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Abstract. A general framework for structure-preserving model reduction by
Krylov subspace projection methods is developed. The goal is to preserve any
substructures of importance in the matrices L, G, C, B that define the model pre-
scribed by transfer function H(s) = L∗(G + sC)−1B. Many existing structure-
preserving model-order reduction methods for linear and second-order dynamical
systems can be derived under this general framework.

1 Introduction

Krylov subspace projection methods are increasingly popular in model reduction owing
to their numerical efficiency for very large systems, such as those arising from structural
dynamics, control systems, circuit simulations, computational electromagnetics and mi-
croelectromechanical systems. Recent survey articles [1,2,7] provide in depth review
of the subject and comprehensive references. Roughly speaking, these methods project
the original system onto a smaller subspace to arrive at a (much) smaller system having
properties, among others, that many leading terms (called moments) of the associated
(matrix-valued) transfer functions expanded at given points for the original and reduced
systems match.

Consider the matrix-valued transfer function of the form

H(s) = L∗(G + sC)−1B, (1.1)

which describes an associated multi-input multi-output (MIMO) time-invariant system
to be studied. Here G, C ∈ CN×N , B ∈ CN×m, L ∈ CN×p. In today’s applications
of interests, such as VLSI circuit designs and structural dynamics, N can be up to
millions [1,2,7]. Computations of H(s) usually have to be done through some kind of
reduction on L, G, C and B. Let X, Y ∈ CN×n such that Y ∗GX is nonsingular (and
thus rank(X) = rank(Y ) = n). We may reduce the transfer function H(s) to

HR(s) = L∗
R(GR + sCR)−1BR, (1.2)

where
LR = X∗L, GR = Y ∗GX, CR = Y ∗CX, BR = Y ∗B. (1.3)

There are various techniques to pick X and Y to perform reductions. Among them
Krylov subspace-based model-reduction is getting much of the attention. The idea is
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to pick X and Y as the bases of properly defined Krylov subspaces so that H(s) =
HR(s)+O(s�+1). In this paper, we show, in addition, X and Y can be chosen specially
enough to preserve meaningful physical substructures.

2 Framework for Structure-Preserving Model Reduction

Suppose the matrices L, G, C, B in the transfer function (1.1) have some natural parti-
tioning that is derived from, e.g., the physical layout of a VLSI circuit or a structural
dynamical system:

G =
( N1 N2

N ′
1 G11 G12

N ′
2 G21 G22

)
, C =

( N1 N2

N ′
1 C11 C12

N ′
2 C21 C22

)
, (2.1)

L =
( p

N1 L1

N2 L2

)
, B =

( m

N ′
1 B1

N ′
2 B2

)
, (2.2)

where N ′
1 + N ′

2 = N1 + N2 = N . We wish that the reduced system would inherit the
same structure; that is, LR, GR, CR and BR could be partitioned so that

GR =
( n1 n2

n′
1 GR11 GR12

n′
2 GR21 GR22

)
, CR =

( n1 n2

n′
1 CR11 CR12

n′
2 CR21 CR22

)
, (2.3)

LR =
( p

n1 LR1

n2 LR2

)
, BR =

( m

n′
1 BR1

n′
2 BR2

)
, (2.4)

with each sub-block a direct reduction from the corresponding sub-block in the original
system, e.g., GR11 from G11, where n1 + n2 = n′

1 + n′
2. In the formulation (1.3) for

the reduced system, this can be accomplished by picking

X =
( n1 n2

N1 X1 0
N2 0 X2

)
, Y =

( n′
1 n′

2

N ′
1 Y1 0

N ′
2 0 Y2

)
, (2.5)

such that rank(Xj) = nj , rank(Yi) = n′
i. Then the submatrices of the coefficient

matrices LR, GR, CR and BR of the reduced system are given by

LRj = X∗
j Lj, GRij = Y ∗

i GijXj , CRij = Y ∗
i CijXj , BRi = Y ∗

i Bi. (2.6)

A reduction as in (2.3) – (2.6) is conceivably useful for the system matrices with mean-
ingful substructures. For example, for the time-domain modified nodal analysis (MNA)
circuit equations targeted by PRIMA [12] and SyMPVL [6], system matrices have the
following natural partitioning (adopting the formulation in [6])

G =
(

G11 G12

G∗
12 0

)
, C =

(
C11 0
0 −C22

)
, G∗

11 = G11, C∗
ii = Cii, L = B,

(2.7)
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where all sub-matrices have their own physical interpretations. As proved in [12], re-
duction (1.3) (and thus (2.6) included) with Y = X preserves passivity of the system
(2.7).

