
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Linear Algebra and its Applications 436 (2012) 2780–2794

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

A Structured Quasi-Arnoldi procedure for model order

reduction of second-order systems

Yung-Ta Li a, Zhaojun Bai b,c,∗, Wen-Wei Lind, Yangfeng Sue

a
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan

b
Department of Computer Science, University of California, Davis, CA 95616, United States

c
Department of Mathematics, University of California, Davis, CA 95616, United States

d
Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

e
School of Mathematical Sciences, Fudan University, Shanghai 200433, China

A R T I C L E I N F O A B S T R A C T

Article history:

Received 3 June 2010

Accepted 5 July 2011

Available online 20 August 2011

Submitted by V. Mehrmann

Dedicated to Danny Sorensen on the occasion

of his 65th birthday

Keywords:

Model order reduction

Moment matching

Krylov subspace

Arnoldi decomposition

Structure-preserving

Existing Krylov subspace-based structure-preserving model order

reduction methods for the second-order systems proceed in two

stages. The first stage is to generate a basis matrix of the under-

lying Krylov subspace. The second stage is to employ an explicit

subspace projection to obtain a reduced-order model with a

moment-matching property. An open problem is how to avoid ex-

plicit projection so that it will be efficient for truly large scale sys-

tems. In addition, it is also desired that a structure-preserving

reduced system of order nmatches maximum 2nmoments.

In this paper we propose a new procedure to compute a so-called

Structured Quasi-Arnoldi (SQA) decomposition. Once the SQA de-

composition is computed, a structure-preserving reduced-order

model can be defined immediately from the decompositionwithout

the explicit subspace projection. Furthermore, the reduced model

of order n matches maximum 2n moments. Numerical examples

demonstrate that the transpose-free SQA-based reduced model is

compatible with the two-sided structure-preserving explicit pro-

jection methods and is more accurate than the one-sided structure-

preserving explicit projection methods due to the higher number of

matched moments.
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1. Introduction

A continuous time-invariant single-input single-output second-order system of state dimension N

is described by

�N :
⎧⎨⎩ Mẍ(t) + Dẋ(t) + Kx(t) = ru(t),

y(t) = w�ẋ(t) + v�x(t),
(1.1)

with initial conditions x(0) = x0 and ẋ(0) = ẋ0. Here coefficient matrices M, D and K ∈ RN×N

represent the underlying physical systems, such asmass, damping and stiffness in structural dynamics.

The vector x(t) ∈ RN is the state variables, and ẋ(t) represents differentiation with respect to time t.

Scalar functions u(t) and y(t) are the input force and output measurement, respectively. The vector

r ∈ RN is the input distribution, and vectors w, v ∈ RN are the output measurements.

The second-order systems of the form (1.1) arise from a wide variety of applications, such as struc-

tural mechanical systems, circuit simulation, microelectronic mechanical systems and computational

electromagnetics [5,1,25,11,26,20,16]. In practice, it is often that the state-space dimension N is too

large to allow efficient solutions of control or simulation tasks. Therefore, it is desirable to obtain a

reduced-order system of much smaller state dimension, which approximates the original model with

sufficient accuracy and meanwhile retains essential properties as well. A structure-preserving model

order reduction method is to construct a reduced second-order system of the same form

�n :
⎧⎨⎩ Mnξ̈(t) + Dnξ̇(t) + Knξ(t) = rnu(t),

η(t) = w�
n ξ̇(t) + v�

n ξ(t),
(1.2)

where the state vector ξ(t) is of dimension n, which is typically n � N, the coefficient matrices

