5) is ndof = 7×123 +11 699 =
23 795. The enrichment support radius is re = 2.5. The rank of H (nl) is k = 26.

Fig. 5.8 shows the CPU time normalized with respect to the CPU time for computing m = 50 eigenvalues, and the
most time consuming parts for LABPSD are shown for a series of PUFE calculations with increasing numbers of eigenpairs
m = 50,100,200 with m0 = 10. Each calculation takes 23 SCF iterations to converge to the required tolerance. As expected,
the CPU time is dominated by the preconditioning step 6 at about 60% of the total time in all cases. The cost of the
global preconditioner in step 6(a) increases as m increases, as expected. However, as a percentage of the total, the cost
actually decreases, which is a consequence of the fact that the cost of the sparse factorization (20) and application of
the global preconditioner is amortized when more eigenpairs are computed. On the other hand, the cost of the locally
accelerated preconditioners in step 6(b) increases as a percentage of the total as more eigenpairs are computed. The cost of
matrix-vector products in step 7 is proportionally increased with the number of computed eigenpairs; however, the overall
cost is reduced from 20% to about 15% of the total when more eigenpairs are computed. The costs of all other steps, such as
setting up the reduced GHEP (step 8), updating (step 11), and solving the reduced eigenvalue problem (step 9) are relatively
small at 20% of the total. As m is increased further, the solution of the reduced problem must dominate at some point due
to its m3 scaling. However, at the present system sizes, it remains a small fraction of the total. Overall, when LABPSD is
used for computing 4 times more eigenpairs, namely from m = 50 to m = 200, the total CPU time is also increased by about
a factor of 4 (3.73).

We note that the LDLH factorization (20) is computed only once at the beginning of the SCF cycle. The CPU time of the
factorization (20) is a small percentage of the total. Specifically, the LDLH factorizations for the two k-points take just 3% of
the total time when m = 50, and 0.7% when m = 200.

5.4. Global, local, and hybrid preconditioning

Here we compare the hybrid preconditioning scheme to current state-of-the-art global preconditioning as in [7] and local
preconditioning as in [33,1,39]. Having demonstrated in Sections 5.1 and 5.2 the robustness of the hybrid preconditioner
with respect to both the distribution (clustered and nonclustered) and width (hard and soft potentials) of the spectrum,
we shall restrict focus here to the more computationally intensive CeAl system, where the dimension of the GHEPs is
n = 7 × 83 + 3532 = 7116. The enrichment support radius re = 2.5, the rank of H (nl) is k = 26, and m = 22 eigenpairs are
computed at each SCF iteration with m0 = 3.

Fig. 5.9 shows the maximum relative residual norms of the eigenpairs in successive SCF iterations when solving the
sequence of GHEPs by BPSD with global, local, and hybrid preconditioners.

If we use the global preconditioner step 6(a) only (i.e., without step 6(b)), the SCF convergence stagnates after about
9 SCF iterations due to the inability of the eigensolver to reduce residuals sufficiently within the maximum 200 BPSD
iterations. The total CPU time was 11.4 hours, due to the relative ineffectiveness of the global preconditioner and consequent
large number of outer (BPSD) iterations.

On the other hand, if we apply the local preconditioner step 6(b) only, without the global preconditioner 6(a), the
SCF convergence stagnates after about 17 SCF iterations, again due to the inability of the eigensolver to reduce the residuals
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Fig. 5.9. Maximum relative residual norms of GHEPs at the beginning and end of each SCF iteration, using global, local, and hybrid preconditioners in the
CeAl simulation.

sufficiently even with the maximum 100 BPSD and 500 MINRES iterations.4 Due to the large number of both inner (MINRES)
and outer (BPSD) iterations, the total CPU time was 138.6 hours.

In stark contrast, the SCF iteration converges steadily to the specified tolerance with the hybrid preconditioning scheme.
The Hp- and La-numbers are 3.0 and 2.3, respectively, while achieving smooth SCF convergence at a rate comparable to
exact diagonalization at each SCF step. Due to the small number of both inner and outer iterations, the total CPU time was
reduced to just 1.3 hours.

