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Abstract 
 
Algebraic substructuring (AS) is a state-of-the-art method in eigenvalue computations, especially for large-sized 

problems, but originally it was designed to calculate only the smallest eigenvalues. Recently, an updated version of AS 
has been introduced to calculate the interior eigenvalues over a specified range by using a shift concept that is referred 
to as the shifted AS. In this work, we propose a combined method of both AS and the shifted AS by using multiple 
shifts for solving a considerable number of eigensolutions in a large-sized problem, which is an emerging computa-
tional issue of noise or vibration analysis in vehicle design. In addition, we investigated the accuracy of the shifted AS 
by presenting an error criterion. The proposed method has been applied to the FE model of an automobile body. The 
combined method yielded a higher efficiency without loss of accuracy in comparison to the original AS. 
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1. Introduction 

The dynamic analysis of vehicle structures often 
encounters a finite element discretization with many 
unknowns. The discretized models are typically used 
in many solutions, such as frequency response analy-
sis at numerous frequencies. For large-sized systems, 
it is prohibited to compute the frequency responses 
directly because a factorization of the full size system 
matrices is required at each frequency. Hence, the 
mode superposition (MS) type method is a viable 
alternative to deal with this kind of large-sized prob-
lem. A large number of eigenvectors are needed as a 
basis of MS; then it becomes a major computational 
issue.  

A famous approach for the partial eigensolution is a 
shift-invert Lanczos algorithm (SIL). When the num-
ber of the demanded eigenvalues is large, the neces-
sity to choose additional shifts increases in order to 

compensate for the slower convergence rate of the 
eigenvalue far from a shift [1]. Meanwhile, a full size 
matrix factorization is required at each shift, and this 
causes a dramatic increase in the computational cost 
for a large-sized problem. In addition, the selection of 
a series of shifts is a sophisticated process to improve 
the efficiency. Overall, the continual and compelling 
need for the frequency response analysis challenges 
the computational efficiency of the SIL.  

Substructuring approaches, initially developed in 
early 1960s, have been revitalized in recent years, led 
by the automated multi-level substructuring (AMLS) 
method [2-4]. AMLS is a generalization of classical 
component mode synthesis techniques [5, 6] that has 
gained a good reputation for a commercially viable 
application. These approaches partition initial struc-
tures, namely system matrices, into a number of sub-
structures, each of which is composed of substruc-
tures from the substructure of previous level, and so 
on. These substructures can be handled efficiently in 
single or multiple processor computing environments. 
A variation of the AMLS technique, referred to as the 
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Algebraic substructuring (AS) method, has also been 
developed in [7, 8], and it is built upon the public 
codes of AS [7]. Meanwhile, the accuracy of these 
substructuring-based methods is known to be inferior 
to that of the Lanczos type method, and, typically, the 
accuracy worsens as the desired eigenvalue becomes 
farther from zero value.  

Recently, an AS using a shift concept, which is re-
ferred to as the shifted AS, has been introduced to 
enhance the computational efficiency of modern mi-
crosystems operated over a high frequency range [9]. 
This new method is an extension of AS and has dem-
onstrated the ability of obtaining the frequency re-
sponse of a specified frequency range. It is shown that 
the higher accuracy for the frequency response is 
obtained by moving the location of a shift, thereby 
resolving the accuracy issue of the original AS.  

In this work, we combine the shift AS and the 
original AS in order to calculate a large number of 
eigenvalues for a large-sized system. With a view of 
the technique that uses the multiple shifts for im-
provement of the efficiency of the Lanczos method 
[1], we adopt the multiple shifts concept to the com-
bined AS method in a simple empirical way. A series 
of numerical experiments are executed to explore the 
accuracy of the shifted AS and the performance of the 
combined AS method using multiple shifts  

The paper is organized as follows. In Section 2, we 
review the shifted AS and propose a criterion to pre-
dict the accuracy of the calculated eigenvalues. Sec-
tion 3 presents the combined technique of AS and the 
shifted AS using multiple shifts. The numerical ex-
periments on FE car body models are presented in 
Section 4 followed by concluding remarks.  
 

2. Shifted algebraic substructuring 

2.1 Review of basic theory 

An updated version of AS that employs a shift con-
cept has recently been introduced to solve problems 
in a range of eigenvalues [ ]l uλ λ,  [9]. For simplicity, 
a single-level substructuring is presented in this sec-
tion. A multi-level extension can be performed with 
the shifted matrices by using the same process which 
is described in [7].  

