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Abstract. High-frequency response analysis (Hi-FRA) is required to
predict the resonant behavior of modern microsystems operated over a
high frequency range. Algebraic substructuring (AS) method is a pow-
erful numerical technique for FRA. However, the existing AS method is
developed for low-FRA, say over the range 1Hz–2KHz. In this work, we
extend the AS method for FRA over a given frequency range [ωmin, ωmax].
Therefore, it can be efficiently applied to systems operated at high fre-
quency, say over the range 1MHz–2MHz. The success of the proposed
method is demonstrated by Hi-FRA of a microgyroscope.

Keywords: High-Frequency Response Analysis, Algebraic Substructur-
ing, Micro-Systems, Frequency Sweep Algorithm.

1 Introduction

Frequency Response Analysis (FRA) studies structural responses to steady-state
oscillatory excitation to predict the resonant behavior in an operation (excita-
tion) range of frequencies. Resonant sensors in microelectromechanical systems
(MEMS) and other microscale structures are designed to catch the resonant be-
havior over a higher frequency range. Therefore, the Hi-FRA is typically required
for the microscale structures.

The discretized model of a structure we consider in this paper is a continuous
single-input single-output second-order system of the form

{
Mẍ(t) + Dẋ(t) + Kx(t) = bu(t)

y(t) = lT x(t) (1)

with the initial conditions x(0) = x0 and ẋ(0) = v0. Here t is the time variable,
x(t) ∈ RN is a state vector, N is the degree of freedom (DOF). u(t) is the
input excitation force and y(t) is the output measurement function. b ∈ RN and
l ∈ RN are the input and output distribution vectors. M, K, D ∈ RN×N are
system mass, stiffness and damping matrices. It is assumed that the M and K
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are symmetric positive definite. The input-output behavior of the model (1) is
characterized by the transfer function

H(ω) = lT (−ω2M + iωD + K)−1b, (2)

where ω is the frequency and i =
√

−1. Mathematically, the low FRA is on the
computation of the transfer function H(ω) for ω over the range [1, ωmax], where
ωmax is small, say at KHz. The Hi-FRA is about the computation of H(ω) for
ω over the range [ωmin, ωmax], where ωmin and ωmax are large, say at MHz.

Due to the large DOF of the model (1), it is prohibitive to directly compute
H(ω) over a large number of frequency points ωk over the range of interest. A
popular approach of the FRA is based on an eigensystem analysis, called the
mode superposition (MS) method. One first extracts n eigenpairs (λk, qk) of the
matrix pair (K, M):

Kqk = λkMqk, (3)

where qT
k Kqk = λk and qT

k Mqk = 1. Then by projecting the transfer function
H(ω) onto the subspace span{Qn} = span{[q1, q2, . . . , qn]}, it yields

Hn(ω) = lTn (−ω2In + iωDn + Λn)−1bn, (4)

where Λn = diag(λ1, ..., λn), Dn = QT
nDQn, ln = QT

n l and bn = QT
n b. The

shift-and-invert Lanczos (SIL) method as an eigensolver has been the method
of choice for decades. However, the continual and compelling need for the FRA
of very large model (1) challenges the computational efficiency of the method.
Substructuring approaches, initially developed in early 1960s, are being studied
in recent years. The automated multi-level substructuring (AMLS) method [1,2]
is one of substructuring approaches, in which the structure is recursively divided
of many of subdomains, and these subdomains can be handled efficiently and in
parallel. An algebraic analysis of the AMLS method, referred to as the algebraic
structure (AS) method, is studied in [10,5]. The AMLS has been successfully
used for low FRA in which the smallest eigenmodes are required [2]. However,
the direct application of the AMLS to the Hi-FRA would require a large number
of eigenmodes starting from the smallest to the large ones to match the high fre-
quencies. It is computationally inefficient. In this paper, we propose an extension
of the AMLS method for Hi-FRA application. Since the implementation of the
AMLS is a proprietary software, we will use the AS method presented in [10,5]
as an eigensolver, and then present the FRA method that is the an extension of
the AMLS frequency sweeping algorithm [2].

