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Abstract

Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigen-

vibrations of mechanical structures with elastically attached loads and calculation of the

propagation modes in optical fiber. In this paper, we first study the existence and unique-

ness of eigenvalues, and then investigate three numerical algorithms, namely Picard iter-

ation, nonlinear Rayleigh quotient iteration and successive linear approximation method

(SLAM). The global convergence of the SLAM is proven under some mild assumptions.

Numerical examples illustrate that the SLAM is the most robust method.
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1. Introduction

We consider a nonlinear rank-one modification of the symmetric eigenvalue problem of the
form [

A + s(λ)uuT
]
x = λx, (1.1)

where A is a real symmetric matrix, u is a real column vector and s(λ) is a real-valued continuous
and differentiable function. The problem (1.1) is an extension of the well-known rank-one
modification of symmetric eigenvalue problem (A+ρuuT )x = λx, where ρ is a real constant [1,2].
The nonlinear rank-one modification problem (1.1) arises from the study of eigenvibrations of
mechanical structures with elastically attached loads [3, 4], and calculation of the propagation
modes of a circular optical fiber [5, 6].

In section 2 of this paper, we study the existence of eigenvalues of (1.1) under proper as-
sumptions of the function s(λ). An interlacing property between eigenvalues of (1.1) and the
symmetric matrix A is given. Three numerical algorithms are presented in section 3. In par-
ticular, the global convergence of the SLAM is established. In section 4, we compare numerical
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performance of three algorithms for examples ranging from model problem to applications in
mechanical structure analysis and fiber optic design. These numerical examples illustrate that
the SLAM is the most robust method to solve the nonlinear rank-one modification problem
(1.1).

2. Existence of Eigenvalues

Let us first recall the following two well-known theorems which describe the interlacing
property between the eigenvalues of the symmetric matrix A and its rank-one updating matrix
A + ρuuT , where ρ is a scalar.

Theorem 2.1. ([2], [7, p.442]) Suppose that the diagonal entries of D = diag(d1, d2, . . . , dn)
are distinct and ordered such that d1 < d2 < · · · < dn. Assume the components of the vector
u are nonzero. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of D + ρuuT . Then if ρ > 0,
d1 < λ1 < d2 < λ2 < · · · < dn < λn, and if ρ < 0, λ1 < d1 < λ2 < d2 < · · · < λn < dn.

Theorem 2.2. ([2], [7, p.397]) Let µ1 ≤ µ2 ≤ · · · ≤ µn be the eigenvalues of A and λ1 ≤ λ2 ≤
· · · ≤ λn be the eigenvalues of A + ρuuT . Then if ρ > 0,

µ1 ≤ λ1 ≤ µ2 ≤ λ2 ≤ · · · ≤ µn ≤ λn, (2.1)

and if ρ < 0,
λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ · · · ≤ λn ≤ µn. (2.2)

The following lemma shows that eigenvalue of A + ρuuT is an increasing function of ρ.

Lemma 2.1. Let λk and θk be the kth eigenvalues of symmetric matrices A + ρuuT and A +
τuuT , respectively. If ρ ≥ τ , then λk ≥ θk.

Proof. Note that A+ρuuT can be written as a symmetric rank-one modification of A+τuuT :
A + ρuuT = A + τuuT + E, where E = (ρ− τ)uuT . By Weyl’s monotonicity theorem, see for
example [8, p.203], we have λk ≥ θk + λmin(E) ≥ θk + 0 = θk. ¤

Let us now turn to studying the existence of eigenvalues for the nonlinear rank-one modifi-
cation eigenvalue problem (1.1). We begin with a special case of the form

[
D + s(λ)uuT

]
x = λx, (2.3)

where D = diag(d1, d2, . . . , dn) and d1 < d2 < · · · < dn. Furthermore, the components ui of u

are nonzero.

Lemma 2.2. (a) If s(di) = 0, then di is an eigenvalue of (2.3). (b) If s(di) 6= 0, then di is not
an eigenvalue of (2.3).

Proof. The statement (a) is obvious. The statement (b) can be proven by contradiction. If di

is an eigenvalue of (2.3), then we have [D +s(di)uuT ]x = dix. By Theorem 2.1, the eigenvalues
of D + s(di)uuT are strictly interlaced by eigenvalues of D. This leads to the contradiction
di < di. ¤

Based on Lemma 2.2, for the simplicity of exposition, we assume s(di) 6= 0 for i = 1, 2, . . . , n

for the rest of the paper.
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Lemma 2.3. If λ is an eigenvalue of (2.3), then λ is real.

Proof. The result is based on the assumption that s(λ) is a real-valued function. ¤

Let λ be an eigenvalue of (2.3), we know from Lemma 2.2 that D−λI is nonsingular. Thus

det(D + s(λ)uuT − λI) = det(I + s(λ)uuT (D − λI)−1) · det(D − λI)

= (1 + s(λ)uT (D − λI)−1u) · det(D − λI).

Note that the identity det(I + xyT ) = 1 + yT x for vectors x, y ∈ Rn is used for the second
equality. Hence we see that λ is an eigenvalue of (2.3) if and only if λ is a root of the function

f(λ) = 1 + s(λ)uT (D − λI)−1u = 1 + s(λ)w(λ),

where

w(λ) = uT (D − λI)−1u =
n∑

j=1

u2
j

dj − λ
.

By Lemmas 2.2 and 2.3, we conclude that the existence of eigenvalues of the nonlinear eigenvalue
problem (2.3) is equivalent to the existence of the roots of f(λ) on the intervals Ik = (dk, dk+1)
for k = 0, 1, . . . , n, where d0 = −∞ and dn+1 = +∞.

