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Abstract
An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate

gradient method or Generalized Minimum RESidual (GMRES) method, is how to choose the residual tolerance
in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for
integrated groundwater models, which are implicitly coupled to another model, such as surface water models, and
resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable
scaling. This article uses the theory of “forward error bound estimation” to explain the correspondence between
the residual error in the preconditioned linear system and the solution error. Using examples of linear systems
from models developed by the US Geological Survey and the California State Department of Water Resources, we
observe that this error bound guides the choice of a practical measure for controlling the error in linear systems.
We implemented a preconditioned GMRES algorithm and benchmarked it against the Successive Over-Relaxation
(SOR) method, the most widely known iterative solver for nonsymmetric coefficient matrices. With forward error
control, GMRES can easily replace the SOR method in legacy groundwater modeling packages, resulting in the
overall simulation speedups as large as 7.74×. This research is expected to broadly impact groundwater modelers
through the demonstration of a practical and general approach for setting the residual tolerance in line with the
solution error tolerance and presentation of GMRES performance benchmarking results.

Introduction
As the groundwater model infrastructure advances

to resolve hydrological processes, so too does the need
for improved solver technology to address new mod-
eling features and take advantage of faster computers.
Consequently, there are now a wide range of iterative lin-
ear solvers available in groundwater modeling packages.
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Examples include the preconditioned conjugate gradient
(PCG) method (Hill 1990), the link-algebraic multigrid
(LMG) method (Mehl and Hill 2001), the algebraic multi-
grid (AMG) solver and the generalized conjugate gradi-
ent method. The first three of these are provided with
MODFLOW-2005 (Harbaugh 2005) and the latter is pro-
vided in SEAWAT (Guo and Langevin 2002), which cou-
ples MODFLOW-2005 and MT3DMS (Zheng and Wang
1999) to simulate ground water flow with variable density
and temperature.

Iterative linear solvers can be categorized into mod-
ern, projection-based solvers or classical (stationary)
solvers. Both can be further categorized into solvers for
symmetric or nonsymmetric linear systems. The PCG
method remains one of the most competitive modern
solvers widely used for groundwater modeling. While this
solver is designed for symmetric positive definite matri-
ces only (a matrix A is positive definite if xTAx > 0
for all real x �= 0), it shares a common property with
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numerous other modern solvers, namely the usage of a
residual error-based tolerance. It is, however, the relative
solution error which is the most physically relevant error
measure—solving a linear system to within 1% accuracy
in the groundwater heads is more relevant than to within
1% accuracy of the linear system residual.

Integrated Water Flow Model (IWFM) is a water
resources management and planning tool that simu-
lates groundwater, surface water, and stream-groundwater
interaction. This model is currently being used by the State
of California Department of Water Resources in computa-
tionally demanding long-time high-resolution applications
such as assessing the impact of climate change on water
resources and the analysis of different conjunctive use
scenarios across California. IWFM uses a Galerkin finite
element method over a nonuniform areal two-dimensional
(2D) mesh to simulate the saturated thickness-averaged
groundwater head dynamics in each layer of an aquifer
system. These averaged groundwater head dynamics are
nonlinear for unconfined aquifers and linear for confined
aquifers, although additional nonlinear source or sink
terms may render the groundwater dynamics in confined
dynamics nonlinear too.

The issue of choosing the residual tolerance becomes
even more apparent when a projection-based iterative
solver is used in an iterative linearization procedure such
as the Picard or Newton method. A stationarity-based
stopping criterion for the linearization procedure is most
compatible with a corresponding stopping criteria in the
linear solver—making the SOR method a convenient
choice of linear solver. The use of projection-based
iterative solvers in iterative linearization procedures
requires an arbitrary choice of residual error tolerance
to ensure fast convergence without redundant solver
iterations. However, even for a fixed target solver error
throughout the simulation, the corresponding residual
error tolerance will change as the linear systems are forced
with temporal effects such as pumping, stream seepage, or
wetting and drying of the aquifers. This makes choosing
the residual error tolerance even more difficult and there
may be little choice but to severely over-specify the
tolerance at the expense of excessive linear iterations.