6. Conclusions

We proposed a block hybrid-preconditioned steepest descent method, LABPSD, for the iterative diagonalization of the
sequence of ill-conditioned generalized Hermitian eigenvalue problems which arise in electronic structure calculations
using orbital-based nonorthogonal basis sets. For such problems, the hybrid scheme overcomes the drawbacks of stag-
nation of global preconditioners and excessive cost of locally accelerated iterative preconditioners. PUFE pseudopotential
density-functional calculations of CuAl, with soft potentials and degenerate eigenvalues, and CeAl, with hard potentials
and nondegenerate spectrum, showed Hp- and La-numbers comparable to the typical numbers of inner and outer itera-
tions required by the LOBPCG method on well-conditioned standard eigenvalue problems produced by the planewave ab
initio method. Given the generality of the method and robustness with respect to spectral structure, it is expected that the
LABPSD method will provide similar benefits to other orbital-based, nonorthogonal electronic structure methods as well.
Indeed, it is reasonable to expect benefits not only for pseudopotential based methods, as demonstrated here, but for all-
electron methods such as APW+lo [48] and LMTO [50] also, since these require diagonalization for just valence states as
well (the core states having been solved separately in a spherical approximation).

The LABPSD algorithm and implementation present many opportunities for future work. First, similar to [7], we expect
that the sparse LDLH factorization (20) in single precision or even an incomplete factorization might be sufficient. This will
substantially reduce memory and I/O costs for very large systems. Secondly, instead of using MINRES for the iterative
refinement in applying locally accelerated preconditioners, one can use a simple first-order one-step iterative method [4]:

p̂(
+1)
i = p̂(
)

i − α
[(

H (is) − ε̂i S
)̂

p(
)
i − ri

]
with initial p̂(0)

i from the global preconditioner, where α is chosen to minimize the residual norm of the linear system (15).
Our preliminary results are very encouraging, which is particularly promising for parallel distributed computing. In addition,
although we have not encountered the rank deficiency of the subspace matrix Z produced in step 6 of the LABPSD method,
a rank-revealing re-orthogonalization process would be necessary for a general-purpose implementation, such as in the
block steepest descent method implemented in EA19 of HSL [31].

Acknowledgements

We are grateful to anonymous referees for their careful reading of the manuscript and most valuable comments.

4 We use the locally accelerated preconditioners after the approximate eigenpairs are localized at the 9-th SCF iteration. For the first 8 SCF iterations, we
apply the global preconditioner.



Y. Cai et al. / Journal of Computational Physics 255 (2013) 16–30 29
References

[1] K.E. Andersen, Electronic structure of nanomaterials: Computational methods and application to niobium clusters, PhD thesis, University of California,
Davis, CA, USA, 2005.

[2] T.A. Arias, Multiresolution analysis of electronic structure: Semicardinal and wavelet bases, Rev. Mod. Phys. 71 (1) (1999) 267–311.
[3] E. Artacho, E. Anglada, O. Diéguez, J.D. Gale, A. García, J. Junquera, R.M. Martin, P. Ordejón, J.M. Pruneda, D. Sánchez-Portal, J.M. Soler, The SIESTA

method; developments and applicability, in: 2nd Workshop on Theory Meets Industry, Erwin Schrodinger Inst, Vienna, Austria, Jun 12–14, 2007,
J. Phys. Condens. Matter 20 (6) (2008) 064208.

[4] O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York, 1994.
[5] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (Eds.), Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM,

Philadelphia, 2000.
[6] T.L. Beck, Real-space mesh techniques in density functional theory, Rev. Mod. Phys. 72 (4) (2000) 1041–1080.
[7] P. Blaha, H. Hofstätter, O. Koch, R. Laskowski, K. Schwarz, Iterative diagonalization in augmented plane wave based methods in electronic structure

calculations, J. Comput. Phys. 229 (2) (2010) 453–460.
[8] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals,

Comput. Phys. Commun. 180 (11) (2009) 2175–2196.
[9] F. Bottin, S. Leroux, A. Knyazev, G. Zérah, Large-scale ab initio calculations based on three levels of parallelization, Comput. Mater. Sci. 42 (2) (2008)

329–336.
[10] E.L. Briggs, D.J. Sullivan, J. Bernholc, Large-scale electronic-structure calculations with multigrid acceleration, Phys. Rev. B 52 (8) (1995) R5471–R5474.
[11] J.R. Chelikowsky, N. Troullier, Y. Saad, Finite-difference pseudopotential method: Electronic-structure calculations without a basis, Phys. Rev. Lett. 72 (8)

(1994) 1240–1243.
[12] J.R. Chelikowsky, N. Troullier, K. Wu, Y. Saad, Higher-order finite-difference pseudopotential method: An application to diatomic molecules, Phys. Rev.

B 50 (16) (1994) 11355–11364.
[13] K. Cho, T.A. Arias, J.D. Joannopoulos, P.K. Lam, Wavelets in electronic structure calculations, Phys. Rev. Lett. 71 (12) (1993) 1808–1811.
[14] E.R. Davidson, The iterative calculation of a few of lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput.