Theorem 2.3. Let s(λ) be a positive decreasing function on Ik, i.e., s(λ) > 0 and s′(λ) ≤ 0
for λ ∈ Ik, then (a) If k = 0, there is no eigenvalue of (2.3) on I0. (b) If 1 ≤ k ≤ n, there is a
simple eigenvalue of (2.3) on Ik.

Proof. The statement (a) is established immediately based on the fact that on the interval
I0 = (−∞, d1), w(λ) > 0 and f(λ) = 1 + s(λ)w(λ) > 1.

The proof of (b) consists of two parts. First, we consider the existence of eigenvalues in Ik.
Then we prove the uniqueness and simplicity.

Consider the interval Ik = (dk, dk+1) where 1 ≤ k ≤ n−1. On the left end of Ik, w(λ) → −∞
as λ → dk+. Thus for any δ̃ ∈ (dk, dk+1), there exists δ1 ∈ (dk, δ̃) such that w(δ1) < −1/s(δ̃) <

0 and
f(δ1) = 1 + s(δ1)w(δ1) < 1− s(δ̃)/s(δ̃) = 0.

On the right end of Ik, w(λ) → +∞ as λ → dk+1−. Thus there exists δ2 ∈ (δ̃, dk+1) such
that w(δ2) > 0 and f(δ2) = 1 + s(δ2)w(δ2) > 1. Since f(λ) is continuous on Ik, f(δ1) < 0 and
f(δ2) > 0, we conclude that f(λ) has at least a root in (δ1, δ2) ⊂ Ik for 1 ≤ k ≤ n− 1.

For k = n, on the interval In = (dn, +∞), we have w(λ) → −∞ as λ → dn+. Hence for
any δ̃ > dn, there exists δ1 ∈ (dn, δ̃) and w(δ1) < −1/s(δ̃) < 0. Therefore,

f(δ1) = 1 + s(δ1)w(δ1) < 1− s(δ̃)/s(δ̃) = 0.

On the other hand, w(λ) < 0 for λ > dn and w(λ) → 0 as λ → +∞, Hence for the same δ̃,
there exists δ2 ∈ (δ̃, +∞) such that −1/s(δ̃) < w(δ2) < 0. Consequently, we have

f(δ2) = 1 + s(δ2)w(δ2) > 1− s(δ̃)/s(δ̃) = 0.

Since f(δ1) < 0 f(δ2) > 0, and f(λ) is continuous on In, we conclude that f(λ) has at least
one root in (δ1, δ2) ⊂ In. This completes the proof of the existence.
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We now show that f(λ) has only one root in the interval Ik if 1 ≤ k ≤ n. Assume f(λ) has
two distinct roots α, β ∈ Ik and α < β. Let us define

fα(λ) = 1 + s(α)w(λ) and fβ(λ) = 1 + s(β)w(λ).

Since w′(λ) > 0 and s(α) ≥ s(β) > 0,

f ′α(λ) = s(α)w′(λ) > 0 and f ′β(λ) = s(β)w′(λ) > 0.

Therefore, fα(λ) and fβ(λ) are strictly increasing, and 0 = fα(α) < fα(β) and fβ(α) < fβ(β) =
0. On the other hand, by fα(α) = 1 + s(α)w(α) = 0, we have w(α) = −1/s(α) < 0. It implies
that

fβ(α) = 1 + s(β)w(α) = 1− s(β)
s(α)

≥ 0.

This is a contradiction. Hence, α = β.
Finally, we prove the root α is simple. Note that f ′(α) = s′(α)w(α) + s(α)w′(α). Since we

have shown w(α) < 0 and w′(α) > 0 and s is positive decreasing, f ′(α) > 0. It implies that α

is a simple root of f(λ). ¤

Let us explain why we need to assume that s(λ) is a decreasing function. The nonlinear
eigenvalue problem (2.3) can be cast as a parameterized eigenvalue problem:

{
(D + s(µ)uuT )x = λ(µ)x,

µ = λ(µ).
(2.4)

Denote the kth eigenvalue of the eigenproblem in (2.4) as λk(µ) for an arbitrarily fixed µ. By
Lemma 2.1, λk(µ) is a monotonic function of s(µ). Since s(µ) is a decreasing function of µ,
λk(µ) is also a decreasing function of µ. Hence, there exists µ∗ such that µ∗ = λk(µ∗) from the
intersection of the functions λ = λk(µ) and λ = µ.

By an analogous proof of Theorem 2.3, we have the following theorem for the case where
s(λ) is a negative decreasing function.

Theorem 2.4. Let s(λ) be a negative decreasing function on Ik, i.e., s(λ) < 0 and s′(λ) ≤ 0
for λ ∈ Ik, then (a) If 0 ≤ k ≤ n− 1, there is a simple eigenvalue of (2.3) on Ik. (b) If k = n,
there is no eigenvalue of (2.3) on In.

Now let us consider the general case (1.1). Let QT AQ = D = diag(d1, d2, . . . , dn) be an
eigendecomposition of A and QT Q = I and d1 ≤ d2 ≤ · · · ≤ dn. Then the problem (1.1) can
be transformed into the following nonlinear rank-one modification of the diagonal matrix D:

[
D + s(λ)uuT

]
x = λx, (2.5)

where u := QT u and x := QT x. Similar to the standard rank-one modification of a diagonal
matrix (see [2,9] or [10, p.221]), it can be shown that if di = di+1 or ui = 0 for some 1 ≤ i ≤ n,
then di is an eigenvalue of (2.5) and (1.1). We can use a deflation procedure to remove these
eigenvalues and reduce the problem (2.5) to the form (2.3). By combining the transforma-
tion (2.5), the deflation and Theorem 2.3, we have the following theorem about the existence
of eigenvalues of the problem (1.1).
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Theorem 2.5. (a) If s(λ) is positive decreasing on I0 = (−∞, d1), then there is no eigenvalue
of (1.1) on I0. (b) If s(λ) is positive decreasing on Ic

k = [dk, dk+1], where 1 ≤ k ≤ n, then there
is at least one eigenvalue of (1.1) on Ic

k. Meanwhile, there is no more than one eigenvalue of
(1.1) on Ik = (dk, dk+1).