The multiple scales of flow in groundwater models
coupled with surface water or contaminant transport such
as GSFLOW or MT3DMS further highlight the issues
associated with linear solver error control. Blom et al.
(1993) consider the scaling issues arising between the
solution components of a model for brine transport in
groundwater flow. They use a weighted norm in the
linear solver stopping criteria in order to ensure that
each solution component is solved to its corresponding
data accuracy. Blom et al. (1993) further considered the
influence of the linear solver error on the convergence of a
Newton-type method. They propose a fixed bound on the
linear solver error, referred to as the forward error which
is shown to be inversely proportional to the maximum
number of Newton iterations. It is not apparent how this
forward error is controlled by the stopping tolerance on the
residual error. Improved control eliminates unnecessary

linear solver iterations without compromising the desired
accuracy of the solver, ultimately preventing convergence
of the Newton method.

While both GSFLOW and IWFM implicitly couple
the surface water flow with the groundwater flow,
IWFM combines both sets of flow equations into an
integrated linear system with a nonsymmetric matrix
and hence the PCG solver can no longer be used.
The need for nonsymmetric matrix solvers is a growing
trend in groundwater modeling. As previously mentioned,
SEAWAT uses a generalized conjugate gradient method,
which is suitable when the matrices are nearly symmetric.
The need for faster local converge rates than attainable
using Picard methods motivates the use of Newton-
type methods for models of saturation thickness-averaged
ground water head dynamics in unconfined aquifers.
Using full upstream weighting of the saturated thicknesses
to compute the inter-cell conductances in MODFLOW-
2005, Newton-type methods give nonsymmetric linear
systems and require different solvers and settings. Mehl
(2006) concludes that further exploration into the different
solvers and their settings is needed before this approach
can widely catch on.

Overview
We first describe the linear systems arising from

GSFLOW and IWFM and provide an overview of an
iterative solver for a wider class of nonsymmetric matri-
ces, referred to as the Generalized Minimum RESid-
ual (GMRES) method (Saad and Schultz 1986), which
although known to the groundwater modeling community
(Forsyth et al. 1995; Padilla et al. 2008; Van der Vorst
1990) has not been used in groundwater modeling pack-
ages such as MODFLOW, partly because until now there
is little performance benchmarking results and guidance
on how to choose the best parameters in this method for
groundwater applications. The key contributions of this
article are to (1) provide insight into how to choose the
residual stopping tolerance in any modern iterative linear
solver which uses residual-based stopping criteria and (2)
present performance benchmarking results of the GMRES
method against the SOR method.

Profile of the Linear System
At each time step in a saturated groundwater model

simulation, a linearization procedure such as the Picard
or Newton iterative methods (Mehl 2006) solves the
system of saturated groundwater flow equations over a
2D bounded domain

F(H k+1) = 0

in which H k+1 is the vector of unknown saturation
thickness-averaged heads in each layer of an aquifer
system at iteration k + 1. This definition is general enough
to include implicitly coupled integrated groundwater and
surface models (such as IWFM), which also include
stream and lake surface elevations in the vector of
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unknowns. For the ease of exposition, we present the
linear system in canonical form by denoting the difference
vector x = H k+1 − H k without an iteration index, the
Jacobi (or approximate Jacobian) matrix A = ∇F(H k)

with elements aij = ∂Fi/∂H k
j and the right-hand side

vector b = −F(H k) to give

Ax = b, A ∈ RN×N, x, b ∈ RN, (1)

where A is a nonsymmetric and positive definite square
matrix. This article will just consider the efficient iterative
approximation of the linear system (1) for the case when
A is nonsymmetric.

Table 1 shows the performance critical properties
of the coefficient matrix A for six data sets arising in
various groundwater packages. The first four data sets
are from applications using IWFM. HCMP is a synthetic
hydrological data set for comparison with MODFLOW’s
Farm Process (Hanson et al. 2010), C2VSIM and
C2VSIM9 are from respective three and nine aquifer
layer variants of the Central Valley Groundwater-Surface
Water Simulation Model, which simulates land-surface,
groundwater, and surface water flow in the alluvial portion
of California’s Central Valley to assess local and regional
impacts of conjunctive use projects. BUTTE is from
a high-resolution integrated hydrologic model of the
BUTTE county watershed in Northern California (CDM
2008). SAGEHEN is from a GSFLOW model of the
Sagehen Creek (Markstrom et al. 2008) watershed. NAC
is from a two-layer model of Nacatoch Aquifer (Beach et
al. 2009) which uses MODFLOW-2000.