Let us start from an N-size eigensystem with the 
shifted pencil ( )K Mσ ,   

 
,K q Mqσ σλ=    (1) 

where K K Mσ σ= −  and σλ λ σ= − . The system 
matrices K and M are assumed to be constructed by 
FE discretizations. First, the rows and columns of 
Kσ  and M  are permuted so that these matrices are 
partitioned as  
 

1 2 3 1 2 3

1 11 1 1113 13

2 22 23 2 22 23

3 31 32 33 3 31 32 33

and ,

N N N N N N
N K K N M M

K MN K K N M M
N K K K N M M M

σ σ
σ

σ σ

σ σ σ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

= =   

(2) 
where the labels 1N , 2N , and 3N  indicate the di-
mensions of the sub-matrix blocks. This permutation 
is accomplished by applying a matrix ordering and 
partitioning algorithm such as the nested dissection 
algorithm to the structure of the matrix K Mσ| | + | | . 

11 11( )K Mσ ,  and 22 22( )K Mσ ,  define two substructure 
blocks that are connected by a third block rows and 
columns of Kσ  and M , which is the interface 
block.  

Then, factorization is performed for the stiffness 
matrix of each block, resulting in the following de-
composition form:  

 
,TK L LK

σσ =   (3) 
 

where  
1

11 13 11
1

22 23 22

33

( )
( )

I K K K
L I K K KK

I K

σ σ σ

σσ σ σ

σ

−

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥= , = .⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

The last diagonal block of K
σ  is given by  

2
1

33 3 333
1

( ) ( ) .T
i ii i

i
K K K KK

σ σ σ σ σ−

=

= −∑   (4)  

The congruent transformation of the pencil 
( )K Mσ ,  by L  yields the eigensystem of a new 
pencil ( )K M

σ, :  

,q qK M
σ σλ=   (5) 

where K
σ  is defined in Eq. (3),  

11 13
1

22 23

31 32 33

,T

M M
M L ML M M

M M M

− −
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= = ⎢ ⎥
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and  
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1
3 33
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3 3 3 3
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The pencil ( )K M
σ,  is known as the Craig-

Bampton (C-B) form [6] in structural engineering. 
The eigenvalues of ( )K M

σ,  are identical to those 
of ( )K Mσ , , and the properties of the system matri-
ces after the transformation are preserved. Note that 
an eigenvector is calculated by 1q L q−= , where q  
is an eigenvector of ( )K M

σ, .  
The next step of AS is to extract the eigenvec-

tors/eigenvalues of each substructure and interface, 
i.e., eigenpairs of the pencils ( )ii iiK M

σ, . These eigen-
vectors are referred to as the subeigenvectors, and the 
corresponding eigenvalues are referred to as the 
subeigenvalues. The range of the subeigenvalues is 
given by [ ]l u

σ σµ µ, , whose ends are called the cutoff 
values. Let the projection matrix be defined as  

 
1 2 3

1 1

2 2

3 3

m m m

N S
S N S

N S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

= ,   (6) 

 
where 1S , 2S  and 3S  consist of 1m , 2m , and 

3m  retained subeigenvectors in each block. Mean-
while, most of the subeigenvectors are truncated, then 

1 2 3m m m m= + +  is much less than N. The subspace 
Ψ  is spanned by column vectors of S , that is, 

= span{ }SΨ .  
By orthogonally projecting the pencil ( )K M

σ,  
onto the subspace Ψ , we then have the eigensystem  

 
,m mK Mσ σφ θ φ=   (7) 

 
where mKσ  and mM  are m m×  matrices defined 
as T

mK S SK
σσ =  and T

mM S MS= . This follows the 
form of the standard Rayleigh-Ritz theory that σθ  is 
the best approximation of the eigenvalues σλ  and 
the vector formed by 1q L Sφ−=  provides an ap-
proximation to the corresponding eigenvector of Eq. 
(1) [10]. 

In particular, when the shift is set by 0σ = , there 
are no low truncated subeigenvectors. Subsequently, 
the procedures in this section become the same as the 
original AS.  