We learn from Theorem 2.5 that there are possibly more than one eigenvalue of (1.1) on the
interval Ic

k = [dk, dk+1]. For indexing these eigenvalues and deriving an interlacing property,
we first give the following lemma.

Lemma 2.4. Among the distinct eigenvalues of (1.1) on Ic
k, there is only one eigenvalue,

denoted as λ∗, such that λ∗ is the kth eigenvalue of A + s(λ∗)uuT .

Proof. Let us first consider the most common case that there is an eigenvalue λ̂ of (1.1)
such that λ̂ ∈ Ik = (dk, dk+1) for some k, i.e.,

dk < λ̂ < dk+1. (2.6)

Denote the eigenvalues of the matrix A + s(λ̂)uuT as λ̂1 ≤ λ̂2 ≤ · · · ≤ λ̂n. By Theorem 2.2, we
have

d1 ≤ λ̂1 ≤ · · · ≤ dk ≤ λ̂k ≤ dk+1 ≤ · · · ≤ dn ≤ λ̂n. (2.7)

By (2.6) and (2.7), we conclude that λ̂ = λ̂k is the kth eigenvalue of A + s(λ̂)uuT . Hence
λ∗ = λ̂. Moreover, by a similar proof as of Theorem 2.3, such λ∗ is a simple eigenvalue of the
deflated problem of the form (2.3). Hence λ∗ is a simple eigenvalue of the problem (1.1).

Now let us consider the case where the deflation occurs that there is no eigenvalue of (1.1)
on Ik. Consider the case dk is an eigenvalue of (1.1) of multiplicity 1, while dk−1 and dk+1 are
not eigenvalues of (1.1). Without loss of generality, assume that s(λ) is positive decreasing on
(dk−1, dk+1). Then the problem (1.1) has one simple eigenvalue on (dk−1, dk], denoted as λ̂.
We can see that λ̂ is the (k − 1)st eigenvalue of the matrix A + s(λ̂)uuT . Denote the (k − 1)st
eigenvalue of A+s(dk)uuT as λ̃. By Lemma 2.1, since s(dk) ≤ s(λ̂), we have dk−1 < λ̃ ≤ λ̂ ≤ dk.
Thus we can conclude that dk is the kth eigenvalue of the matrix A + s(dk)uuT and λ∗ = dk.

For the other possible cases when the deflation occurs, we can use similar arguments to
conclude that either dk or dk+1 is λ∗.

Finally, let us show that λ∗ is unique. Assume there are two distinct eigenvalues λ∗ and λ]

in Ic
k such that they are the kth eigenvalues of the matrices A + s(λ∗)uuT and A + s(λ])uuT ,

respectively. Let λ∗ < λ]. Since the function s(λ) is decreasing, s(λ∗) ≥ s(λ]), by Lemma 2.1,
we have λ∗ ≥ λ], which is a contradiction. Hence λ∗ = λ]. ¤

Combining Theorems 2.3 and 2.5 and Lemma 2.4, we have the following theorem to describe
the existence of eigenvalues of (1.1) and obtain an interlacing property. It can be viewed as a
generalization of the interlacing property (2.1) in Theorem 2.2 for the rank-one modification of
a symmetric matrix.

Theorem 2.6. If s(λ) is positive decreasing on (−∞,∞), then the nonlinear eigenvalue prob-
lem (1.1) has n real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Furthermore, these eigenvalues satisfy the
interlacing property d1 ≤ λ1 ≤ d2 ≤ λ2 ≤ · · · ≤ dn ≤ λn.

By an analogous derivation, we have the following theorem for the case when the function
s(λ) is negative decreasing.
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Theorem 2.7. If s(λ) is negative decreasing on (−∞,∞), then the nonlinear eigenvalue prob-
lem (1.1) has n real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Furthermore, these eigenvalues satisfy the
interlacing property λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ · · · ≤ λn ≤ dn.

3. Algorithms

In this section, we study numerical algorithms for extracting an eigenpair of the nonlinear
rank-one modification eigenvalue problem (1.1). Specifically, we consider the problem of finding
an eigenpair of (1.1) on the interval Ic

k = [dk, dk+1], where dk and dk+1 are two consecutive
eigenvalues of the symmetric matrix A. We learn from Lemma 2.4 that if s(λ) is positive
decreasing on Ic

k, then among possible eigenvalues of (1.1) on Ic
k, there is only one eigenvalue,

denoted as λ∗, such that λ∗ is the kth eigenvalue of the matrix A + s(λ∗)uuT . Hence, the
objective of algorithms in this section is to compute this eigenpair (λ∗, x∗).

3.1. Picard iteration

Picard iteration is a fixed-point iterative method to find a root of nonlinear equations, see
for example [11]. To compute the eigenpair (λ∗, x∗) on the interval Ic

k by the Picard iteration,
the ith iterate (λ(i), x(i)) is the kth eigenpair of the linear symmetric eigenvalue problem

[
A + s(λ(i−1))uuT

]
x = λx, (3.1)

where the initial approximate eigenpair (λ(0), x(0)) is chosen such that λ(0) ∈ Ic
k.

