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Abstract. A major hindrance to studies of microbial diversity has been
that the vast majority of microbes cannot be cultured in the laboratory
and thus are not amenable to traditional methods of characterization.
Environmental shotgun sequencing (ESS) overcomes this hurdle by se-
quencing the DNA from the organisms present in a microbial community.
The interpretation of this metagenomic data can be greatly facilitated
by associating every sequence read with its source organism. We report
the development of CompostBin, a DNA composition-based algorithm
for analyzing metagenomic sequence reads and distributing them into
taxon-specific bins. Unlike previous methods that seek to bin assembled
contigs and often require training on known reference genomes, Com-
postBin has the ability to accurately bin raw sequence reads without
need for assembly or training. CompostBin uses a novel weighted PCA
algorithm to project the high dimensional DNA composition data into
an informative lower-dimensional space, and then uses the normalized
cut clustering algorithm on this filtered data set to classify sequences
into taxon-specific bins. We demonstrate the algorithm’s accuracy on a
variety of low to medium complexity data sets.

Keywords: Metagenomics, Binning, Feature Extraction, Normalized
Cut, weighted PCA, DNA composition metrics, Genome Signatures.

1 Introduction

Microbes are ubiquitous organisms that play pivotal roles in the earth’s bio-
geochemical cycles. Their most visible effects on human well-being arise through
their roles as mutualistic symbionts and hazardous pathogens. The study of mi-
crobes is crucial to our understanding of the earth’s life processes and human
health. Most of our knowledge about microbes has been obtained through the
study of organisms cultured in artificial media in the laboratory. Although this
approach has provided profound biological insights, it is inadequate for studying
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the structure and function of many microbial communities. One obstacle has
been that the vast majority of microbes have not been cultured and may not
be culturable [1]. Even though culture independent methods such as 16S rRNA
surveys [2] have been developed, they are unable to simultaneously answer two
fundamental questions: Who is out there? and What are they doing? The ap-
plication of genome sequencing methods is revolutionizing this field by enabling
us for the first time to address those two questions for unculturable microbial
communities [3,4,5]. These techniques, called environmental genomics or metage-
nomics, study microbial communities by analyzing the pooled genomes of all the
organisms present in the community.

In one specific metagenomic method, environmental shotgun sequencing (ESS),
DNApooled fromamicrobial community is sampled randomlyusingwhole genome
shotgun sequencing. Thus, ESS data is made up of sequence reads from multiple
species. This adds an additional layer of complexity compared to single-species
genome sequencing, as it requires analysis of the metagenomic data in order to
associate each sequence read with its source organism. Therefore, a critical first
step in many metagenomic analyses is the distribution of reads into taxon-specific
bins.

The difficulty of accurately binning ESS reads from whole genome data
remains a significant hurdle in metagenomics. The taxonomic resolution achiev-
able by the analysis depends on both the binning method and the complex-
ity of the community. For instance, binning into species-specific bins can be
achieved in low-complexity microbial communities (e.g., the dual-bacterial sym-
biosis of sharpshooters [6]). However, the problem becomes more difficult in
high-complexity communities with hundreds of species, such as ocean microbial
communities [7] and the human distal gut [5]. Because of these difficulties, many
metagenomic studies (e.g., [8]) have resorted to analyzing at the level of the
metagenome, essentially treating a microbial community as a bag of genes. This
is not a satisfactory solution. Identifying and characterizing individual genomes
can provide deeper insight into the structure of the community [6].

A variety of approaches have been developed for binning: assembly, phyloge-
netic analysis [9], database search [10], alignment with reference genome [7] and
DNA composition metrics [11,12,13] Most current binning methods suffer from
two major limitations: they require closely related reference genomes for train-
ing/alignment and they perform poorly on short sequences. To overcome the
second difficulty, almost all current binning methods are applied to assembled
contigs. However, most of the current generation assemblers can be confounded
by metagenomic data since they implicitly assume that the shotgun data is from
a single individual or clone. Therefore, we believe that assembly is risky when
binning and that it is necessary to analyze raw sequence reads to get an unbiased
look at the data.

To overcome the above-mentioned disadvantages of other binning methods,
we have developed CompostBin, a binning algorithm based on DNA compo-
sition. CompostBin can bin raw sequence reads into taxon-specific bins with
high accuracy and does not require training on currently available genomes.
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Fig. 1. High-level overview of the CompostBin algorithm. Principal Component Anal-
ysis is used to project the data into a lower-dimensional space. A semi-supervised nor-
malized cut algorithm is used to segment the data set into two subsets. The algorithm
is applied iteratively on the subsets to obtain the desired number of bins.