2 Algebraic Substructuring

For Hi-FRA, the eigenmodes corresponding to the natural frequencies closest
to the operation range are most important. Hence, we begin with a shifted
eigenproblem of (3):

Kσq = λσMq, (5)
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where Kσ = K − σM and λσ = λ − σ. σ is a prescribed shift related to the
frequency range [ωmin, ωmax]. The choice of the shift σ is to be discussed later.
We assume that the matrix pair (Kσ, M) is of the partition

Kσ =

N1 N2 N3
N1
N2
N3

⎡
⎣Kσ

11 Kσ
13

Kσ
22 Kσ

23
Kσ

31 Kσ
32 Kσ

33

⎤
⎦ , M =

N1 N2 N3
N1
N2
N3

⎡
⎣M11 M13

M22 M23
M31 M32 M33

⎤
⎦ , (6)

where (Kσ
11, M11) and (Kσ

22, M22) are two substructures that are connected by
the interface (Kσ

33, M33). For simplicity, we only show in single-level substruc-
turing. A multi-level extension is performed for the shifted matrices through the
same process which is described in [5].

By performing a block LDLT factorization of the matrix Kσ, i.e., Kσ =
LK̂σLT , the shifted eigenproblem (5) is transformed to the eigenproblem

K̂σq̂ = λσM̂ q̂, (7)

where K̂σ and M̂ are in the Craig-Bampton form [3]:

K̂σ = L−T KσL−1 and M̂ = L−T ML−1 .

The next step of the AS is to extract the eigenmodes (called local modes) of the
interior substructures and interface specified by the local cutoff values μσ

min and
μσ

max. The subspace spanned by the column of the matrix

S =

m1 m2 m3

N1
N2
N3

⎡
⎣S1

S2
S3

⎤
⎦ (8)

where S1, S2 and S3 consist of extracted eigenvectors of substructures and the
interface, respectively.

By projecting the eigenproblem (7) onto the subspace span S, then we have
a reduced eigensystem of order m = m1 + m2 + m3:

Kσ
mφ = θσMmφ, (9)

where Kσ
m = ST K̂σS and Mm = ST M̂S. The eigenmodes φ are referred to

as the global modes. These global modes are grouped into retained modes and
truncated modes determined by (left and right) global cutoff values λσ

min and
λσ

max. If we write Φ = [φ] =
[
Φl Φn Φr

]
, then Φn are the retained modes, Φl

and Φr are the truncated modes corresponding to the eigenvalues smaller and
larger than the cutoff values λσ

min and λσ
max, respectively. Φt are all truncated

modes, Φt = [Φl Φr]. The subspace spanned by the columns of the matrix L−1S
is referred to as an AS subspace.
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3 Frequency Response Analysis

With the assumption of Rayleigh damping D = αM +βK and the introduction
of the shift σ, the transfer function H(ω) can be written as

H(ω) = lT [γ1K
σ + γ2M ]−1b, (10)

where γ1 = γ1(ω) = 1 + iωβ and γ2 = γ2(ω, σ) = −ω2 + σ + iω(α + σβ).
Projecting H(ω) onto the AS subspace, we have

Hm(ω) = lTm[γ1K
σ
m + γ2Mm]−1bm = lTmpm(ω), (11)

where lm = (L−1S)T l and bm = (L−1S)T b, and pm(ω) is the solution of the
parameterized linear system of the order m:

Gm(ω)pm(ω) = bm. (12)

where Gm(ω) = γ1K
σ
m + γ2Mm. It is typical that by the AS method, the order

m is still too large to apply for computing frequency responses. In AMLS, a
so-called frequency sweep (FS) algorithm is introduced [2]. The FS algorithm
retains only the low frequency modes and truncate all high frequency modes.
However, for efficient Hi-FRA, it is important to be able to retain those modes
corresponding to the frequency range [ωmin, ωmax] of interest. To do so, let the
vector pm(ω) be written as pm(ω) = pn(ω) + pt(ω) where pn(ω) are in the
subspace spanned by the retained global modes Φn and pt(ω) in the subspace
spanned by the truncated modes Φl and Φr. Write pn(ω) = Φnηn(ω) for some
coefficient vector ηn(ω), then the equation (12) becomes

Gm(ω)(Φnηn(ω) + pt(ω)) = bm. (13)

Pre-multiplying the equation by ΦT
n , then by the orthogonality of the global

modes, the vector pn(ω) is immediately given by the n uncoupled equations:

pn(ω) = Φn(ΦT
n Gm(ω)Φn)−1ΦT

n bm = Φn(γ1Θ
σ
n + γ2I)−1ΦT

n bm. (14)

Subsequently, the equation (13) can be written as a parameterized linear system
for pt(ω):

Gm(ω)pt(ω) = bm − Gm(ω)pn(ω). (15)

Since it is anticipated the effect of the truncated modes for the accuracy of
FRA is marginal, we employ a simple iterative refinement scheme for computing
p�−1

t (ω): p�
t(ω) = p�−1

t (ω) + Δp�
t(ω) where the correction term Δp�

t(ω) is the
solution of the refinement equation

Gm(ω)Δp�
t(ω) = r�−1

m (ω), (16)

and r�−1
m (ω) = bm − Gm(ω)(pn(ω) + p�−1

t (ω)), the (� − 1)-th residual vector.
To solve the refinement equation (16), we use a Galerkin subspace projection

technique, namely, seek Δp�
t(ω) such that

Δp�
t(ω) ∈ span{Φt} and Gm(ω)Δp�

t(ω) − r�−1
m (ω) ⊥ span{Φt}.