In practice, the Picard iteration is combined with a safeguard strategy for avoiding miscon-
vergence. Safeguard strategy is a generic technique in the root-finding methods [11–13]. To
apply the safeguard strategy in the Picard iteration (3.1), let [λl, λu] be the search interval for
the desired eigenvalue λ∗ and initially [λl, λu] = Ic

k = [dk, dk+1]. There are two steps to update
the interval [λl, λu]:

1. If the ith iterate λ(i) is at outside the search interval, we bracket it with the lower and
upper bounds λl and λu:

λ(i) =

{
αλl + (1− α)λu, if λ(i) < λl,

(1− α)λl + αλu, if λ(i) > λu,

where 0.5 ≤ α < 1 is a relaxation parameter.

2. The search interval is tightened:
{

λl = λ(i), if λ(i) < λ∗,

λu = λ(i), if λ(i) > λ∗.
(3.2)

As we can see, the key issue to implement the safeguard strategy is to compare λ(i) with the
target λ∗ at step 2. Let us first show a “jumping” behavior of the Picard iteration.

Lemma 3.1. Let λ(i) and λ(i+1) be the ith and (i + 1)st iterates of the Picard iteration (3.1).
(a) If λ(i) ≤ λ∗, then λ(i+1) ≥ λ∗. (b) If λ(i) ≥ λ∗, then λ(i+1) ≤ λ∗.
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Proof. Note that λ(i+1) and λ∗ are the kth eigenvalues of matrices A + s(λ(i))uuT and
A + s(λ∗)uuT , respectively. If λ(i) ≤ λ∗, then s(λ(i)) ≥ s(λ∗). Recall that s(λ) is a decreasing
function. By Lemma 2.1, λ(i+1) ≥ λ∗. This leads to result (a). The result (b) can be proven
by a similar argument.

Lemma 3.1 implies that if λ(i+1) < λ(i) then λ(i) > λ∗, and if λ(i+1) > λ(i) then λ(i) < λ∗.
By this fact, step 2 can be implemented by comparing two consecutive Picard iterates λ(i) and
λ(i+1).

In summary, we have the following safeguarded Picard iteration:

Algorithm3.1 Safeguarded Picard iteration

Input: initial (λ(0), x(0)), and λ(0) ∈ [λl, λu] = [dk, dk+1]
output: approximate eigenpair (λ(i), x(i))

1. for i = 1, 2, . . . until convergence
2. compute the kth eigenpair (λ(i), x(i)) of (3.1)
3. if λ(i) > λ(i−1)

4. λl = λ(i−1)

5. elseif λ(i) < λ(i−1)

6. λu = λ(i−1)

7. end if
8. if λ(i) < λl

9. λ(i) = αλl + (1− α)λu

10. elseif λ(i) > λu

11. λ(i) = (1− α)λl + αλu

12. end if
13. end for

There is no known global convergence property of the Picard iteration even with the safe-
guard strategy. It could stagnate such that λ(i) = λ(i+2). If the iteration converges, the rate is
typically linear. However, in the case that λ∗ = dk or dk+1, Picard could converge in one step,
see section 4 for a numerical example.

3.2. Nonlinear Rayleigh quotient iteration

It is easy to see that an eigenpair (λ, x) of the eigenvalue problem (1.1) is a solution of the
nonlinear equations [

T (λ)x
xT T (λ)x/2

]
= 0, (3.3)

where T (λ) = A + s(λ)uuT − λI. Note that the term xT T (λ)x = 0 is related to as a nonlinear
Rayleigh quotient [14].

By using Newton’s method to solve the nonlinear equations (3.3), we derive the following
iteration:

[
T (λ(i)) T ′(λ(i))x(i)

(T (λ(i))x(i))T (x(i))T T ′(λ(i))x(i)/2

] [
x(i+1) − x(i)

λ(i+1) − λ(i)

]
= −

[
T (λ(i))x(i)

(x(i))T T (λ(i))x(i)/2

]
,
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where T ′(λ) = s′(λ)uuT − I. Equivalently, the iteration can be written as

{
x(i+1) = τi T (λ(i))−1T ′(λ(i))x(i),

λ(i+1) = λ(i) − (x(i))T T (λ(i))x(i)/(x(i))T T ′(λ(i))x(i),
(3.4)

where τi is a scaling factor such that ‖x(i+1)‖ = 1. When the newly computed vector x(i+1) is
used instead of x(i) in the second equation of (3.4), we have the following nonlinear Rayleigh
quotient iteration (NRQI):

{
x(i+1) = τi T (λ(i))−1T ′(λ(i))x(i),

λ(i+1) = λ(i) − (x(i+1))T T (λ(i))x(i+1)/(x(i+1))T T ′(λ(i))x(i+1).
(3.5)

The safeguard strategy described in section 3.1 can also be used here. The key issue is
again at the step to compare the current iterate λ(i) with the target eigenvalue λ∗. This can
be resolved by using the inertia of T (λ(i)).

Lemma 3.2. Let λ(i) be the ith iterate of NRQI (3.5) and θk be the kth eigenvalue of A +
s(λ(i))uuT . We have (a) if λ(i) ≤ λ∗, then θk ≥ λ∗, and (b) if λ(i) ≥ λ∗, then θk ≤ λ∗.

Proof. The lemma is established by observing that θk can be regarded as λ(i+1) in the
Picard iteration (3.1) and apply the proof of Lemma 3.1. ¤

By the contrapositive of Lemma 3.2(a), we know that if θk < λ(i), then λ(i) > λ∗. Similarly
by Lemma 3.2(b), we know that if θk > λ(i), then λ(i) < λ∗. Therefore, the question is now
turned to comparing θk with λ(i). By the fact that θk is the kth eigenvalue of the matrix
A + s(λ(i))uuT , we immediately know that if the kth eigenvalue of T (λ(i)) is negative, then
θk < λ(i). If it is positive, then θk > λ(i). The sign of the kth eigenvalue of T (λ(i)) can be
obtained by the inertia of T (λ(i)). Therefore, we have the following lemma to compare λ(i) with
λ∗.