Mn,Dn,Kn ∈ Rn×n and the vectors rn,wn, vn ∈ Rn. The output function η(t) is a sufficient approxi-

mation of the original output function y(t).
In recent years, there has been a lot of progress in structure-preserving model order reduction

methods for the structured systems, see for examples [21,9,7,3,19,4,6,17]. In particular, a class of

methods for the second-order systems is tofirst generateanorthonormalbasisVn of a so-called second-

order Krylov subspace, and then explicitly project the original system to the subspace to obtain a

reduced-order system,namely the coefficientmatrices of reduced system isdefinedby (Mn,Dn,Kn) =
V�
n (M,D,K)Vn via explicit matrix–matrix multiplications. The first such kind of methods is proposed

in [24]. Recent studies are reported in [3,13] under the names of Second-Order ARnoldi (SOAR)method

and Quadratic Arnoldi (Q-Arnoldi) method. The reduced model of order n generated via these one-

sided projection methods matches only n moments. To increase the number of matched moments,

both left and right second-order Krylov subspaces can be used to lead a Two-Sided Second-Order

Arnoldi (TS-SOAR)method [19]. In theTS-SOARmethod, onefirst generates left and right basismatrices

Wn and Vn, respectively, and then constructs the reduced model by a two-sided explicit projection

(Mn,Dn,Kn) = W�
n (M,D,K)Vn to match 2n moments. We note that for computing the left Krylov

subspace, the operations of the transpose matrix–vector products must be available. Another class

of methods is to first generate an orthonormal basis of the Krylov subspace corresponding to the

equivalent linear system of�N , and then use some suitable partitioning of the basis matrix to perform

explicit subspace projection to obtain a structure-preserving reduced-order model [9,10].

All thesemethodsproceed in twostages. The secondstage is toperformexplicit subspaceprojection,

i.e.,matrix–matrixmultiplications, using the projection basismatrices generated from thefirst stage. It

could be prohibitively expensive in thememory and floating point arithmetic costs for truly large scale

systems. In this paper we propose a procedure to compute a Structured Quasi-Arnoldi (SQA) decom-

position. Once the SQA decomposition is computed, a structure-preserving reduced-order model can

be defined immediately from the decomposition without the need of explicit subspace projection. In

terms of the moment-matching property, the transpose-free SQA model is equivalent to the TS-SOAR

method such that the reducedmodel of order nmatchesmaximum 2nmoments. Numerical examples
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demonstrate the SQA-based reduced model is compatible with the TS-SOAR and benefits in accuracy

due to the higher number of moments that are matched than the one-sided SOARmethod. We should

also note that there are other methods that also avoid explicit projection, such as the data-driven

model order reduction approach proposed in [12].

The rest of this paper is organized as follows. In Section 2, we review the definitions of transfer

function and moment of the second-order system �N and describe the goals of structure-preserving

model order reduction. In Section 3, we introduce the SQA decomposition and derive a procedure to

compute the SQA decomposition. In Section 4, we define the reduced-order model �n via the SQA

decomposition. Numerical examples and concluding remarks are in Sections 5 and 6, respectively.

Throughout this paper, we follow the conventional notations commonly used in matrix computa-

tions. We use boldface capital letters to denote the matrices, boldface lower case letters for vectors, 0

for zero vector ormatrix, Ik for the k × k identitymatrix, ej for the jth column of Ik .X
� is the transpose

of matrix X. ‖ · ‖p is the matrix or vector p-norm. v(i : j) denotes the subvector of the vector v that

contains the ith to the jth entries of v.G(i : j, k : �) denotes the submatrix of thematrixG that consists

of the intersection of the rows i to j and the columns k to �. The notation Kn(A; b) stands for the nth

Krylov subspace introduced by A and b, i.e., Kn(A; b) = span{b,Ab,A2b, . . . ,An−1b}.

2. Second-order systems and MOR

Let us begin with an equivalent first-order form of the second-order system �N defined in (1.1):⎧⎪⎨⎪⎩
C q̇(t) + G q(t) = b u(t),

y(t) = l�q(t),

(2.1)

where

C =
⎡⎣ D M

−I 0

⎤⎦ , G =
⎡⎣K 0

0 I

⎤⎦ , q(t) =
⎡⎣x(t)

ẋ(t)

⎤⎦ , b =
⎡⎣r

0

⎤⎦ , l =
⎡⎣v

w

⎤⎦ .