Remark 1. This substructural preserving model reduction technique (2.3) – (2.6) was
inspired by Su and Craig [17] concerning a second-order system which can always be
equivalently turned into a linear system (see (4.2) in the next section) with a natural
partitioning just as in (2.1) and (2.2).

Define the kth Krylov subspace generated by A ∈ C
N×N on Z ∈ C

N×� as

Kk(A, Z) def= span(Z, AZ, . . . , Ak−1Z),

where span(· · · ) is the subspace spanned by the columns of argument matrices.

Theorem 1. Assume that G and GR are nonsingular (and thus the total number of
columns in all Xi and that in all Yi must be the same).

1. If Kk(G−1C, G−1B) ⊆ span(X) and Y = X , then H(s) = HR(s) + O(sk).
2. If G and C are Hermitian, and ifKk

(
G−1C, G−1(B L)

)
⊆ span(X) and Y = X ,

then H(s) = HR(s) + O(s2k).
3. If Kk(G−1C, G−1B) ⊆ span(X) and Kr(G−∗C∗, G−∗L) ⊆ span(Y ), then

H(s) = HR(s) + O(sk+r).

Remark 2. Theorem 1 in its generality is due to [8]. It is an extension of similar theorems
in [19] for C = I and G−1B = b (vector). For a simpler and cleaner proof based on the
projector language, the reader is referred to [10].

Now that we have shown the substructures in (2.1) and (2.2) can be preserved via
(2.3) – (2.6). But this is for approximating H(s) around s = 0 only and in practice
approximations to H(s) around other selected points s0 �= 0 may be sought, too. Can a
shift be incorporated without destroying the existing substructures? The answer is yes.
Let s0 be a shift and write

s = s0 + (s − s0), (2.8)

and then
G + sC = G + s0C + (s − s0)C

def= G(s0) + s̃C. (2.9)

Upon substitutions (i.e., renaming)

G(s0) → G, s̃ → s,

the problem of approximating H(s) around s = s0 becomes equivalently to approximate
the substituted H(s) around s = 0. Observe that any reduction on G(s0) and C by
Y ∗G(s0)X and Y ∗CX can be done through reducing G and C directly as in (1.3)
because

GR(s0)
def= Y ∗G(s0)X = Y ∗GX + s0Y

∗CX = GR + s0CR. (2.10)

This is a significant observation because it says that even for approximating H(s) near
a different point s0 �= 0, reduction can still be done directly to the original matrices L,
G, C, and B, regardless of the shift (2.8).

As a straightforward application of Theorem 1, we have the following theorem.
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Theorem 2. Let integers k, r ≥ 0, and let G(s0) be defined as in (2.9). Assume that
G(s0) and GR(s0) are nonsingular.

1. If Kk(G(s0)−1C, G(s0)−1B) ⊆ span(X) and Y = X , then H(s) = HR(s) +
O((s − s0)k).

2. For real s0, if G and C are Hermitian, and if Kk

(
G−1(s0)C, G(s0)−1(B L)

)
⊆

span(X) and Y = X , then H(s) = HR(s) + O((s − s0)2k).
3. If Kk(G(s0)−1C, G(s0)−1B) ⊆ span(X) and Kr(G(s0)−∗C∗, G(s0)−∗L) ⊆

span(Y ), then H(s) = HR(s) + O((s − s0)k+r).

A sample Arnoldi-type implementation to realize Item 1 of this theorem is given
below, where strAMR stands for structural preserving Arnoldi-type model reduction.
Sample implementations to Items 2 and 3 can be given in a similar way.

strAMR – Sample Implementation:
Given L, G, C, B as in (2.1) and (2.2), and expansion point s0.