2.2. Accuracy 

The impact of retained subeigenvectors on the ac-
curacy of eigenvalues has been an important issue in 
the study of the AMLS and AS algorithms [3], [8] . 
Here, we explore the effectual factors on the accuracy 
of the shifted AS by using the retained subeigenvec-
tors. As noted earlier, ( )K M

σ,  and ( )K Mσ ,  have 
the same set of eigenvalues. If q  is an eigenvector 
of ( )K M

σ, , then 1q L q−= .  
Let (( ) )i i

j jvσµ ,  be the j -th eigenpair of the i -th 
subproblem ( i =1,2) and 3 3(( ) )j jvσµ ,  be the eigenpair 
of the interfacial problem:  

( ) 1 2i i i
ii j j ii jK v M v for iσ σµ= = ,  

 3 3 3
33 33( )j j jv vK M
σ σµ=  (8) 

Let the truncated subeigenvalues by the low cutoff 
value lµ  be ordered as 

1 2( ) ( ) ( )i i i
nl

σ σ σµ µ µ< < ... <   (9) 

and the truncated subeigenvalues by the upper cutoff 
value uµ  be ordered as 

1 2( ) ( ) ( ) ,
i i i

i i i
N nu N nu N

σ σ σµ µ µ− + − +< < ... <   (10) 

where nl  is the number of the low truncated subei-
genvalues and nu  is the number of the upper trun-
cated subeigenvalues of the i -th block.  

To analyze the effect of the truncated subeigenvec-
tors to the eigenvalue, we first express q  of Eq. (5) 
as  

1 1

2 2

3 3

,
V y

q V y
V y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=   (11) 

where 1{ } 1 2 3
i

i i
i NV v v i= ,..., , = , , , and 1 2 3{ }T T T Ty y y y= , ,  

0≠ . After pre-multiplying TV , the generalized ei-
genvalue problem of (5) yields  

1 1 1 113

2 2 2 23 2

3 3 13 23 3 3

,
T T

y I G y
y I G y
y G G I y

σ

σσ

σ

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

Ν
Ν =

Ν
  (12) 

where  
 

1 2(( ) ( ) ( ) ) 1 2 3
i

i i i
i Ndiag for iσ σ σ σµ µ µΝ = , ,..., = , ,   

 3 33 1 2T
i i iG V V for iM= = , . 
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Suppose i iIσ σλΝ −  is nonsingular for 1 2 3i = , , . 
It follows from each block of (12) that  

1
3 3( ) 1 2i i i iy I G y for iσ σ σλ λ−= Ν − = ,   (13) 

1
3 3 13 1 23 2( ) ( )T T

iy I G y G yσ σ σλ λ−= Ν − +   

Consequently, we can express the j -th element of 
iy  by  

(( ) ) ,T i i
j i j je y gσ

σ
λρ µ| |=   (14) 

where  

3
3 3 13 1 23 2

(( ) ) (( ) )

1 2 ( ) .

i i
j j

i T T T T
j j i j jg e G y for i and g e G y G y

σ
σ σ σ σ

λρ µ λ µ λ= / − ,

= = , = +
 

When 1 2[ ]i
jg γ γ| |∈ ,  for some modest-size constants 

1 2γ γ< , the magnitude of T
j ie y| |  is essentially de-

termined by (( ) )i
jσ

σ
λρ µ , which means the contribu-

tion of j -th subeigenvector to the solution y  [7]. 
The form of (( ) )i

jσ
σ

λρ µ  is first introduced by [8] 
and is called ρ -factor. It is easy to see that 

(( ) )i
jσ

σ
λρ µ  is large when ( )i

j
σµ  is close to σλ , 

and it becomes small when ( )i
j

σµ  is away from σλ . 
Hence, the subeigenvectors, whose corresponding 
subeigenvalues are close to [ ]l u

σ σλ λ, , should be re-
tained. Namely, the condition [ ] [ ]l u l u

σ σ σ σλ λ µ µ, ⊂ ,  is 
necessary. Therefore, it is trivial to show that 

(( ) )i
jσ

σ
λρ µ  is monotonically increasing in the left 

part of the low cutoff value and decreasing in the right 
part of the upper cutoff value as follows:  

1 2(( ) ) (( ) ) (( ) )i i i
nlσ σ σ

σ σ σ
λ λ λρ µ ρ µ ρ µ< < ... <   

because l l
σ σµ λ<   (15) 

and  

1 2(( ) ) (( ) ) (( ) )
i i i

i i i
N nu N nu Nσ σ σ

σ σ σ
λ λ λρ µ ρ µ ρ µ− + − +> > ... >   

because u u
σ σµ λ> .   (16) 

If the relative distance between the subeigenvalue 
and the eigenvalue, σ σµ λ− , is fixed, the ρ -factor 
decreases as σλ  becomes smaller. In order to mini-
mize magnitude of the shifted eigenvalues, the shift 
should be located in the center of the range by 