Assuming that K is nonsingular, then the first-order form (2.1) can be written as⎧⎨⎩ Aq̇(t) + q(t) = b0u(t)

y(t) = l�q(t),
(2.2)

where A = G−1C and b0 = G−1b. The transfer function of the second-order system (1.1), or equiva-

lently the first-order forms (2.1) and (2.2), is given by

h(s) = (sw� + v�)(s2M + sD + K)−1r

= l�(sC + G)−1b

= l�(I + sA)−1b0,

where it is assumed that we have homogeneous initial conditions x(0) = 0, ẋ(0) = 0 and u(0) = 0.

The power series expansion of h(s) at s = 0 is given by

h(s) =
∞∑
i=0

mis
i,

where mi = (−1)il�Aib0 are referred to as themoments of the system �N .

A popular model order reduction technique is to use subspace projection. Roughly speaking, the

subspace projection approach is to first compute a basis matrix X2n of a projection subspace K. Then
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by approximating the state vector q(t) by X2nz(t):

q(t) ≈ X2nz(t) for some z(t) ∈ R2n,

it yields the following over-determined linear system⎧⎨⎩ AX2nż(t) + X2nz(t) = b0u(t)

η(t) = l�X2nz(t).
(2.3)

After multiplying the first equation of (2.3) from the left by Y�
2n, where Y2n ∈ R2N×2n of full column

rank, we obtain a reduced-order system⎧⎨⎩ Y�
2nAX2nż(t) + Y�

2nX2nz(t) = Y�
2nb0u(t)

η(t) = l�X2nz(t).
(2.4)

The goal of a structure-preserving reduced-order method is to choose proper right and left projec-

tors X2n and Y2n such that the reduced model (2.4) can be recast in the second-order form �n (1.2).

One way to achieve this goal is to preserve the 2 × 2 block structure of A in the two-sided projection

Y�
2nAX2n. Specifically, we want to choose X2n and Y2n satisfying the following properties:

Y�
2nX2n = I2n, Y�

2nAX2n =
⎡⎣Rn Sn

Tn 0

⎤⎦ , Y�
2nb0 =

⎡⎣rn

0

⎤⎦ , X�
2nl =

⎡⎣ v̂n

ŵn

⎤⎦ .

Consequently, by the congruence transformation⎡⎣In 0

0 −T−1
n

⎤⎦ ⎡⎣Rn Sn

Tn 0

⎤⎦ ⎡⎣In 0

0 −Tn

⎤⎦ =
⎡⎣ Rn −SnTn

−In 0

⎤⎦ ,

the reducedfirst-ordermodel (2.4) can immediately be rewritten as an equivalent second-ordermodel

(1.2) with the coefficient matrices Mn = −SnTn, Dn = Rn, and Kn = In. The input vector is rn and

output vectors are vn = v̂n and wn = −Tnŵn.

An additional objective of a proper choice of X2n and Y2n is to match as many leading moments as

possible, i.e., for as large q as possible, it satisfies

mi = m
(n)
i for i = 0, 1, . . . , q − 1, (2.5)

wherem
(n)
i = (−1)il�X2n(Y

�
2nAX2n)

iY�
2nb0 are themoments of the reduced-system (2.4). The identity

(2.5) implies that the reduced system �n is an order of q approximation of the original system �N ,

namely h(s) = hn(s) + O(sq).

3. Structured Quasi-Arnoldi decomposition and procedure

Let us define a Structured Quasi-Arnoldi (SQA) decomposition of the following form:

AX2n = X2n

⎡⎣Rn Sn

Tn 0

⎤⎦ + sn+1,nx2n+1e
�
2n, (3.1)

whereX2n is anN×2nmatrix,x2n+1 is a columnvector of lengthN,Rn andTn aren×nupper triangular

matrices and Sn is an n× n upper Hessenberg matrix. First, we note that the SQA decomposition (3.1)

can be compactly expressed as

AX2n = X2n+1Ĥ2n, (3.2)
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where

X2n+1 =
[
X2n x2n+1

]
and Ĥ2n =

⎡⎢⎢⎢⎣
Rn Sn

Tn 0

0 sn+1,ne
�
n

⎤⎥⎥⎥⎦ .