An Algebraic Substructuring Method for Hi-FRA of Micro-systems 525

By some algebraic manipulation, we have

Δp�
t(ω) = Φt(γ1Θ

σ
t + γ2I)−1ΦT

t r�−1
m (ω)

=
[
(γ1K

σ
m + γ2Mm)−1 − Φn(γ1Θ

σ
n + γ2I)−1ΦT

n

]
r�−1
m (ω).

For computational efficiency, noting that Kσ
m is diagonal, we simply use the

following approximation for computing the correction term Δp�
t(ω):

Δp�
t(ω) ≈ Φt(γ1Θ

σ
t )−1ΦT

t r�−1
m (ω) (17)

Subsequently, we derive the following iterative refinement iteration for comput-
ing the vector pt(ω):

p�
t(ω) = p�−1

t (ω) +
1
γ1

[
(Kσ

m)−1 − Φn(Θσ
n)−1ΦT

n

]
r�−1
m (ω) (18)

for � = 1, 2, . . ., with the initial guess p0
t (ω). A practical stopping criterion is

to test the relative residual error ‖Δp�
t(ω)‖2/‖(γ1K

σ
m)−1bm‖2 ≤ ε for a given

tolerance ε. The convergent solution is denoted as p∗t (ω).
Assume that it is required to calculate the nf frequency points: ωmin ≤ ω1 <

ω2 < · · · < ωnf
≤ ωmax. Then we can determine the initial guess p0

t (ωk) at the
frequency ωk by a linear extrapolation for k = 3, 4, ..., nf with p0

t (ω1) = 0 and
p0

t (ω2) = p∗t (ω1). Then all initial guess p0
t (ωk) ∈ span{Φt}. p�

t(ω) by the iteration
(18) is guaranteed to be orthogonal to the vector pn(ω).

Now we turn to investigate the relationship between the frequency range
[ωmin, ωmax] of interest and the interval [λσ

min, λσ
max] for the global modes to

be retained to guarantee the convergence of the iteration (18). By the equation
(17), we have

‖Δp�
t(ω)‖2 ≈ ‖Φt(γ1Θ

σ
t )−1ΦT

t r�−1
m (ω)‖2 ≤ ‖Φt(γ1Θ

σ
t )−1‖2‖ΦT

t r�−1
m (ω)‖2.

The term ΦT
t rm(ω) is referred to as a truncated modal residual. By some algebraic

manipulation, we see that two consecutive truncated modal residuals satisfy the
relation

ΦT
t r�

m(ω) = −γ2

γ1

[
Θσ

l

Θσ
r

]−1

ΦT
t r�−1

m (ω)

Therefore, if we introduce a positive constant ξ, referred to as contraction ratio,
such that ∣∣∣∣∣

φT
k r�

m(ω)
φT

k r�−1
m (ω)

∣∣∣∣∣ =
d(ω, σ)

|θσ
k | ≤ dmax

|θσ
k | ≤ ξ < 1 (19)

where φk ∈ Φt, d(ω, σ) = |−γ2/γ1|, and dmax = max{d(ωk, σ), 1 ≤ k ≤ nf}.
Then the components of the truncated modal residual are contracted, i.e., the
norm of the correction term Δpt(ω) decreases and the iteration (18) converges.
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By (19), it derives that the global modes outside the interval [−dmax/ξ, dmax/ξ]
can be “cut off”, i.e., the global cutoff values are determined by

λσ
min = −dmax/ξ and λσ

max = dmax/ξ (20)

When there is no shift, i.e., σ = 0, the low global cutoff value is less than zero.
It means that all low frequency modes smaller than λσ

max are retained.

4 ASFRA Algorithm

By combining the AS method for extracting eigenpairs and the frequency sweep
iteration, we derive an algorithm for computing the frequency responses H(ωk).
The algorithm is referred to as the ASFRA algorithm. In this section, we briefly
discuss the choice of parameters in ASFRA. Detail will be presented in a full
paper elsewhere.