,
2

l uλ λσ +=   (17) 

then  

l u
σ σλ λ= − .  (18) 

By using this location, the eigenvalue range is di-
vided into two half ranges, namely, left half and right 

half. For the eigenvalues in the right half, the mono-
tonic decrease in (16) as the subeigenvalues is further 
from the shift is the same aspect as the original AS 
method. Meanwhile, the eigenvalues in the left half 
are negative. Hence, we reordered (9) in terms of an 
absolute value, which means the distance from the 
shift, as  

2 1( ) ( ) ( )i i i
l nl
σ σ σ σλ µ µ µ| |<| |< ... <| |<| | .   (19) 

Then the ρ -factors of (15) can be rewritten as  

2 1(( ) ) (( ) ) (( ) ).i i i
nlσ σ σ

σ σ σ
λ λ λρ µ ρ µ ρ µ> ... > >   (20) 

Consequently, in view of the distance from the shift, 
the ρ -factors in the left half also decrease mono-
tonically the further the subeigenvalues are from the 
shift. In addition, the truncated subeigenvectors in left 
part can also affect the accuracy of eigenvalues in the 
right half and vice versa. In those cases, the aspect of 
the monotonic decrease is preserved as well.  

Based on the monotonic decrease in the both 
ranges, the cutoff values are determined by simply 
multiplying a coefficient to the end of the range, a 
similar method to the previous works, as  

,l l l u u uc cσ σ σ σµ λ µ λ= , =   (21) 

where 1uc >  and 1lc >  are referred to as the re-
laxation factors. As the large lc , uc  are used, the 
accuracy is expected to be better. On the other hand, it 
makes the number of the retained subeigenvectors 
increase and results in an increase in computational 
cost.  

The ρ -factor of the truncated subeigenvector in 
the left part has the largest value when the desired 
eigenvalue is close to l

σλ , and the ρ -factor in the 
right part becomes largest when the desired eigen-
value is near u

σλ . The maximum ρ -factors are  

( ( ) ( ) ) 1 1

(( ) ( ) ) 1 1.

l

u

l
max i l l

l l l

u
max i u u

u u u

c
c

c
c

σ

σ

σ
σ σ

σ σλ

σ
σ σ

σ σλ

λρ µ µ ρ
λ λ

λρ µ µ ρ
λ λ

| |>| | = = = / − ,
−

> = = = / −
−

 (22) 

Next, we make the two relaxation factors equal in 
order that the maximum ρ -factors in the both parts 
become the same. This is a way to balance the errors 
of both parts by  

.l uc c=   (23) 

The effect of the relaxation factors looks the same 
as the original AS; however, the major advantage of 
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the shifted AS is due to the magnitude of the shifted 
eigenvalue. One can easily recognize that the shifted 
eigenvalue σλ  is much smaller than the original 
eigenvalue λ ; subsequently, the shifted AS requires 
a smaller range of subeigenvalues than the original 
AS. The fact greatly reduces the computational cost 
when the subeigenvectors whose ρ -factors have the 
same level of magnitude are truncated by the same 

uc  value.  
Here, the accuracy is estimated considering the 

mode selection strategy, which is based merely on a 
ρ -factor threshold except the magnitude of i

jg . 
Many researchers are currently investigating a num-
ber of ways to estimate the magnitude of i

jg . Future 
research on this topic can provide a more precise error 
bound.  

In particular, when no shift exists, that is, 0σ =  
and 0nl = , the ρ -factor becomes  

( ) ( ) ( ) .i i
j j u ucλρ µ λ µ λ λ λ λ= / − = / −   (24) 

Then, the ρ -factor has the largest values at the 
upper cutoff value uλ  as 

( ) 1 1.
umax i u ucλρ µ µ ρ> = = / −   (25) 

As described in this section, the error of the com-
puted Ritz values decreases by increasing the relaxa-
tion factors. Now we consider another expression 
about the accuracy of the Ritz value and also corre-
sponding Ritz vector in the particular case. When the 
first Ritz value 1θ  close to 1λ  is computed, the 
errors between the Ritz pair and the eigenpair are 
bounded as follows: 

2
1 1 1 1( )sin ( , )N M qθ λ λ λ− ≤ − ∠ ℵ ,  (26-1) 

1
1 1 1

2 1

sin ( , ) sin ( , )N
M MX q qλ λφ

λ λ
−∠ ≤ ∠ ℵ
−

,  (26-2) 

where 1 1( , )M X qφ∠ denotes the M-angle between the 
two vectors, X is 1L S−  and ℵ  is the subspace that 
is spanned by the column vectors of X. These are 
from Theorem 3.1 of [8]. According to (26-1), 

1sin ( , )M q∠ ℵ , which is typically defined by a posi-
tive value, is expected to decrease when the accuracy 
improves by retaining a larger number of the subei-
genvectors; subsequently, the M-angle between the 
Ritz vector and the eigenvector in (26-2) can be re-
duced. It still remains as a challenging problem to 
find the error bounds of interior eigenpairs in the gen-
eral case.  