In the following theorem, we show that the subspace spanned by X2n+1 is indeed the Krylov subspace

K2n+1(A; x1), where x1 is the first column of X2n+1.

Theorem 3.1. Suppose that X2n+1 satisfies the decomposition (3.2), diagonal elements t11, . . ., tnn of Tn
and the sub-diagonal elements s21, . . . , sn,n−1 of Sn together with sn+1,n are nonzero, then span{X2n} =
K2n(A; x1) and span{X2n+1} = K2n+1(A; x1).
Proof. Let us denote the permutations �2n ∈ R2n×2n and �2n+1 ∈ R(2n+1)×(2n+1) by

�2n = [ e1, en+1, e2, en+2, . . . , en, e2n ] and �2n+1 =
⎡⎣�2n 0

0 1

⎤⎦ . (3.3)

Note that �2n is the result of perfectly shuffling the 2n column vectors of the identity matrix I2n [8].

Then by multiplying the structured Arnoldi decomposition (3.2) from the right by �2n, we obtain

AX2n�2n = X2n+1�2n+1H̃2n, (3.4)

where H̃2n = ��
2n+1Ĥ2n�2n. Note that �2n+1�

�
2n+1 = I2n+1.

It is easy to verify that the matrix H̃2n is an upper Hessenberg matrix with sub-diagonal ele-

ments t11, s21, t22, s32, . . . , tnn, sn+1,n. Hence the decomposition (3.4) is a Krylov-type decompo-

sition [23]. Furthermore, note that H̃2n is an unreduced upper Hessenberg matrix. Since the first

column of X2n�2n is x1 and the sub-diagonal elements of H̃2n are nonzero, by [2, Lemma 2.2], we

conclude that the columns of X2n and X2n+1 span Krylov subspaces K2n(A; x1) and K2n+1(A; x1),
respectively. �

For ease of reference, let us denote the first n columns of X2n asQn, the trailing n columns as Pn and

x2n+1 = qn+1, i.e., [X2n | x2n+1 ] = [Qn Pn | qn+1 ]. Then the decomposition (3.1) can be written as

A
[
Qn Pn

]
=

[
Qn Pn

] ⎡⎣Rn Sn

Tn 0

⎤⎦ + sn+1,nqn+1e
�
2n. (3.5)

There are a number of ways to impose the orthogonality among the vectors ofQn+1 = [Qn qn+1 ] and
Pn. Here we impose that Qn+1 and Pn satisfy the following three conditions:

(a) Q�
n+1Qn+1 = In+1, (b) P�

n Pn = In, (c) p�
i qj = 0 for i � j. (3.6)

Note that condition (c) of (3.6) is equivalent to P�
n Qn being strictly upper triangular.

The motivation of imposing orthogonality conditions (3.6) is illustrated as follows. In the Krylov

decomposition (3.4), the upper Hessenberg matrix H̃2n has less nonzeros than the upper Hessenberg

matrix in the standard Arnoldi decomposition of order 2n. Consequently we will not expect to have

an orthogonal matrix X2n�2n = [Qn Pn ]�2n = [ q1, p1, . . . , qn, pn ]. Instead we first impose the

orthogonality conditions in the q′
i s vectors and the p′

is vectors, respectively, i.e., conditions (a) and (b)

of (3.6). Subsequently, we explore the orthogonal relation between q′
i s and p′

is vectors in condition

(c) of (3.6). The geometric interpretation of the conditions (b) and (c) of (3.6) is that pj is perpendic-

ular to the subspace spanned by its preceding vectors, i.e., span{q1, p1, q2, p2, . . . , qj}. Thus if the

columns of [Qj Pj−1 ] are linearly independent, then the columns of [Qj Pj ] are linearly independent

as well.
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We now derive a procedure to compute the SQA decomposition (3.5) with the orthogonality con-