Lemma 3.3. Let the number triple (ν−, ν0, ν+) be the inertia of T (λ(i)), where ν−, ν0, and ν+

are the numbers of negative, zero and positive eigenvalues of T (λ(i)) respectively. We have (a)
If k ≤ ν−, then λ(i) > λ∗. (b) If ν− + ν0 < k, then λ(i) < λ∗. (c) If ν− < k ≤ ν− + ν0, then
λ(i) = λ∗.

Combining the NRQI iteration (3.5) and Lemma 3.3, we have the following algorithm.
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Algorithm 3.2 Safeguarded nonlinear Rayleigh quotient iteration (SNRQI)

Input: initial approximate eigenpair (λ(0), x(0)) and λ(0) ∈ [λl, λu] = [dk, dk+1]
output: approximate eigenpair (λ(i), x(i))

1. for i = 1, 2, . . . until convergence
2. compute the LDLT decomposition: T (λ(i−1)) = LDLT

3. count the inertia (ν−, ν0, ν+) from D

4. if ν− + ν0 < k

5. λl = λ(i−1)

6. elseif ν− ≥ k

7. λu = λ(i−1)

8. end if
9. compute λ(i) and x(i) as (3.5)

10. if λ(i) < λl

11. λ(i) = αλl + (1− α)λu

12. elseif λ(i) > λu

13. λ(i) = (1− α)λl + αλu

14. end if
15. end for

To compute the inertia (ν−, ν0, ν+) of T (λ(i)), we can use the diagonal pivoting method
[15, 16] to compute the LDLT decomposition T (λ(i)). The inertia (ν−, ν0, ν+) can be obtained
from D. A 2-by-2 diagonal block in D indicates a positive-negative pair of eigenvalues.

Based on the convergence property of the Newton’s method [11, p.158], it can be shown
the SNRQI converges locally with asymptotical quadratic rate. In practice, the SNRQI could
initially converge slowly due to the bracketing process, see section 4 for numerical examples.

3.3. Successive linear approximation method

To improve the Picard iteration (3.1), we can use the first order approximation of the func-
tion s(λ) at a prescribed point σ and derive a linear approximation of the nonlinear eigenvalue
problem (1.1): (

A + `(λ, σ)uuT
)
x = λx, (3.6)

where `(λ, σ) = s(σ) + s′(σ)(λ − σ). To compute the targeted eigenpair (λ∗, x∗), the (i + 1)st
approximate eigenpair (λ(i+1), x(i+1)) is chosen as the kth eigenpair of the following linear
eigenvalue problem (

A + `(λ(i+1), λ(i))uuT
)

x(i+1) = λ(i+1)x(i+1), (3.7)

which can be equivalently written as the generalized symmetric eigenvalue problem

K(λ(i))x = λM(λ(i))x, (3.8)

where K(σ) = A + (s(σ)− s′(σ)σ)uuT and M(σ) = I − s′(σ)uuT . Note that K(σ) and M(σ)
are symmetric. Furthermore, M is positive definite since s′(σ) ≤ 0.
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This approach is known as the method of successive linear problems [14] or the successive
linear approximation method (SLAM) [17]. The following is the pseudo-code.

Algorithm 3.3 SLAM

Input: initial approximate eigenpair (λ(0), x(0)) and λ(0) ∈ [dk, dk+1]
Output: approximate eigenpair (λ(i+1), x(i+1))

1. for i = 0, 1, . . . until convergence
2. compute the kth eigenpair (λ(i+1), x(i+1)) of (3.8)
3. end for

Let us turn to the study of convergence property of the SLAM under the assumption that
s(λ) is positive decreasing and concave upward, i.e.,

s(λ) > 0, s′(λ) ≤ 0, s′′(λ) ≥ 0 for λ ∈ Ic
k. (3.9)

First, we have the following lemma.

Lemma 3.4. Under the assumption (3.9), s(λ) ≥ `(λ, σ) for λ, σ ∈ Ic
k.

Proof. By the Taylor expansion of s(λ) at σ, we have s(λ)−`(λ, σ) = s(λ)−s(σ)−s′(σ)(λ−
σ) = 1

2s′′(ζ)(λ− σ)2 ≥ 0 for some ζ ∈ Ic
k. ¤

The following lemma shows that the iterates λ(i) generated by the SLAM are bounded and
monotonic.

Lemma 3.5. Under the assumption (3.9), for λ(0) ∈ Ic
k, the i-th iterate λ(i) of SLAM satisfies

(a) λ(i) ∈ Ic
k, (b) λ(i) ≤ λ∗, and (c) λ(i) ≤ λ(i+1).

Proof. (a) By induction, we just need to show that λ(1) ∈ Ic
k. Let ρ = `(λ(1), λ(0)),

then we have ρ > 0. Otherwise, if ρ ≤ 0, then by the interlacing property (2.2), we have
dk−1 ≤ λ(1) ≤ dk ≤ λ(0). Since `(λ, λ(0)) is decreasing,

ρ = `(λ(1), λ(0)) ≥ `(λ(0), λ(0)) = s(λ(0)) > 0.

This is a contradiction to ρ ≤ 0. Since ρ > 0, by the interlacing property (2.1), the kth
eigenvalue λ(1) of the matrix A + ρuuT satisfies dk ≤ λ(1) ≤ dk+1.

(b) We prove λ(i) ≤ λ∗ by contradiction. If λ(i) > λ∗, then

ρ = `(λ(i), λ(i−1)) ≤ `(λ∗, λ(i−1)) ≤ s(λ∗),

where the first inequality is by the fact `(λ, λ(i−1)) is decreasing and the second inequality is
by Lemma 3.4. Recall that λ(i) and λ∗ are the kth eigenvalues of the matrices A + ρuuT and
A + s(λ∗)uuT respectively. Then by Lemma 2.1, we have λ(i) ≤ λ∗. This is a contradiction.