 
3. AS using multiple shifts 

The demand of a large number of eigenpairs is in-
creasing more in a vehicle’s noise or vibration analy-
sis than in past years. According to the recent research 
by Kropp et al. [11], over 5,000 eigenvectors are re-
quired for a vibro-acoustic analysis up to 800 Hz. 
When numerous eigenpairs are required, a Lanczos 
type method faces difficulties in terms of the compu-
tational cost and memory usage because it deals with 
a full-sized system. Meanwhile, an AS type method 
efficiently calculates approximate eigenpairs by solv-
ing the projected eigenproblem on the smaller sub-
space, which is composed of retained subeigenvectors. 
However, the AS method has been developed to cal-
culate only the smallest eigenvalues, and the accuracy 
of an eigenvalue is worse as the distance from zero 
increases. Recently, an updated version of AS was 
introduced as the shifted AS, which solves interior 
eigenvalues and improves accuracy of the solved 
eigenvalues by moving a shift [9]. Here, we combine 
the original AS and the shifted AS and adopt the mul-
tiple shifts idea to solve a considerably large number 
of eigenpairs.  

According to Section 2.1, AS or the shifted AS is 
separated into four main steps. Step 1 is the partition 
and rearrangement of the system matrices ((1)-(2)); 
step 2 is C-B transform ((3)-(6)); step 3 is solving 
each subproblem to construct (7), and step 4 is solv-
ing the projected eigenproblem (8). When the de-
manded number of the eigenvalues increases, the 
computational cost of steps 3-4, which are relative to 
solving the eigenpairs, can be more expensive than 
that of step 2.  

When a Lanczos type method calculates numerous 
eigenpairs, the techniques using multiple shifts in a 
heuristic way reduce the computational cost. Inspired 
by this, we divide the whole range into several 
subranges, which includes one shift in order to reduce 
the computational burden of the eigensolution. How-
ever, the Craig-Bampton transform is repeated for 
each shift as a counter factor, just as one factorization 
of each shift is required in the Lanczos type method. 
After the division, the original AS is applied to the 
first subrange because it already performs excellently 
when calculating the smallest eigenvalues. Then, the 
shifted AS is applied to other subranges. This com-
bined method using multiple shifts is referred to as 
ASEIGMS. As can be observed, the computations of 
the eigenvalues in each subrange are absolutely inde-
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pendent of each other; hence, ASEIGMS can be easily 
extended to a parallel version.  

Note that ASEIGMS requires a number of parame-
ters. Some of them are regulated, such as the location 
of a shift by (17) and the relationship between ,l uc c  
by (23). Here we count on the relaxation factors and 
the number of the subranges (shifts). Both of them are 
not regulated; hence, we choose the proper values 
through our numerical experience.  

First, the relaxation factor plays an important role 
in determining the range of the subeigenvalues to be 
retained and has a strong effect on the accuracy of the 
computed eigenvalues. Hence, how to determine the 
value depends on the desired level of accuracy. As the 
relaxation factor increases, more subeigenvectors are 
retained, resulting in the improvement of the accuracy, 
which is mathematically verified in [3] the best of our 
knowledge, the strict criterion of the relaxation factor 
which affects the accuracy has not been introduced so 
far; hence, most researchers use an empirical method 
to increase the factor by a certain increment until the 
desired accuracy is satisfied. In Kaplan’s thesis, re-
laxation factors between 9 and 100 are utilized to 
explore the influence of the accuracy, and there is an 
order of magnitude reduction in the error when 
changing from 9 to 56.2 (see Fig. 7.16 in [4]). For the 
shifted AS, the accuracy is also expected to improve 
by increasing the relaxation factors because our pro-
posed criterion in Section 2.2 was developed based on 
previous research.  