1. �G = G + s0C; solve �G �Q = B for �Q;
2. Q1 = orth( �Q): an orthonormal basis matrix for span( �G−1B);
3. Arnoldi process computes �X:

For j = 1 to k − 1 do
Solve �G �Q = CQj for �Q;
For i = 1 to j do�Q = �Q − Qi(Q

∗
i
�Q);

EndFor
Qj+1 = orth( �Q);

EndFor

Partition �X = (Q1 Q2 · · · Qk) as �X =

�
N1

�X1

N2
�X2

�
;

4. X1 = orth( �X1); X2 = orth( �X2); Yi = Xi;
5. Compute nonzero blocks of LR, GR, CR, and BR, as in (2.6);
6. Evaluate the reduced HR(s) as needed.

Remark 3. The invariance property (2.10) of the reduction on L, G, C, and B regardless
of the shift (2.8) makes it possible to match moments at multiple points by one reduction.
This is done by enforcing span(X) and/or span(Y ) containing more appropriate Krylov
subspaces associated at multiple points. To avoid repetition, we shall omit explicitly
stating it. See [8] and Ruhe [13,14].

3 Structures of Krylov Subspaces of Block Matrices

The results of this section are of general interest. The matrices here do not necessarily
have anything to do with the transfer function. Consider
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A =
( N1 N2

N1 A11 A12

N2 A21 A22

)
, B =

( m

N1 B1

N2 B2

)
, (3.1)

where N1 + N2 = N . The following theorem describes the structures in a basis matrix
of Kk(A, B) when one of Aij’s is zero.

Theorem 3. Let A and B be partitioned as in (3.1), and let span(X̃) = Kk(A, B) be
partitioned as

X̃ =
( n′

1 n′
2

N1 X̃11 X̃12

N2 X̃21 X̃22

)
≡

( n′
1+n′

2

N1 X̃1

N2 X̃2

)

such that span

(
X̃11

X̃21

)
= Kk−1(A, B), and let α �= 0 be a scalar which may be

different at different occurrences. Then

1. If A11 = 0, then span(X̃1) = span(B1 A12X̃21) ⊆ span(B1 A12X̃2). If in

addition A12 = αI (and thus N1 = N2), span(X̃1) = span(B1 X̃21) ⊆
span(B1 X̃2).

2. If A12 = 0, then span(X̃1) = Kk(A11, B1).
3. If A21 = 0, then span(X̃2) = Kk(A22, B2).
4. If A22 = 0, then span(X̃2) = span(B2 A21X̃11) ⊆ span(B2 A21X̃1). If in

addition A21 = αI (and thus N1 = N2), span(X̃2) = span(B2 X̃11) ⊆
span(B2 X̃1).

Proof: All claims are consequences of the following observation:

if AiB =
(

Z1

Z2

)
, then Ai+1B =

(
A11Z1 + A12Z2

A21Z1 + A22Z2

)
.

Then combining the assumption that one of Aij = 0 will complete the proof. ��
Item 4 of Theorem 3 was implicitly stated in [3,4,17]. It gives a relation between

span(X̃1) and span(X̃2); so does Item 1. It is Item 4 that led to structure-preserving
dimension reductions of second-order systems. See § 4.

4 Model Reduction of Second-Order Systems

In this section, we show how to apply the theory presented in the previous sections to the
structure-preserving model reduction of a second-order system. Consider the transfer
function of a second-order system

H(s) = (V ∗ + sT ∗)(s2M + sD + K)−1R, (4.1)

where M, D, K ∈ CN×N , R ∈ CN×m, T, V ∈ CN×p. Notation here is adopted from
structural dynamics, where M, D, K are mass, damping, and stiffness matrices and are
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usually Hermitian, but can be non-Hermitian at times. It is quite common to deal with
(4.1) by a linearization technique to turn it into the form of (1.1). This is done by setting

C =
(

D M
M 0

)
, G =

(
K 0
0 −M

)
, L =

(
V
T

)
, B =

(
R
0

)
. (4.2)

By now, all existing developments for the transfer function (1.1) can be applied in a
straightforward way, but then reduced models likely lose the second-order characteris-
tics, i.e., they may not be turned into the second-order transfer functions3 and conse-
quently the reduced models have little physical significance. To overcome this, Su and
Craig [17] made an important observation about the structures of the associated Krylov
subspaces that make it possible for the reduced second-order system to still have the
second-order form