(c) This can also be shown by contradiction. If λ(i) > λ(i+1), then we have λ(i+1) < λ(i) ≤
λ∗, where the second inequality is from (b). Since `(λ, λ(i)) and s(λ) are decreasing functions,
we have

ρ = `(λ(i+1), λ(i)) ≥ `(λ(i), λ(i)) = s(λ(i)) ≥ s(λ∗).

By Lemma 2.1, it leads λ(i+1) ≥ λ∗, which is a contradiction.

The following theorem shows that the SLAM is globally convergent.
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Theorem 3.1. Under the assumption (3.9), the iterates λ(i) of SLAM converge to λ∗ for any
initial λ(0) ∈ Ic

k. Furthermore, the convergence rate is asymptotically quadratic if λ∗ ∈ Ik.

Proof. By Lemma 3.5, the series {λ(i)} is monotonically increasing and bounded. Hence, it
is convergent. Denote the limit as λ†, we have λ† ∈ Ic

k and λ† ≤ λ∗.
We now show that λ† = λ∗. Since limi→∞K(λ(i)) = K(λ†) and limi→∞M(λ(i)) = M(λ†),

then from the continuity of the eigenproblem (3.8), we have λ† is the kth eigenvalue of the
pencil (K(λ†),M(λ†)). Thus λ† is the kth eigenvalue of A + `(λ†, λ†)uuT = A + s(λ†)uuT . By
the uniqueness of λ∗ from Lemma 2.4, we conclude λ† = λ∗.

Finally, we prove that the convergence rate is asymptotically quadratic if λ∗ ∈ Ik. For the
simplicity of notation, let us denote the ith and (i + 1)st iterates as φ = λ(i) and ψ = λ(i+1),
and write the equation (3.7) as

(A + `(ψ, φ)uuT − ψI)x = 0, (3.10)

where `(ψ, φ) = s(φ) + s′(φ)(ψ − φ). After taking into the account of the orthogonal transfor-
mation (2.5) and the deflation, we know that ψ and φ satisfy the secular equation

g(ψ, φ) = 1 + `(ψ, φ)w(ψ) = 0 (3.11)

with g(λ∗, λ∗) = 0. Since s′(φ) ≤ 0, ρ = `(ψ, φ) > 0, w(ψ) = −1/`(ψ, φ) < 0 and w′(ψ) > 0,
we have

∂g

∂ψ
=

∂`(ψ, φ)
∂ψ

w(ψ) + `(ψ, φ)w′(ψ) = s′(φ)w(ψ) + `(ψ, φ)w′(ψ) > 0,

∂g

∂φ
=

∂`(ψ, φ)
∂φ

w(ψ) = (ψ − φ)s′′(φ)w(ψ).

Hence we have
∂g

∂ψ
(λ∗, λ∗) > 0 and

∂g

∂φ
(λ∗, λ∗) = 0.

By the implicit function theorem, see for example [18], for a sufficient large i and ψ and φ

are within a neighborhood of λ∗, there exists a function ψ(φ) such that g(ψ(φ), φ) = 0 and
ψ(λ∗) = λ∗.

Note that
ψ′(λ∗) = −(

∂g

∂φ
)/(

∂g

∂ψ
) |φ=λ∗,ψ=λ∗= 0. (3.12)

Furthermore, the second derivative

ψ′′(λ∗) =
−s′′(λ∗)w(λ∗)

s′(λ∗)w(λ∗) + s(λ∗)w′(λ∗)

is bounded since the denominator is positive. By the Taylor expansion, we have

λ(i+1) − λ∗ = ψ − λ∗ = ψ(φ)− ψ(λ∗)

= ψ′(λ∗)(φ− λ∗) +
1
2
ψ′′(ξ)(φ− λ∗)2

=
1
2
ψ′′(ξ)(φ− λ∗)2

=
1
2
ψ′′(ξ)(λ(i) − λ∗)2,
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for some ξ ∈ (φ, λ∗). Therefore, we conclude that the iterates λ(i) converge asymptotically
quadratically.

When the function s(λ) is concave downward, by an analogous argument, we can show that
the iterates λ(i) are monotonically decreasing and converge to λ∗. Note that in [17], the local
convergence of the SLAM is established for the general nonlinear eigenvalue problem T (λ)x = 0
under the assumptions that T (λ) is twice continuously differentiable, T ′(λ∗) is nonsingular and
zero is a simple eigenvalue of T ′(λ∗)−1T (λ∗).

4. Numerical Examples

In this section, we provide numerical examples to demonstrate the theory and algorithms
presented in sections 2 and 3. The safeguarded RQI [6] is used to solve the standard eigenvalue
problem (3.1) in the Picard iteration and the generalized symmetric positive definite eigenvalue
problem (3.8) in the SLAM. The bracketing parameter α of the safeguard strategy is set to
be α = 0.8. The residual norm of a computed eigenpair (λ̂, x̂) is defined as ‖r‖ = ‖(A +
s(λ̂)uuT )x̂− λ̂x̂‖/‖x̂‖. When ‖r‖ ≤ τ = 10−12, the computed eigenpair (λ̂, x̂) is declared to be
convergent. All numerical data were obtained with Matlab implementations of the algorithms
on an Intel Core2 Duo T7500 2.2Ghz with 2GB RAM.