Phys. 17 (1) (1975) 87–94.
[15] E.R. Davidson, Super-matrix methods, Comput. Phys. Commun. 53 (1–3) (1989) 49–60.
[16] T.A. Davis, Algorithm 849: A concise sparse Cholesky factorization package, ACM Trans. Math. Softw. 31 (4) (2005) 587–591.
[17] Luigi Genovese, Alexey Neelov, Stefan Goedecker, Thierry Deutsch, Seyed Alireza Ghasemi, Alexander Willand, Damien Caliste, Oded Zilberberg,

Mark Rayson, Anders Bergman, Reinhold Schneider, Daubechies wavelets as a basis set for density functional pseudopotential calculations, J. Chem.
Phys. 129 (1) (2008) 014109.

[18] A. Gerstenberger, R.S. Tuminaro, An algebraic multigrid approach to solve extended finite element based fracture problems, Int. J. Numer. Methods
Eng. 94 (3) (2013) 248–272.

[19] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edition, Johns Hopkins University Press, Baltimore and Maryland, 1996.
[20] C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58 (7) (1998) 3641.
[21] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B) (1964) B864–B871.
[22] M. Jungen, K. Kaufmann, The Fix–Heiberger procedure for solving the generalized ill-conditioned symmetric eigenvalue problem, Int. J. Quant.

Chem. 41 (3) (1992) 387–397.
[23] A. Knyazev, K. Neymeyr, Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate

gradient method, Electron. Trans. Numer. Anal. 15 (2003) 38–55.
[24] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (4A) (1965) A1133–A1138.
[25] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996)

11169–11186.
[26] L. Lin, J. Lu, L. Ying, W.E., Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework I: Total energy

calculation, J. Comput. Phys. 231 (4) (2012) 2140–2154.
[27] D.E. Longsine, S.F. McCormick, Simultaneous Rayleigh-quotient minimization methods for Ax = λBx, Linear Algebra Appl. 34 (1980) 195–234.
[28] P.O. Löwdin, Group algebra, convolution algebra, and applications to quantum mechanics, Rev. Mod. Phys. 39 (2) (1967) 259–287.
[29] R.M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, 2004.
[30] E.E. Ovtchinnikov, Sharp convergence estimates for the preconditioned steepest descent method for Hermitian eigenvalue problems, SIAM J. Numer.

Anal. 43 (6) (2006) 2668–2689.
[31] E.E. Ovtchinnkov, J.K. Reid, A preconditioned block conjugate gradient algorithm for computing extreme eigenpairs of symmetric and Hermitian prob-

lems, Technical report, RAL-TR-2010-019, 2010.
[32] C.C. Paige, M.A. Saunders, Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal. 12 (4) (1975) 617–629.
[33] J.E. Pask, K.E. Andersen, Large-scale eigenproblems in ab initio electronic-structure calculations, in: 17th International Association for Mathematics and

Computers in Simulation World Congress: Scientific Computation, Applied Mathematics and Simulation, Paris, France, July 2005.
[34] J.E. Pask, B.M. Klein, C.Y. Fong, P.A. Sterne, Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach,

Phys. Rev. B 59 (19) (1999) 12352–12358.
[35] J.E. Pask, P.A. Sterne, Finite element methods in ab initio electronic structure calculations, Model. Simul. Mater. Sci. Eng. 13 (2005) 71–96.
[36] J.E. Pask, N. Sukumar, M. Guney, W. Hu, Partition-of-unity finite-element method for large scale quantum molecular dynamics on mas-

sively parallel computational platforms, Technical Report LLNL-TR-470692, Department of Energy LDRD 08-ERD-052, March 2011. Available at
http://e-reports-ext.llnl.gov/pdf/471660.pdf.

[37] J.E. Pask, N. Sukumar, S.E. Mousavi, Linear scaling solution of the all-electron Coulomb problem in solids, Int. J. Multiscale Comput. Eng. 10 (1) (2012)
83–99.

[38] P. Pulay, Convergence acceleration of iterative sequences. The case of scf iteration, Chem. Phys. Lett. 73 (2) (1980) 393–398.
[39] M.J. Rayson, P.R. Briddon, Rapid iterative method for electronic-structure eigenproblems using localised basis functions, Comput. Phys. Commun. 178 (2)

(2008) 128–134.
[40] Y. Saad, J.R. Chelikowsky, S.M. Shontz, Numerical methods for electronic structure calculations of materials, SIAM Rev. 52 (1) (2010) 3–54.
[41] Y. Saad, J.R. Chelikowsky, S.M. Shoutz, Numerical methods for electronic structure calculations of materials, Technical Report UMNSI-2006-15, Depart-

ment of Computer Science and Engineering, University of Minnesota, 2006.
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