Like other composition-based methods, it seeks to distinguish different genomes
based on their characteristic DNA compositional patterns, termed ”signatures.”
For example, one of the most commonly used metrics measure the frequency
of occurrence of Kmers (oligonucleotides of length K) in a sequence. Biases in
Kmer frequencies were analyzed extensively by Karlin and colleagues (e.g. [14]).

These biases have been extensively used for binning metagenomic sequences.
For instance, TETRA[11] uses z-scores from tetramer frequencies to classify
metagenomic sequences. A related program, MetaClust uses a combination of
Kmer frequency metrics to score metagenomic sequences and was used to clas-
sify sequences from the endosymbionts of a gutless worm [15]. However, the final
assignment of sequences to bins in both these programs involve a significant
manual component. Another class of methods [12,13] train their classifier using
existing whole genome sequences and these classifiers can be even used to classify
sequences from closely related novel genomes. However, as we discuss later, a seri-
ous drawback of these methods is that the pool of available genomes is very small
and biased. Finally, the interpolated Markov model of the genefinder Glimmer
can be used for binning in specific cases and has been used to distinguish sym-
biont sequences from the host sequences [16]. Unfortunately, these composition-
based binning algorithms do not perform well on short fragments. Poor per-
formance in shorter fragments is caused by the noise associated with the high
dimensionality of the feature space and the associated curse of dimensionality.
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Fig. 2. Figure illustrating the separation of sequences according to species by using
PCA. This data set contains sequences from two alphaproteobacteria, Gluconobacter
oxydans (in red) and Rhodospirillum rubrum (in blue), which have GC content of 0.65
and 0.61, respectively. The data set is projected into the first two principal components.

When measuring the frequency of Kmers, the feature vector has 4K dimensions
(associated with measuring the frequencies of 4K possible oligonucleotides of
length K). Thus, for instance, if one looks at the frequency of hexamers in 2kb
fragments, the dimensionality of the feature space is twice the length of the
sequenced fragments.

CompostBin employs a new approach to deal with the noise arising from
the high dimensionality of the feature vector (Figure 1). Instead of treating all
components of the noisy feature space equally, we extract the most ”important”
directions and use these components for distinguishing between taxa. We use a
weighted version of the standard Principal Component Analysis technique[17]
to extract a “meaningful” lower dimensional sub-space. As shown in Figure 2,
the algorithm can distinguish sequences from various species using just these
first three principal components. The normalized cut clustering algorithm used
to classify sequences into taxon-specific bins works on the lower dimensional
sub-space and is guided by information from phylogenetic markers. We tested
CompostBin on a wide variety of data sets and demonstrated that it is highly
accurate in separating sequences into taxon-specific bins, even when processing
raw reads of short sequences.

2 Methods

2.1 The CompostBin Algorithm

The input to CompostBin consists of raw sequence reads, along with mate pair
information and the taxonomic assignment of reads containing phylogenetic
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markers. Either the number of abundant species or the number of taxonomic
groups in the data set is provided to help the algorithm determine the number
of bins in the output. This information can be obtained by analyzing the reads
containing genes for ribosomal RNA or other marker genes [7]. In the simulation
experiments, the number of bins is set to the number of species in the simulation.
An overview of the algorithm is provided in Figure 1.

Feature Extraction by weighted PCA: Mate pairs are joined together and
treated as a single sequence because they are highly likely to have originated from
the same organism. Each sequence being analyzed is initially represented as a
4, 096-dimensional feature vector, with each component denoting the frequency
of one of the 4, 096 hexamers. A weighted version of Principal Component Anal-
ysis (PCA) is then used to decrease the noise inherent in this high-dimensional
data set by identifying the principal components of the feature matrix A.

In the standard form of Principal Component Analysis, the principal com-
ponents are the orthogonal directions with highest variance and correspond to
eigenvectors of the covariance matrix. If the relative abundance of various species
is skewed, standard PCA might not be suitable for distinguishing the species.
This is because the within species variance in the more abundant species might
be overwhelming compared to between species variance and therefore the prin-
cipal components cannot be used to distinguish between species. Therefore, we
try to take the relative abundance into account in a weighting scheme that is
used to normalize the effect of skewed relative abundance. We use a generalized
variant of Principal Component Analysis that assigns a weight to each sequence
and uses these weights to calculate the weighted covariance matrix of the data
set. The principal components are the eigenvectors of this weighted covariance
matrix. Further details about this generalization of PCA can be obtained from
Chapter 14 of the book by Jolliffe [17].