Dimension N is the size of the matrix and NNZ
denotes the number of nonzero elements. Each matrix
is sparse and lacks any block structure. Sparsity is the
percentage of the elements in a matrix which are nonzero.
Normality is the relative measure ‖AA∗ − A∗A‖/‖A‖2

which is zero when A is symmetric. κ(A) is the estimated
“condition number” of A and is a measure of sensitivity
of the linear system and the convergence rate of iterative
solvers (see, e.g., Demmel 1997 for a definition of
condition number). κ(A) is computed using the SuperLU
(Demmel et al. 1999) routines dgscon and dlangs.

Figure 1 illustrates the scaling issues arising in the
coefficient matrices from GSFLOW. Figure 1a shows the
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Figure 1. (a) The sparsity pattern of the SAGEHEN coef-
ficient matrix. (b) A log scale of the absolute value of the
elements in the SAGEHEN coefficient matrix against the row
index.

sparsity pattern of the SAGEHEN coefficient matrix.
This figure has been separated into distinctive zones
for illustrative purposes and a color scheme arbitrarily
differentiates scale. The 2 × 2 uniform grid corresponds

Table 1
Linear Solver Performance Critical Properties for Six Different Data Sets Taken from Applications Using

IWFM, GSFLOW, and MODFLOW

IWFM GSFLOW/MODFLOW

HCMP C2VSIM C2VSIM9 BUTTE NAC SAGEHEN

Dimension 46,460 4630 12,988 34,683 75,319 6784
NNZ 479,246 41,616 125,616 188,006 433,791 31,504
Sparsity (%) 0.0220 0.194 0.0744 0.0156 0.00765 0.0685
Normality 0.271 0.222 0.908 0.199 0.0114 0
κ(A) 3.09E6 2.54E11 5.13E6 1.95E9 7.25E4 6.71E8
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to two aquifer layers of the Sagehen Creek watershed
model and their interactions with each other. Matrix
elements whose absolute values are above and below an
arbitrary threshold of O(10) are shown in red and blue,
respectively. Figure 1b shows the corresponding graph of
the SAGEHEN coefficient matrix element sizes. It is split
into the rows corresponding to the top and bottom aquifer
layers of the SAGEHEN Creek model by the vertical line.
Stream–groundwater interaction in the top aquifer layer
significantly increases the absolute matrix element sizes.

The GMRES Algorithm and Preconditioning
The Generalized Minimum RESidual (GMRES)

method is a Krylov subspace projection method for solv-
ing the linear system (1) based on taking the pair of
projection subspaces

W = Km(A, r0) and V = AW, (2)

where Km(A, r0) is a Krylov subspace defined as

Km(A, r0) := span{r0, Ar0, A2r0, . . . , Am−1r0} (3)

and r0 = b − Ax0 with an initial approximate solution
x0. An approximation solution x̂ ∈ x0 + W has the form
x̂ = qm−1(A)r0 and Ax̂ − b ⊥ V, where qm(A) is a
matrix polynomial of degree m (a ⊥ b denotes that a is
perpendicular to b).

GMRES first uses an Arnoldi procedure to build an
orthonormal matrix Vm = [v1, v2, . . . , vm] whose column
vectors span the subspace W = Km(A, r0). In matrix
notation, the Arnoldi procedure can be expressed by the
following governing equation

AVm = Vm+1Ĥm, (4)

where Ĥm := [HT
m, hm+1,mem]T, Hm is m × m upper

Hessenberg matrix, and em is the last column m-vector in
the identity matrix Im. An iterative solution to the linear
system (1) can be written in the form xm = x0 + Vmym,
where the m-vector ym is the solution to the least squares
problem

ym = arg min
y

||rm|| = arg min
y

||βe1 − Ĥmy||, (5)

which minimizes the residual (arg minx f denotes that x

is the argument to the function f being minimized). Thus,
GMRES finds the best xm which minimizes the residual rm

by reducing A to Ĥm using the orthonormal bases Vm and
Vm+1. We refer the reader to Demmel (1997); Saad (2000)
for a more thorough explanation of the GMRES method.
GMRES(m) is a memory efficient and more stable variant
of GMRES, which resets the algorithm after m iterations
by setting x0 = xm so that the memory requirements are
O(mN). m is typically set to between 10 and 20.