Second, the method to divide the subranges is a 
major factor of the efficiency of ASEIGMS for com-
puting a considerably large number of eigenvalues. 
To balance the computational cost of each range, 
ASEIGMS needs to make the number of eigenvectors 
in each subrange similar because the cost is mainly 
dependent upon it. However, the shifted AS cannot 
easily automatically assign a similar number to each 
subrange, so we simply divide the original range by 
the same spacing.  

ASEIGMS has been developed on top of ASEIG 
code [7]. In the code, the multilevel partition is done 
by MeTiS [12]. The eigenvalues and the subeigenval-
ues of the substructure blocks are computed by 
ARPACK [13] with SuperLU [14], and the subeigen-
values in the interfacial block are solved by LAPACK 
[15]. The level of substructuring is determined auto-
matically by the default parameter values of MeTiS, 
and the tolerance of SIL subroutine in ARPACK is 
set by 10 10− . 

As we discussed in section 2.2, the accuracy of the 
computed eigenvalues by AS-type methods improves 
and their range within a desired accuracy becomes 
wider as the relaxation factors are larger; thus, a 
smaller number of subranges are required through the 
whole range. In this case, the cost of the C-B trans-
formation, which is demanded for each shift, is re-
duced, but there should be more cost for computing 
the projected eigenpairs, which means Ritz pairs. 
When smaller relaxation factors are used, the number 
of subranges should be larger to satisfy the desired 
accuracy. In that case, we face the opposite situation. 
Hence, a parameter tuning procedure of the relaxation 
factor and the number of the subranges depends on 
the experience of the cost growth in the C-B trans-
formation and the eigensolution. The cost of the trans-
formation relies on the performance of a factorization 
code such as SuperLU and a linear algebra code. The 
cost of the eigensolution depends on the performance 
of an eigensolver such as ARPACK. 

We will compare the performance of ASEIGMS 
with the original AS and shift-invert Lanczos in the 
next section. Let us briefly review these methods.  

Shift and invert Lanczos using multiple shifts: The 
public code ARPACK contains an SIL subroutine for 
the eigenproblem and is used for calculating the ei-
genpairs of the pencil ( )K M, . It employs the same 
tolerance of 10 10− . 

ASEIG: The original AS method in which the shift 
is zero and the substructuring level is given based on 
the size of the original problem. The relaxation factor 

uc  is determined depending on the desired accuracy.  
ASEIGMS: The shift is determined by Eq. (17) and 

lc , uc  are given by same values based on the (23). 
The number of subranges and the value of relaxations 
factors are determined based on the efficiency and 
accuracy issue in an empirical way.  
 

4. Numerical experiments and discussion 

Proper management of a vehicle’s noise or vibra-
tion characteristics helps to produce a more competi-
tive product. The mode superposition (MS) is a viable 
alternative in a numerical analysis where a larger 
number of eigenvectors are required as a basis. The 
wider the required range of interest, the larger the 
number of eigenpairs that should be utilized. Subse-
quently, finding an efficient solution scheme is one of 
the major computational issues in vehicle design.  

We are starting from a geometric model of the  
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Fig. 1. Fine fe model of the car body of a new beetle. 
 
Volkswagen New Beetle. The model is discretized by 
FE shell elements. All experiments were conducted 
on a platform that has a 1.6 GHz Itanium II processor. 
This computer has 15 gigabytes (GB) of physical 
memory and 100 GB of disk space. The operating 
system is Red Hat Linux 3.2.3-42. Two different 
kinds of FE model are employed to exploit the salient 
features of the proposed methodology. The degrees of 
freedom are 38 k (coarse) and 152 k (fine), respec-
tively. Fig. 1 shows the FE model having 152 k un-
knowns. 
 
4.1. Parametric study 

The coarse FE model is utilized to investigate the 
accuracy and the efficiency of the solution schemes. 
The range of eigenvalues considered in the parametric 
study is [0, 8e6], and the range of frequencies falls 
around [1, 450] Hz. The substructuring level is auto-
matically determined to be 8 in the MeTiS library. In 
this situation, 256 substructures and 236 interface 
blocks are automatically generated. 

 
4.1.1 The effect of the relaxation factor on the  

accuracy 
Among the whole range, a given interior range [7e6, 

8e6] is selected to investigate the accuracy by chang-
ing the relaxation factor of the shifted AS. The relaxa-
tion factor is increased by 5, 25, and 50. The error 
percentage is measured with respect to the eigenval-
ues obtained from SIL, and the results are presented 
in Fig. 2. Percent error in the figure is computed by 

100 (%)SIL

SIL

λ λ
λ
− ×  

The computational time grows by 127, 206, 282 
seconds as the relaxation factors are varied from 

5, 25, 50l uc c= = , respectively. 
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Fig. 2. Effect of the relaxation factor on the accuracy of ei-
genvalues for the coarse model. 