We use a novel weighting scheme where the weight of each sequence is cal-
culated by measuring its overlap with other reads in the data set. For each
sequence, BLAT [18] was used to find overlaps with other sequences in the data
set. This overlap information is then used to calculate the number of times a
particular base in the sequence has been sequenced and thus estimate the cover-
age of the sequence (as defined in [19]). The weight of each sequence is set to the
inverse of its coverage. The rationale behind this weighting strategy is that the
sequences from the more abundant species will have higher coverage and thus
will be weighed down. In fact, if there are sufficient number of sequences and
the genome sizes of all species in the sample are equal, the average weight of the
sequences from a particular species will be inversely proportional to the relative
abundance of that species.

Determining the number of principal components required for analysis is cru-
cial to the success of the algorithm. In our case, use of just the first three principal
components is adequate to separate sequences from different species. For exam-
ple, Figure 2 shows that for Data Set S5 which contains two alphaproteobacteria
with similar GC content, almost complete separation is achieved by using only
the first two principal components.
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Fig. 3. Pseudocode describing the bisection and binning algorithm. A is the N ×4, 096
feature matrix, with each 4, 096-length feature vector representing a sequence. L con-
tains labeling information obtained from phylogenetic markers, and K is the the desired
number of bins.

Bisection by Normalized Cuts: The projection of the data matrix A into the
first three principal components produces an N ×3 data matrix Ap. A clustering
algorithm is then applied to Ap to separate the N points into taxon-specific
bins. A bisection algorithm is used to bisect a data set into two bins as detailed
below. If the data set is to be divided into more than two bins, this algorithm
is used recursively. Figure 3(a) shows pseudocode for the bisection algorithm.
Given the projected matrix and phylogenetic markers as inputs, the procedure
first computes the weighted graph over the sequences where the edge weights
measure the similarity between corresponding sequences. Then, the normalized
cut clustering algorithm [22] is employed to bisect the graph such that sequences
from the same taxonomic group stay together.

Computation of Similarity Measure: As described earlier, the 4, 096-dimensional
feature vector is projected into the first three principal components, and each se-
quence is represented as a point in 3-dimensional space. The clustering algorithm
initially creates a 6-nearest neighbor graph G(V, E, W ) to capture the structure
of the data set. The vertices in V correspond to the sequences, and an edge
(v1, v2) ∈ E between two sequences v1 and v2 exists only if one of the sequences
is a 6-nearest neighbor of the other in Euclidean space. The nearest-neighbor
graph reveals the global relation of the data set through this easily-computable
local metric [20]. Each edge between two neighboring sequences v1 and v2 is
weighted by their similarity w(v1, v2), which is defined as the exponential in-
verse of their normalized Euclidean distance:

w(v1, v2) =

{
e−

d(v1,v2)
α if (v1, v2) ∈ E,

0 otherwise,
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where d(v1, v2) is the Euclidean distance between v1 and v2, and α =
max(v,u)∈E d(v, u).

Semi-supervision Using Phylogenetic Markers: Marker genes, such as the genes
that code for ribosomal proteins, are one of the most reliable tools for phylo-
genetically assigning reads to bins. Since these marker genes appear in only a
small fraction of the reads, we used taxonomic information from 31 phylogenetic
markers [21] to improve the clustering algorithm. This taxonomic information
is provided to the binning algorithm as a label for each sequence, with each la-
bel corresponding to a single taxonomic group. Sequences without a taxonomic
assignment are assigned the label ”unknown.”

A semi-supervised approach is then employed to incorporate this information
into the clustering algorithm. Two vertices v1 and v2 are connected with the
maximum edge weight (i.e., w(v1, v2) = 1) if the corresponding sequences are
from the same taxonomic group, and the edge between v1 and v2 is removed
(i.e., w(v1, v2) = 0) if they are from different groups.

Normalized Cut and its approximation: Given a weighted graph G(V, E, W ), the
association between two subsets X and Y of V W (X, Y ) is defined as the total
weight of the edges connecting X and Y : W (X, Y ) =

∑
x∈X,y∈Y w(x, y). The

normalized cut algorithm bisects V into two disjoint subsets U and Ū such that
the association within each cluster is large while the association between clusters
is small, i.e., the normalized cut value NCut is minimized, where

NCut =
W (U, Ū)
W (U, V )

+
W (U, Ū)
W (Ū , V )

.

Since finding the exact solution to minimize NCut is an NP-hard problem, an
approximate solution is computed using a spectral analysis of the Laplacian
matrix of the graph [22].