Preconditioning is the determining ingredient in the
success of the GMRES and other iterative methods for

solving large-scale problems. The convergence rate and
computational cost of solving the preconditioned linear
system

M−1Ax = M−1b

depend on the choice of the preconditioner M. The choice
of M is typically inferred from experience which tells us
that the form of M should (1) ensure that κ(M−1A) �
κ(A) and (2) be computationally inexpensive to solve
My = Ax for y given a vector Ax.

For GMRES, an ideal choice is typically one in
which M−1A is close to the identity matrix and whose
eigenvalues are tightly clustered around some point away
from the origin. The incomplete LU decomposition (ILU)
is a popular preconditioner (Saad 2000). For example,
considering an LU decomposition A = LU, where L is a
unit lower triangular matrix and U is an upper triangular
matrix. Replacing nonzero elements of L and U outside
the sparsity pattern of A with zero elements gives an
incomplete factors L̂ and Û. An ILU preconditioner is
then formed by setting M = L̂Û.

A high-level description of preconditioned GMRES
(m) method is provided below.

Preconditioned GMRES(m)
Input: A, M, b, x0, m, τ

Output: xm, γm+1,m

1. compute r0 = M−1(b − Ax0), β = ‖r0‖2 and
v1 := r0/β

2. for j = 1, 2, . . . , m do
3. solve Mw = Avj for w

4. for i = 1, 2, . . . , j do
5. hij = vT

i w

6. w := w − hijwi

7. end do
8. compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

9. end for
10. find ym so that γm+1,m := ‖βe1 − Ĥmym‖ =

arg miny ‖βe1 − Ĥmy‖
11. xm = x0 + Vmym

12. If γm+1,m ≤ τ , stop, else goto Line 1 with
x0 = xm

Note that on each iteration of the PGMRES(m)
algorithm, the linear system Mw = Avk, where vk ∈
Vk, is solved for the vector w. When M is an ILU
factorization, M = L̂Û, w is determined by forward and
back substitutions:

L̂z = Avk and Ûw = z, (6)

where L̂ and Û are, respectively, a unit lower and upper
triangular matrix with 2 · Lfil+ 1 entries per row. The
level of fill-in, Lfil, is typically chosen to be between
5 and 10. The PGMRES(m) algorithm terminates when
the estimated residual norm γm+1,m := ‖βe1 − Ĥmym‖
satisfies the stopping criteria γm+1,m ≤ τ .
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Scaling and Error Control
Each stopping tolerance τ for the approximate

solution x̂ computed by the PGMRES iteration can be
compared with a corresponding estimate of the upper
bound on the relative forward error norm ‖x̂ − x‖/‖x‖ of
the linear system (1). While the acceptable upper bound
on the relative forward error norm may be set to the
precision of the data (e.g., if hydraulic heads are specified
to the nearest 1 cm, then the upper bound should be no
larger than 5 × 10−3), the corresponding tolerance cannot
easily be implied from the data accuracy. Misspecification
of the tolerance can result in either over-solution of the
linear system (1) or unacceptably high forward error
with respect to the data accuracy, especially when the
coefficient matrix is poorly conditioned and scaled.

To improve the scaling of the linear system, we
introduce a diagonal scaling matrix D so that the
preconditioned linear system becomes

M−1D−1Ax = M−1D−1b. (7)

The associated residual r̂ for an approximate solution
x̂ is defined as r̂ = M−1D−1(b − Ax̂). By a standard
perturbation analysis (Demmel 1997; Higham 2002), the
upper bound, denoted as Ferr, on the relative forward
error norm can be given in terms of the norm of the
residual r̂:

‖x̂ − x‖
‖x‖ ≤ κ(M−1D−1A)

‖̂r‖
‖M−1D−1b‖ ≡ Ferr, (8)

where κ(M−1D−1A) is the condition number to character-
ize the difference between the relative forward error norm
and the ratio of the residual norm to the right-hand side
vector norm ‖M−1D−1b‖. By choosing D as the sum of
row elements

D = diag
(‖A(1, :)‖1, ‖A(2, :)‖1, . . . , ‖A(N, :)‖1

)
(9)

we minimize the condition number of D−1A (Van der
Sluis 1969). This choice of scaling is referred to as row
“equilibration” (see Higham 2002 for an introduction).