 
Table 1. AS data, elapsed time, and accuracy of ASEIG for 
the coarse model. 
 

AS data Elapsed time (sec.) Accuracy 

# eigenvalues # subeigenvalues Step 1 Step 2 Step 3 Step 4 Total Max. error (%)

945 6,609 1 64 7 2,775 2,847 1.0 

 
The accuracy of the shifted AS improves by in-

creasing the relaxation factor, as is expected. There is 
an order of magnitude reduction in the error when the 
relaxation factors are changed from 5 to 50. In Fig. 2, 
we can also observe that a highly accurate prediction 
of the eigenvalues near the shift is obtained compared 
with those far from the shift.  

 
4.1.2 The number of shifts (subranges) on the  

efficiency 
In Table , AS data, elapsed time, and accuracy are 

presented when the ASEIG is applied to the whole 
range [0, 8e6]. The relaxation factor is set at 15 to 
obtain around 1% relative error.  

As the table indicates, the elapsed time of step 4 is 
43 times that of step 2. Step 1 and step 3 require rela-
tively small computational cost. The computational 
cost of step 4 can be reduced by dividing it into sev-
eral subranges because the number of eigenvalues for 
each subrange becomes smaller than 945. On the 
other hand, dividing the problem causes an increase 
in the cost of step 2 and step 3 because the C-B trans-
form of step 2 is repeated by the number of shifts and 
the subproblems of step 3 must also be solved for 
each shift.  

Based on the smaller than 1% error in Fig. 2 when 
the relaxation factor is given by 5l uc c= = , we em- 



 J. H. Ko et al. / Journal of Mechanical Science and Technology 22 (2008) 440~449 447 
 

Table 2. Elapsed time and accuracy of ASEIGMS with the 
same relaxation factor when varying the number of subranges 
for the coarse model. 
 

Elapsed time (sec.) Accuracy 
Width (106) # subranges 

Step 1 Step 2 Step 3 Step 4 Total Max. error (%)

2 4 3 225 20 879 1,127 7.2 

1 8 3 446 40 516 1,005 7.6 

0.5 16 3 888 78 379 1,348 7.5 
 
ploy the same relaxation factor in each subrange. We 
first divide the whole range in the same spacing by 
2e6, 1e6, 0.5e6 and compare the performance of each 
case. The original AS is applied to the first subrange 
because it does not have truncated subeigenvectors in 
the left part. Other subranges are solved by the shifted 
AS. Table  shows their performance with a given 
eigenvalue width. 

As the number of subranges increases, the elapsed 
times of steps 2 increase by the same ratio as the 
number of subranges does, but that of step 4 de-
creases since the size of the projected system is 
smaller in each subrange. The costs of step 1 and step 
3 are relatively small portions of the total cost. With 
the same relaxation factor, the error percentages are 
similar in the different widths and the elapsed time in 
the case of 1e6 is smaller, so 1e6 is the best choice. 
However, the accuracy is poor because the error of 
each subrange is not a similar level. Therefore, 
ASEIGMS needs different relaxation factors for the 
subranges with a certain rule.  

 
4.1.3 Subrange vs. relaxation factors 

As an adjustment method for each subrange, we re-
duced the relaxation factor by a certain amount as the 
subrange goes higher. For instance, the first subrange 
uses 19, and then it is reduced by an increment 2. 
Then the relaxation factor of the last subrange be-
comes 5. The results of the accuracy are compared to 
ASEIGMS with the same relaxation factors in Fig. 3. 

When those relaxation factors are employed, the to-
tal elapsed time increases slightly to 1,257 seconds, 
but the accuracy becomes better. Consequently, the 
total computational cost of ASEIG with 1.0% maxi-
mum error is 2,847 seconds, and ASEIGMS with 1.3% 
maximum error takes less computational time, 1,257 
seconds. Each subrange can be independently proc-
essed, so the ASEIGMS is expected to improve the 
performance when a parallel version of it is devel-
oped.  

Table 3. AS data, elapsed time, and accuracy of ASEIG for 
the fine model. 
 