Generalization to Multiple Bins: If the data set needs to be divided into
more than two bins, an iterative algorithm is used, where the bins are bisected
recursively until the required number of bins is obtained. Figure 3(b) shows the
pseudocode describing the algorithm. A set of bins, B is kept, where each element
of B is a set of data points belonging to the same bin. The set B is initialized
to be the singleton set {A}, where A contains all points in the data set. At each
subsequent step of the algorithm, the bin with the lowest normalized cut value
is bisected. The bisection continues until either B has the required number of
bins or we no longer have a good bisection as measured by the normalized cut
value.

2.2 Generation of Test Sets

In our experiments, we simulated the sequencing of low- to medium-complexity
communities in which the number of species ranged from two to six and their
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Table 1. Test Data Sets and Binning Accuracy

ID Species Ratio
Taxonomic

Error
Differences

S1 Bacillus halodurans [0.44] & Bacillus subtilis [0.44] 1:1 Species 6.48%
S2 Gluconobacter oxydans [0.61] & Granulobacter bethesdensis [0.59] 1:1 Genus 3.39%
S3 Escherichia coli [0.51] & Yersinia pestis [0.48] 1:1 Genus 10.0%
S4 Rhodopirellula baltica [0.55] & Blastopirellula marina [0.57] 1:1 Genus 2.05%
S5 Bacillus anthracis [0.35] & Listeria monocytogenes [0.38] 1:2 Family 5.49%

S6
Methanocaldococcus jannaschii [0.31] &

1:1 Family 0.51%
Methanococcus mariplaudis [0.33]

S7 Thermofilum pendens [0.58] & Pyrobaculum aerophilum[0.51] 1:1 Family 0.28%
S8 Gluconobacter oxydans [0.61] & Rhodospirillum rubrum [0.65] 1:1 Order 0.98%

S9 Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59], & 1:1:8 Family 7.7%
Nitrobacter hamburgensis [0.62] Order

S10 Escherichia coli [0.51], Pseudomonas putida [0.62], & 1:1:8 Order 1.96%
Bacillus anthracis [0.35] Phylum

S11 Gluconobacter oxydans [0.61], Granulobacter bethesdensis [0.59], 1:1:4:4 Family 4.44%
Nitrobacter hamburgensis [0.62], & Rhodospirillum rubrum [0.65] Order

S12
Escherichia coli [0.51], Pseudomonas putida [0.62], 1:1: Species, Order

4.52%Thermofilum pendens [0.58], Pyrobaculum aerophilum [0.51], 1:1: Family, Phylum
Bacillus anthracis [0.35], & Bacillus subtilis [0.44] 2:14 Kingdom

R1 Glassy-winged sharpshooter endosymbionts - - 9.04%

relative abundance ranged from 1:1 to 1:14. ReadSim [23] was used to simu-
late paired-end Sanger sequencing from isolate genomes with an average read
length of 1, 000 bp. The reads from various isolates were then combined in ra-
tios corresponding to their relative species abundance in the data set to yield a
simulated metagenomic data set of known composition. The 12 simulated data
sets are described in Table 1. The GC content of each species’ genome is listed
in squared-brackets and can be used for assessing the diversity of DNA com-
position. The taxonomic levels are obtained from IMG[24] and can be used for
assessing the phylogenetic diversity.

In addition, we tested the algorithm on a metagenomic data set containing
reads obtained from gut bacteriocytes of the glassy-winged sharpshooter. The
original study [7] had used phylogenetic markers to classify the sequence reads
into three bins: reads from Baumannia cicadellinicola in Bin 1, reads from Sulcia
muelleri in Bin 2, and reads from the host and miscellaneous unclassified reads
in Bin 3. Due to the heterogeneity of Bin 3, the accuracy of the algorithm was
tested only on its ability to distinguish between reads from Bin 1 and Bin 2.

3 Results

CompostBin was coded in C and Matlab. It is publicly available for download
from http://bobcat.genomecenter.ucdavis.edu/souravc/compostbin/.
CompostBin was tested on a variety of low-to-medium complexity data-sets.
Details of the test data sets and CompostBin’s performance are provided in the
next two sections.

http://bobcat.genomecenter.ucdavis.edu/souravc/compostbin/
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3.1 Test Data Sets

Metagenomics being a relatively new field, very few standard data sets for testing
binning algorithms have been developed [25]. One obstacle to their development
has been that the ”true” solution is still unknown for the sequence data generated
by most metagenomic studies. To test the accuracy of a binning algorithm,
one can instead simulate the shotgun sequences that would be obtained from a
combination of organisms of known genome sequences. Simulated sequence reads
from multiple genomes were pooled to simulate the challenges of metagenomic
sequencing. When designing our simulated data sets, we took into account several
variables that affect the difficulty of binning: the number of species in the sample,
their relative abundance, their phylogenetic diversity, and the differences in GC
content between genomes.