When the stopping criteria ‖̂r‖ ≤ τ is satisfied,
it follows from Equation 8 that Ferr ≤ ε, where ε

is defined as the normalized stopping tolerance ε ≡
C0τ/‖M−1D−1b‖ and C0 ≥ κ(M−1D−1A)‖̂r‖/τ is a con-
stant. For practical reasons, we simply set the con-
stant to an a priori estimate of the condition number
κ(M−1D−1A) taken from a representative linear system.
While ‖x̂ − x‖/‖x‖ ≤ ε is only mathematically provable
for the chosen representative system, we find that it
provides a good proxy throughout a simulation because
κ(M−1D−1A) remains relatively fixed. In contrast, κ(A)

is found to vary by at least an order of magnitude.
For a given stopping tolerance τ , Table 2 shows

the exact relative forward error norm ‖x̂ − x‖/‖x‖, the
estimated upper bound on the relative forward error
norm Ferr, the normalized stopping tolerance ε, and the
solution time for the C2VSIM data set. Ferr is computed
from Equation 8 using the SuperLU routines dgscon to
estimate the condition number κ(M−1D−1A−1) = 2.77.
We further observe that row equilibration is very effective
in reducing the condition number, reducing κ(A) =
2.53 × 1011 to κ(D−1A−1) = 113.

From Table 2, we compare the actual error (Col-
umn 2), Ferr (Column 3) and ε (Column 4) for the
C2VSIM data set. We observe that ε and Ferr corre-
spond well although Ferr is about an O(10) higher than
the exact forward error norm (Column 2).

System Configuration and Performance
Benchmarking

Table 2 also presents performance benchmarks for
the GMRES method against the classical SOR method
applied to a single representative linear system from

Table 2
For a Given Stopping Tolerance τ , This Table Compares the Exact Forward Error Norm, the Estimated

Upper Bound on the Relative Forward Error Norm, and the Normalized Stopping Tolerance ε from
Separately Solving Each of the Linear Systems M −1D−1Ax = M −1D−1b Using PGMRES Applied to the

C2VSIM Data Set

PGMRES SOR

log τ ‖x̂ − x‖/‖x‖ Ferr ε t (s) t (s)

−1 7.91 × 10−3 7.34 × 10−2 9.96 × 10−2 5.43 × 10−3(7) 2.44 × 10−2(41)
−2 8.83 × 10−4 7.85 × 10−3 9.96 × 10−3 5.70 × 10−3(9) 4.90 × 10−2(155)
−3 1.99 × 10−4 1.57 × 10−3 9.96 × 10−4 6.82 × 10−3(10) 8.83 × 10−2(276)
−4 3.84 × 10−6 3.89 × 10−5 9.96 × 10−5 7.51 × 10−3(12) 1.25 × 10−1(379)
−5 2.61 × 10−7 3.07 × 10−6 9.96 × 10−6 8.06 × 10−3(13) 1.62 × 10−1(518)
−6 6.68 × 10−8 4.35 × 10−7 9.96 × 10−7 8.41 × 10−3(14) 2.00 × 10−1(638)
−8 1.31 × 10−9 4.09 × 10−9 9.96 × 10−9 1.04 × 10−2(17) 2.76 × 10−1(880)

−10 1.51 × 10−11 9.74 × 10−11 9.96 × 10−11 1.26 × 10−2(21) 3.48 × 10−1(1107)

The last two columns compare the elapsed wall clock time in seconds for solving the C2VSIM linear system using PGMRES(m) and SOR. The values in parentheses
denote the number of solver iterations.
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the C2VSIM model and shows significant speedup. For
example, the speedup with a tolerance of 1 × 10−5 is
approximately 19×. This reduction is attributed to the
comparative effectiveness of the dual threshold ILU
(ILUT) preconditioner at reducing the condition number
of the preconditioned coefficient matrix and hence the
number of iterations (shown in parentheses).

There are numerous linear solvers which might be
more competitive in terms of speed and robustness than
the SOR method (Van der Vorst 1992). Until the introduc-
tion of Newton-type linearization methods, widely used
groundwater modeling packages such as MODFLOW
2000 do not typically require solvers for nonsymmetric
coefficient matrices. The only solver capable of solv-
ing nonsymmetric matrices that is provided with MOD-
FLOW 2000 is the SOR method. IWFM originally relied
on the SOR method, partly because of nonsymmetry of
the coefficient matrices introduced by implicit coupling
groundwater and surface water models and partly because
alternative methods for nonsymmetric matrices, such as
GMRES, are not as familiar with the groundwater mod-
eling community.