HR(s) = (V ∗
R + sT ∗

R )(s2MR + sDR + KR)−1RR, (4.3)

where
MR = Y ∗

1 MX1, DR = Y ∗
1 DX1, KR = Y ∗

1 KX1,
VR = X∗

1V, TR = X∗
1T, RR = Y ∗

1 R.
(4.4)

and X1, Y1 ∈ CN×n having full column rank. Together with L, G, C and B as defined
by (4.2), the transfer functions H(s) and HR(s) of (4.1) and (4.3) takes the forms (1.1)
and (1.2) with (1.3), and

X =
( n n

N X1 0
N 0 X1

)
and Y =

( n n

N Y1 0
N 0 Y1

)
. (4.5)

Reduction as such for the second-order system falls nicely into our framework in §2.
The question is how to construct X and Y , noticing the differences in X and Y between
(2.5) and (4.5). This is where Theorem 3 comes in to help. A sample Arnoldi-type
implementation qAMR is as follows. For more detail, see [10]. Another implementation
includes the original one of [17].

5 Numerical Examples

The first example is taken from [16]. Here N = 256, The structure of G and C are as in
Figure 1, N ′

i = Ni = 128 (i = 1, 2), p = m = 1, and L and B are randomly chosen.
We compare the approximate accuracy of the “structurally reduced” models by

strAMR as proposed against otherwise “generally reduced” ones, i.e., strAMR without
Step 4 (and therefore X = X̃). Figure 2 plots the values of the original and reduced
transfer functions and the relative errors of the reduced functions, where Y = X and
span(X) ⊃ K20(G−1C, G−1B). It clearly shows that the structurally reduced model
is more accurate in the long range of frequency.

3 It is possible to turn a linear system of even dimension into a second-order system. Recently
[11,15] and [9] propose two different ways to do that; but in both cases the coefficient matrices
of the resulted second-order system cannot be related to the original system in a meaningful
way.
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qAMR – Sample Implementation: Computing X1.

1. Compute �X such that Kq(G
−1C, G−1(B L) ⊆ span( �X), by, e.g., strAMR;

2. Partition �X =

�
N �X1

N �X2

�
;

3. Compute X1 = orth(( �X1 M−1T )).

Fig. 1. Block Structure of G (left) and C (right)

Fig. 2. Transfer functions (left) and relative errors (right)
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Fig. 3. Transfer functions (left) and relative errors (right); Preserving incorrect structure can lead
less accurate approximations

It is natural to wonder whether incorrect structural partitioning would make any
difference. Indeed it does. Supposedly we take N ′

1 = N1 = 128 + 20 and N ′
2 = N2 =

128−20. Figure 3 plots the same things as Figure 2, except with this new partition, where
again Y = X and span(X) ⊃ K20(G−1C, G−1B). This figure shows that improper
partitioning can degrade accuracy. But more than that, for this partitioning “structural
reduction” is less accurate than the “general reduction” which is quite counter-intuitive
and surprising because span(X) with some partitioning includes span(X) without any
partitioning, and thus a reduction with partitioning should do at least just as well as one
without in terms of accuracy – further studies needed.

Next example is the second-order system from [2, §3.3]: N = 400, p = m = 1,
T = 0, and V = R randomly chosen. Figure 4 plots the values of the original and
reduced transfer functions and relative errors, where “quadratically reduced” refers to
(4.3) with (4.4) and X1 by, e.g., qAMR, and “linearly reduced” refers to (1.2) and (1.3)
through linearization (4.2) with Y = X(= X̂ in qAMR without Step 3).

6 Conclusions

A general framework for structural model reduction is established. Existing technique of
Su and Craig for the second-order system can be easily realized within the framework.
The idea is extensible to block partitioning with more than 2-by-2 blocks and thus makes
it possible to conserve sub-structures as fine as needed for any particular system. The
idea about the structures of Krylov subspaces of block matrices is not limited to 2-by-
2 blocks as in Theorem 3, either and consequently the development outlined in §4 is
extensible to systems of order higher than 2. Detail is in [10]. Numerical examples show
the worth of the idea, as well as that incorrect identification of structures can result in
poor numerical accuracy.

The work of Su and Craig [17] has spawned several recent research papers on
model reduction of second-order systems and quadratic eigenvalue problems, includ-
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Fig. 4. Transfer functions (left) and relative errors (right): a second-order example

ing [3,4,5,18]. But the attempt to preserve meaningful substructures as in (2.3) – (2.6)
for any general linear systems, not necessarily from linearizing a second-order system,
appears to be conceived first by [10].
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