Example 1. Consider an artificial nonlinear rank-one modification eigenvalue problem of a
diagonal matrix: [

D + s(λ)uuT
]
x = λx, (4.1)

where D = diag(1, 2, . . . , n), s(λ) = − tan−1(λ)− 3 and u = 1√
n
1n, 1n is the vector of length n

whose elements are all ones. Note that s(λ) < 0 and s′(λ) = −1/(1 + λ2) < 0 on (−∞,+∞).
By Theorem 2.4, we conclude that there is a unique eigenvalue of (4.1) on each interval I0 =
(−∞, 1) and Ik = (k, k + 1) for k = 1, 2, . . . , n− 1. There is no eigenvalue on (n, +∞).

For numerical experiment, let us set n = 100 and compute the smallest eigenvalue λ1 ∈
(−∞, 1). Let the initial guess (λ(0), x(0)) = (0, u). As shown in the first plot of Figure 4.1,
the safeguarded Picard iteration converges linearly. The SNRQI takes 3 initial steps before
the quadratic convergence rate occurs. The slow convergence of the SNRQI at the initial steps
becomes more obvious when we try to compute the largest eigenvalue λ100 ∈ (99, 100) with the
initial guess (λ(0), x(0)) = (99.2, u). It takes more than 8 steps before the quadratic convergence
rate occurs, see the second plot of Figure 4.1. We note that if there is no the safeguard
strategy, it converges to the eigenvalue in the interval (98, 99), not the targeted one in (99, 100).
By contrast, SLAM converges in only 2 and 3 steps in both cases.

The convergence of the Picard iteration strongly depends on the slope of the function s(λ).
For example, if let s(λ) = −a(tan−1 +3), then the Picard iteration takes 41 steps to converge
when a = 5, and stagnates at the residual norm ‖r‖ = O(1) when a = 10. On the contrary, the
slope of the function s(λ) does not affect on the convergence speed of the SNRQI and SLAM
algorithms.

Finally, we note that the safeguarded Picard and SLAM converge in one iteration if the
targeted eigenvalue λ∗ is one of the end-points of the interval Ic

k = [dk, dk+1]. For example, let
the second element u2 of the vector u be zero in (4.1). Then the target eigenvalue is λ2 = 2 in
Ic

1 = [1, 2]. With the initial approximate eigenpair (λ(0), x(0)) = (1.5,1n/
√

n), both the Picard
and SLAM algorithms take only one step to converge to λ2 = 2. On the other hand, the SNRQI
takes 4 iterations.
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Fig. 4.1. Convergence history of the safeguarded Picard, SNRQI and SLAM. First: to compute λ1.

Second: to compute λ100.

Example 2. This is an example arising from eigenvibrations of a mechanical structure with
elastically attached load, such as beam, plate or shell [3, 19]. Specifically, we consider the
eigenvibration of a string with a load of mass M attached by an elastic spring of stiffness K

modeled by the differential eigenvalue problem
{ −u′′(x) = λu(x), x ∈ (0, 1),

u(0) = 0, −u′(1) = ϕ(λ)u(1),
(4.2)

where ϕ(λ) = λγ/(λ − γ), and γ = K/M . The eigenvalue λ ∈ (γ,∞) and the corresponding
function u(x) are the eigenfrequency and displacement of the string under natural oscillations.

Let us partition the interval [0, 1] by the nodes xj = jh for j = 0, 1, . . . , n, where h = 1/n.
Then using the finite element discretization with the piecewise linear basis functions, we derive
the following n× n algebraic eigenvalue problem

[
A + ϕ(λ)eneT

n

]
y = λBy, (4.3)

where A and B are tridiagonal matrices

A =
1
h




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1




, B =
h

6




4 1
1 4 1

. . . . . . . . .
1 4 1

1 2




,
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and en = (0, 0, . . . , 0, 1)T .
Note that ϕ(λ) is positive decreasing and concave upward on the interval (γ,∞), i.e., ϕ(λ) >

0, ϕ′(λ) < 0 and ϕ′′(λ) > 0 for λ > γ > 0. Let d1 ≤ d2 ≤ · · · ≤ dn be the eigenvalues of the
matrix pair (A,B). Then we can easily verify that for i = 1, . . . , n, di are not the eigenvalues
of the problem (4.3) by the fact that

det(A− diB + ϕ(di)eneT
n ) = pn(di) + (−1)n+1ϕ(di)pn−1(di)

= (−1)n+1ϕ(di)pn−1(di) 6= 0,

where pj(di) is the jth leading principal minor of the tridiagonal matrix A − diB. Therefore,
if γ < d1, by Theorem 2.3, we conclude that on the interval (γ, +∞), the nonlinear eigenvalue
problem (4.3) has n distinct eigenvalues λ1 < λ2 < · · · < λn satisfying the interlacing property
d1 < λ1 < d2 < λ2 < · · · < dn < λn.

Let us choose K = M = 1, γ = 1 and h = 0.01 (n = 100). To find the smallest eigenvalue λ1,
we compute the smallest eigenvalue of the linearized eigenvalue problem (3.8) in the iteration of
the SLAM. Similarly, to find the second smallest eigenvalue λ2, we compute the second smallest
eigenvalue of the linearized eigenvalue problem (3.8). The following table shows the computed
smallest four eigenvalues and the number of iterations using the same initial approximation
(λ(0), x(0)) = (1.5,1n/

√
n):

i λi iter Ii = (di, di+1)

1 4.48217654587649 5 (2.46745, 22.2107)

2 24.2235731125643 4 (22.2107, 61.7167)

3 63.7238211419440 3 (61.7167, 121.025)

4 123.031221067616 3 (121.025, 200.193)

By the table, we see that to find λi ∈ Ii, it is not necessary to compute the eigenvalues di

and di+1 of the matrix pair (A,B) explicitly. On the other hand, to use the safeguarded Picard
iteration and SNRQI, we must first compute these eigenvalues di and di+1, and then choose an
initial approximate eigenvalue λ(0) ∈ Ii.