We also tested CompostBin on a publicly available metagenomic data set
whose solution is well accepted. This data Set (R1) contains sequence reads
obtained from gut bacteriocytes of the glassy-winged sharpshooter, Homalodisca
coagulata. The data sets used for testing CompostBin are described in Table 1,
and experimental details are provided in Methods.

3.2 Performance

The most self-evident way of measuring error rates would be to report the per-
centage of reads misclassified by the algorithm. However, this method can arti-
ficially decrease the error-rates of data sets with skewed relative abundance of
species. For example, consider a data set consisting of 90 sequences from species
1 and 10 sequences from species 2. If we classify 5 sequences of species 2 in-
accurately, the error rate would be just 5%, even though 50% of the sequences
have been misclassified. Therefore, we report a normalized error rate, where we
compute the error rate for each bin and the error rate for the whole data set is
the mean of these error rates.

CompostBin’s accuracy in classifying reads from the test data sets is reported
in Table 1. The normalized error rates is bounded by 10% in all the 13 data sets.
The error rates are correlated mostly with the phylogenetic distances between
the species and the relative abundance of species. For example, the highest error
rates measured was 10% for Data Set S3 (sequences from E. coli and Y. pestis),
where the phylogenetic distances between the genomes is small. Similarly, the
error rates are comparatively high in S9 because there are very few sequences
from the less abundant Gluconobacter oxydans and Granulobacter bethesdensis,
which are also phylogenetically very close.

4 Discussion

In this paper, we report the development of CompopstBin, a new algorithm
for the taxonomic binning problem associated with the analysis of metagenomic
data. The principal novel aspect of our method is the observation that the high-
dimensional Kmer frequency data for short sequences is noisy, and that one
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can deal with the noise by projecting the data into a carefully chosen lower-
dimensional space. We illustrate that CompostBin can accurately classify se-
quences from low to medium complexity data sets into taxon-specific bins.

Unlike previous methods, CompostBin doesn’t require training of the al-
gorithm with data from sequenced genomes. This is critical for success when
binning environmental shotgun data because more than 99.9% of microbes are
currently unculturable and unlikely to be represented in the training data set.
Even closely related organisms living in different environments may have diver-
gent genome signatures. For example, Bacillus anthracis and Bacillus subtilis
have widely differing GC content and genome signatures. One should also keep
in mind that the currently available genomes are not a phylogenetically ran-
dom sample, but rather are a highly biased collection of biomedically interesting
genomes combined with an overabundance of strains of model organisms such
as Escherichia coli.

We used the frequencies of hexamers (oligonucleotides of length 6) as the
metric for our analysis of short sequences. The choice of hexamers was moti-
vated by both computational and biological rationale. Since the length of the
feature vector for analyzing Kmers is O(4K), both the memory and the CPU
requirements of the algorithm become infeasible for large data sets when K is
greater than six. Using hexamers is biologically advantageous in that, being the
length of two codons, their frequencies can capture biases in codon usage. Simi-
larly, hexamer frequencies can detect genomic biases resulting from the observed
avoidance of specific palindromic words of lengths 4 and 6 from genomes due to
the presence of restriction enzymes [26]. It should be noted that the frequencies
of lower-length words are linear combinations of hexamer frequencies. For exam-
ple: f(AAAAA) = f(AAAAAA)+f(AAAAAC)+f(AAAAAG)+f(AAAAAT ).
Thus, our PCA-based method implicitly takes into account any biases in the fre-
quencies of lower length words.

CompostBin is a work in progress, with several refinements of the algorithm
planned for the future. Our method of analysis is based primarily on DNA com-
position metrics and, like all such methods, it cannot distinguish between organ-
isms unless their DNA compositions are sufficiently divergent. Thus, our method
would probably be unable to distinguish between strains of the same species.
We believe that an ideal binning algorithm would also utilize additional types
of information, such as assembly (depth of coverage and overlap information)
and population genetics parameters. We have taken an initial step in this di-
rection by using taxonomic information from phylogenetic markers to guide the
clustering algorithm. We intend to develop other hybrid methods in the future
that can tackle the very formidable problem of classifying sequences in complex
metagenomic communities.
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