It is necessary that the shift σ ∈ [ω2
min, ω

2
max]. In order to minimize the range

of the global modes to be retained/extracted, the center of the frequency range
is used, σ = 1

2 (ω2
max + ω2

min).
By (20), the global cutoff values λσ

min and λσ
max are essentially determined

the contraction ratio ξ. To improve the convergence of the FS iteration (18), the
contraction ratio ξ should be small. However, it makes the number of retained
global modes large. From our numerical experiments, we found that a good
choice is ξ = 0.5.

How to retain the local modes for a desired number and accuracy of global
modes has been an important issue in the study of the AS algorithm [10]. To
achieve a desired level of accuracy of the global modes, a large number of local
modes are required. the local cutoff values μσ

min and μσ
max are typically chosen

proportionally to the global cutoff values λσ
min and λσ

max, namely μσ
min = clλ

σ
min

and μσ
max = cuλσ

max, where cl and cu are relaxation factors. As cl and cu increase,
the accuracy of the global modes is typically improved. We use cl = cu = 10 as
default by referring to the previous research in [1].

We implemented ASFRA based on the ASEIG [5]. The multilevel partition is
done by METIS [6]. The global modes and the local modes of the substructure
blocks are computed by ARPACK [7] with SuperLU [4] and the local modes of
the interface are solved by LAPACK.

We will compare the performance of ASFRA with three other methods in
the next section. Let us briefly review these methods. The first method is the
so-called direct method. It computes the frequency responses H(ωk) by solving
the underlying linear system (2) by a direct sparse method. Specifically, we use
the SuperLU method. The second method is to use the shift-and-invert Lanczos
(SIL) method from ARPACK to extract n eigenmodes and then approximate
H(ωk) by Hn(ωk) as defined in (4). The shift is σ = 0 and the eigenmodes
are determined by upper cutoff value λmax and the residual flexibility vectors
are supplemented [9]. The upper cutoff value λmax is determined by λmax =
(χωmax)2, where χ is a multiplication factor. Typically, χ = 2 or 3, when there
are no residual flexibility vectors. Otherwise, χ can be smaller, say 1.11. The
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Fig. 1. The frequency responses of a butterfly gyro

third method is a special case of ASFRA with the zero shift σ = 0, and the
lower cutoff value λσ

min = 0. The frequency response H(ωk) is approximated by
Hm(ωk) in eq. (11). It is denoted as ASFRA0. ASFRA0 is essentially the AMLS
with frequency sweep iteration as presented in [2].

5 Numerical Experiment

MEMS resonators under an electrostatic actuation are utilized in various MEMS
devices such as angular rate sensors and bandpass filters. Specifically, we consider
a FE model with solid elements of a butterfly gyro which is an angular rate sensor
using the MEMS resonator [8]. The order of the system K and M matrices
is N = 17631. The Rayleigh damping parameters are set by α = 0.0, β =
10−10. Frequency responses changes rapidly near the resonances in the range
[fmin, fmax] = [ωmin/(2π), ωmax/(2π)] = [1.4, 1.5]MHz. Numerical experiment is
conducted on an Intel Itanium 2 Server with Linux OS.

The substructuring level of the AS is 3. The tolerance of the frequency sweep
iteration is ε = 10−5. By Figure 1, ASFRA shows better accuracy than ASFRA0

with the given parameters. The detailed results are listed in Table 1. All methods
calculate the responses at nf = 201 frequencies ωk in an equal space on the inter-
val. ASFRA is 2.3 times faster than ASFRA0. SIL is more expensive than ASFRA
because it needs to compute eigenmodes of the full-size eigensystem. Finally, we
note that the performance of ASFRA and ASFRA0 does not change significantly
when the parameters ξ and cl, cu are changed slight from the present choice.

Table 1. The dimension of AS subspace, numbers of retained modes, total FS iteration,
and the elapsed time

ASFRA ASFRA0 SIL Direct
m (AS subspace dim.) 213 651 - –
n (retained modes) 20 175 156 –
Total FS iteration 238 51 - –
Elapsed Time(sec.) 26.77 62.94 80.42 754.6
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6 Conclusion

In this paper, we presented an algebraic substructuring based frequency response
analysis (ASFRA) algorithm to calculate the frequency response of a large dy-
namic system between two specified frequency ωmin and ωmax. ASFRA can be ef-
ficiently applied to Hi-FRA, as demonstrated by a microelectomechanical sensor
operated at 1MHz–2MHz. Future work includes the optimal choice of parameters
and parallelization techniques.
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