Example 3. The nonlinear rank-one modification of the symmetric eigenvalue problem (1.1) is
a computational kernel in the calculation of propagation modes in the fiber optical design [5,6].
Following the presentation of [5], we know that optical fibers are composed of fine threads of
glass in layers, called the core and cladding. Consider an optical fiber which is ideally perfectly
straight, circular, and uniform along its length, the cross section can be divided into core area
and cladding. In the cylindrical coordinate system (r, θ, z), the Maxwell’s equations on the
guided wave function f(r) are reduced to the scalar wave equation:

[
1
r

d

dr

(
r

d

dr

)
− m2

r2
+

(
k2(r)− k2

cl

)]
f = (β2 − k2

cl)f, (4.4)

where β is an unknown propagation constant, r is a radius in the cross section, m is an integer
of the mode number (we only consider the case m > 0), k(r) is the wave number given by
k(r) = 2πη(r, l)/l, η(r, l) is the refractive index at r and l is the light’s vacuum wavelength.
In addition, kcl = 2πηcl/l which makes k2(r) − k2

cl = 0 in the cladding, where ηcl denotes the
refractive index in the cladding.

Assume that the cladding extends infinitely, then at a sufficient large radius r, the wave
function f is of the form

f(r) = aKm(µr),
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where µ = (β2 − k2
cl)

1/2, Km(z) is the mth order modified Bessel function of the second kind
and a is an unknown scaling factor. At the center, we have the boundary condition f(0) = 0.
On the other hand, since

f ′(r)
f(r)

= µ
K ′

m(µr)
Km(µr)

≡ Gr(µ),

we have the Dirichlet-to-Neumann boundary condition at a cutoff radius R:

f ′(R) = f(R)GR(µ).

A challenge of transmission of light in (single mode) optical fiber is chromatic dispersion [20],
which leads to spreading of light pulses as they travel down the fiber (signal distortion). In the
fiber optical design, when considering dispersion, derivatives of β are required. Therefore, we
need to compute the propagation constant β first.

By using the finite element method to discretize the scalar wave equation (4.4), we first set
n + 2 evenly spaced sample points ri = iδ for i = 0, 1, . . . , n + 1 along r with mesh size δ. The
cutoff radius R = rn = nδ. The node number at the core radius is denoted as nc such that
Rc = ncδ. With the piecewise linear basis functions and proper treatment of the boundary
conditions, the differential eigenvalue problem (4.4) is approximated by the following nonlinear
algebraic eigenvalue problem

[
A + s(λ)eneT

n

]
x = λx for λ > 0, (4.5)

where λ = µ2δ2, A is a symmetric tridiagonal matrix with diagonal

aii =




−2−m2/i2 + δ2(k2(ri)− k2

cl), 1 ≤ i ≤ nc,

−2−m2/i2, nc < i < n,

−1 + 1/(2n)−m2/n2, i = n,

with k(ri) = 2πη(ri, l)/l and kcl = 2πηcl/l. The sub- and super-diagonal elements of A are
ai+1,i = ai,i+1 = (i + 0.5)/

√
i(i + 1) for i = 1, 2, . . . , n− 1, the function s(λ) is of the following

form:

s(λ) =
n + 0.5

n

√
λ

K ′
m(n

√
λ)

Km(n
√

λ)
,

and the vector en is the last column of the identity matrix.
For the numerical experiment, we choose m = 1 and l = 1.1µm. Then we have

η(ri, l) = ηcl + 1.45291C(ri),

where the refractive index in the cladding is ηcl = 1.4969. C(ri) is a dopant concentration and
has the expression

C(ri) =
(

1− 2γ(i/nc)α

1− 2γ

) 1
2

− 1 for 0 ≤ i ≤ nc,

with α = 25 and γ = 0.003. The cutoff radius R and the core radius Rc of the fiber are set as
R = 6Rc = 24µm. The mesh size is δ = 0.01µm. As a result, we have nc = 400 and the order
of the problem (4.5) is n = 6nc = 2400.

Note that s(λ) < 0 , s′(λ) < 0 and s′′(λ) > 0 for λ > 0 (see Figure 4.2). The matrix A has
only one positive eigenvalue dn ≈ 7.73 × 10−7. Hence by Theorem 2.4, we conclude that the
problem (4.5) has at most one eigenvalue on the interval (0, dn). Using the initial approximation
(λ(0), x(0)) = (0,1n/

√
n), the following table shows the computed eigenvalue of (4.5) on the

interval (0, dn):
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Fig. 4.2. Function s(λ) for mode number m = 1 and problem size n = 2400.

Algorithm iter computed λ∗ residual

Picard 5 7.13949431688754× 10−7 1.92× 10−13

SNRQI 4 7.13949430586656× 10−7 4.95× 10−20

SLAM 3 7.13949430685028× 10−7 4.88× 10−16

By the table, we observe that all three algorithms converge. The SLAM has fewest number of
iterations. But the SNRQI is cheapest in terms of computational cost since at each iteration, the
SNRQI only needs to solve a linear system of equations, instead of solving the linear eigenvalue
problems in the Picard iteration and the SLAM.

5. Conclusion

The existence of eigenvalues for the nonlinear rank-one modification of the symmetric eigen-
value problem (1.1) is proven under the assumption that the function s(λ) is positive decreasing.
In this case, we also obtain the interlacing property (Theorem 2.6), which can be viewed as an
extension of the well-known (constant) rank-one modification of the symmetric eigenvalue prob-
lem. The SLAM is shown to be the most robust method. The future work includes studying
whether these results can be extended to other class of the function s(λ). In general, it remains
as a challenging problem about the existence of eigenvalues and efficient numerical methods
for the general nonlinear eigenvalue problem of the form T (λ)x = 0, where the elements of the
matrix T (λ) are analytic functions of λ [21].
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