Our Fortran 90 implementation of PGMRES(m) is
adapted from the publically available sparse matrix pack-
age SPARSKIT (Saad 2000). Our numerical experiments
are performed using a Linux-based Intel Fortran com-
piler V11.0 on a 2.00 GHz Intel(R) Core(TM) 2 Duo
CPU (T6400) with 2 MB cache. The relaxation param-
eter for the SOR method is set to ω = 1.1, the restart
threshold of PGMRES is m = 20 and the ILUT (ILU
with threshold; Saad 2000) preconditioner has two further
parameters which must be chosen. The “drop tolerance”
is the threshold (normalized using the original norm of
the row containing the element) below which an element
is replaced by zero. The level of “fill-in” Lfil is the
maximum number of elements in each upper and lower
factor matrix that are retained, the remainder are replaced
by zero. These are respectively chosen in almost all cases
to be 0.01 and 10, respectively.

Numerical experiments suggest that this choice of
PGMRES parameters gives optimal convergence rates
for all the nonsymmetric data sets described in Table 1.
However, because of the overhead of assembling the
preconditioner, the optimal convergence rate does not
always result in the optimal overall solution time. In the
case of C2VSIM, a higher drop tolerance of 0.1 slightly
reduces the solution time even though approximately 1.5×
more iterations are required because less time is spent
assembling the preconditioner. We found the results to
be reasonably independent of the choice of Lfil. In
contrast, it is well known that the optimal choice of ω

varies significantly between each data set. For the IWFM
data sets, 1.1 ≤ ω ≤ 1.3 is found to be an optimal range,
whereas ω = 1.95 and ω = 1.5 are found to give optimal
convergence rates for the NAC and INCLINE data sets.

Finally, Table 3 shows the overall performance
improvement in the IWFM simulation using the PGM-
RES(m) solver in place of the SOR solver and the
proportion (shown in parentheses) of overall computation

Table 3
The Time in Minutes and Proportion of IWFM
Simulation Time (in Parentheses) Spent in the

Solvers for Each of the Data Sets

HCMP C2VSIM C2VSIM9

IWFM
(SOR)

20.4 (84.0%) 15.59 (79.0%) 121 (82.0%)

IWFM
(PGM-
RES)

2.63 (45.1%) 7.12 (9.12%) 16.0 (9.65%)

Speedup 7.74× (14.4×) 2.2× (19.0×) 7.56× (64.3×)

The bottom row shows the speedup in IWFM simulation time and total solver
time (in parentheses) if the SOR solver is replaced by PGMRES.

spent in the preconditioner and solvers for three of the
data sets. The C2VSIM and C2VSIM9 simulations are
run over 82 years at monthly increments (984 time steps)
and the HCMP simulation is run over 2 years at weekly
increments (104 time steps). The normalized tolerance ε

in the linear solver was fixed throughout the simulation at
1 × 10−5 which is 0.1 times the relative data accuracy of
1 × 10−4.

The overall performance gains from using
PGMRES(m) are more prominent with the larger data sets
as the absolute time reduction is most significant—HCMP
and C2VSIM9 exhibit 7.74× and 7.56× speedups, respec-
tively. However, the linear solver ceases to be a major bot-
tle neck for the C2VSIM and C2VSIM9 data sets—only
9.12 and 9.65% of the overall simulation time is spent
in the linear solver. This is the reason why the IWFM
speedups of 2.2× is significantly lower than the total
solver time reductions of 19.0× reported in Table 3. An
overall speedup of 7.74× is significant when one consid-
ers the implications of being able to run a simulation that
took a week to under a day simply by changing the solver.

Conclusion
This article illustrates the scaling issues arising in

linear systems from integrated hydrologic models, which
we resolve using row equilibration. We then present a
procedure for dynamically setting the residual tolerance
in line with the fixed target solution error. PGMRES
with rescaling has numerous desirable properties for
integrated hydrologic modeling: (1) the optimal ILUT
preconditioner parameter settings are largely independent
of the data set; (2) it is well suited to adaptive residual
error control; (3) when benchmarked against the SOR
method, the comparative speedups can lead to significant
overall simulation speedups (as high as 7.74× for IWFM);
and (4) performance profiling shows that the new linear
solver removes a major performance bottleneck in IWFM.

This research is expected to broadly impact ground-
water modelers by demonstrating a practical and general
approach for setting the residual tolerance in line with the
solution error tolerance.
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