AS data Elapsed time (sec.) Accuracy 

# eigenvalues # subeigenvalues Step 1 Step 2 Step 3 Step 4 Total Max. error (%)

1,605 15,374 8 665 50 18,074 18,797 1.5 
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Fig. 3. Percent of error when adjusting the relaxation factor 
of each subrange of ASEIGMS for the coarse model. 

 
4.2 Performance of a wide range  

When an FE model is used for dynamic analysis in 
a wide range, a larger model with more eigenpairs is 
required. Hence, we employ a fine model for the 
wider range [0, 1.6e7], and the range of the frequen-
cies falls around [1, 636] Hz. The substructuring level 
is automatically determined to be 10 in the MeTiS 
library. In this situation, 1,024 substructures and 927 
interfaces are automatically generated. The relaxation 
factor for ASEIG is determined by 15uc =  to obtain 
around 1% error. First, we tabulate the AS data, 
elapsed time, and accuracy in Table 3 when ASEIG is 
applied to the fine model.  

According to the results in Table 3, the computa-
tional cost of step 4 is 27 times that of step 2. As the 
size of the problem becomes larger, the cost of the C-
B transform sharply increases. However, step 4 is 
expected to somewhat slow the increase of the com-
putational cost because the number of subeigenvalues 
in the same range is not seriously varied; hence, the 
ratio of step 4 to step 2 in terms of the elapsed time of 
the fine model is smaller than that of the coarse model. 
The elapsed times of steps 1 and 3 are relatively small, 
which is a similar phenomenon to that of the coarse 
model. Subsequently, the whole range should be di-
vided to reduce the computational cost of step 4. Here, 
we divide the range into eight subranges, and the 
relaxation factors of the subranges are determined to  
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Table 4. Elapsed time and accuracy of ASEIGMS with the 
adjusted relaxation factors for the fine model. 
 

Elapsed time (sec.) Accuracy 
Width (106) # subranges 

Step 1 Step 2 Step 3 Step 4 Total Max. error (%)
2 8 13 4,567 370 5,462 10,412 1.6 
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Fig. 4. Percent of error of ASEIG and ASEIGMS with the 
adjusted relaxation factors for the fine model. 
 
be same values by the adjusted method mentioned in 
Section 4.1. The elapsed time and the accuracy for the 
fine model are listed in Table 4, and the percent errors 
of ASEIGMS are depicted in comparison to the 
ASEIG over the whole range in Fig. 4.  

It is indicated from the results of Table 4 that the 
elapsed times of steps 2 and 4 have a similar order of 
magnitude, while those of steps 1 and 3 are relatively 
small. Considering Table 3 and Table 4, the total 
computation time has been dramatically reduced from 
18,797 to 10,412 seconds. Also, the maximum error 
of ASEIGMS is about 1.6 %, which is similar to the 
case of ASEIG, as can be seen in Table 3. Conse-
quently, the ASEIGMS improves the efficiency of 
ASEIG for the large-sized model of the wide eigen-
value range with a similar level of the accuracy. It is 
indicated in Fig.  that ASEIGMS dramatically im-
proves the accuracy at each shift over the whole range 
of eigenvalues and leads to a lower error percentage 
compared with ASEIG, even though they possess 
similar numbers of maximum errors. 

In addition, SIL type methods are known to be 
more costly than AS type methods since the former 
deal with full-sized systems while providing a relative 
high level of accuracy of the calculated eigenvalues 
[3], [7]. For the fine model, the computation time of 
the SIL with no shift takes 88,719 seconds, while the 
SIL that utilizes the same number of shifts as the 
ASEIGMS takes 67,410 seconds.  

 
5. Concluding remarks 

In this work, a combined method of AS and a 
shifted AS using multiple shifts is proposed to calcu-
late a considerable number of eigenvalues for a large-
sized problem, which is an emerging computational 
issue of a noise or vibration analysis in vehicle design. 
We first proposed ρ -factor of the shifted AS to 
measure the accuracy of the solution from the per-
spective of the retained subeigenvectors. The relaxa-
tion factors were utilized to obtain the desired accu-
racy of the eigenvalues, and the number of shifts was 
determined by balancing the computational cost of 
the C-B transform and that of the eigensolution of the 
projected eigensystem. The numerical experiments on 
the FE model of a car body demonstrated that the 
combined method results in improved efficiency 
without loss of accuracy in comparison to the original 
AS. Future research should involve a frequency re-
sponse analysis over a wide range of a vibro-acoustic 
analysis, parallelization, and an automatic parameter 
decision.  
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