ditions (3.6). We essentially apply a partial Gram–Schmidt procedure in an alternating fashion. Let us

begin with computing p1 and q2. By equating the first column of (3.5), we have

Aq1 = q1r11 + p1t11,

where r11, t11 and p1 are to be determined. Let f = Aq1 − q1r11. Then it is easy to see that if r11 =
q�
1 Aq1, f is a projection of Aq1 onto the orthogonal complement of span{q1}. If t11 = ‖f‖2 	= 0, then

p1 = f/t11. If t11 = 0, then the procedure terminates, and is referred to as the case-A breakdown. In

this case, the subspace span{q1} = K1(A; q1) is an invariant subspace of A.

To compute the vector q2, by equating the n + 1 columns of (3.5), we have

Ap1 = q1s11 + q2s21,

where s11, s21 and q2 are to be determined. Let g = Ap1 − q1s11. Then if s11 = q�
1 Ap1, the vector

g = (I − q1q
�
1 )Ap1 is a projection of Ap1 onto span{q1}⊥. If s21 = ‖g‖2 	= 0, then q2 = g/s21 and

Q�
2 Q2 = I2. If s21 = 0, then theprocedure terminates. This is referred toas the case-Bbreakdown. In this

case, we have Ap1 = q1s11, which yields that A2q1 ∈ span{q1, p1} and the subspace span{q1, p1} =
K2(A; q1) is an invariant subspace.

Remark 3.1. We note that even if s21 	= 0, the basis matrix X3 = [ q1, p1, q2 ] could still be rank

deficient. For instance, the columns of X3 = [ e1, e2, e2 ] generated by

A =
⎡⎢⎣1 0

1 1

⎤⎥⎦ and q1 =
⎡⎢⎣1

0

⎤⎥⎦
are linearly dependent. Thiswill cause a breakdownwhenweproceed to computep2. Itwill be referred

to as the case-C breakdown.

In general, let us assume we have computed the SQA decomposition (3.5) of order j − 1 for j � 2.

To compute the decomposition (3.5) of order j, let us first consider the jth column of (3.5):

Aqj = q1r1j + · · · + qjrjj + p1t1j + · · · + pjtjj,

where r1j, . . . , rjj, t1j, . . . , tjj and pj are to be determined. Since the first column q1 of X2j−1 =
[Qj−1 Pj−1 qj ] is orthogonal to the rest of the columns of X2j−1, we have r1j = q�

1 Aqj . Let

f = f̂ − X2j−1(:, 2 : 2j − 1)d∗,

where f̂ = Aqj −q1r1j , d∗ = [ ř�j , t̃�j , rjj ]�, ř�j = [ r2j, . . . , rj−1,j ] and t̃�j = [ t1j, . . . , tj−1,j ]. Then
we need to determine the vector d∗ such that f is a projection of Aqj onto the orthogonal complement

of span{X2j−1}. There are two possible cases, namely,X2j−1(:, 2 : 2j−1) is of full column rank or rank

deficient. If X2j−1(:, 2 : 2j − 1) is of full rank, then

d∗ = X
†
2j−1(:, 2 : 2j − 1)̂f, (3.7)

where X† is the pseudoinverse of X; X† = (X�X)−1X�, see for example [22, p. 252]. Subsequently,

if tjj = ‖f‖2 	= 0, then we have pj = f/tjj . If tjj = 0, then we have the case-A breakdown, and have

computed the decomposition

AX2j−1 = X2j−1

⎡⎢⎣Rj Ŝj

T̂j 0

⎤⎥⎦ , (3.8)
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where Rj is j× j upper triangular, Ŝj is j× (j−1) upper triangular and T̂j is (j−1)× j upper triangular.

Since Aqj ∈ span{X2j−1}, the subspace span{X2j−1} = K2j−1(A; q1) is an invariant subspace of A.

IfX2j−1(:, 2 : 2j−1) is rankdeficient, the SQAprocedure terminates. This is referred to as the case-C

breakdown. In this case,X2j−1 must also be rank deficient due to the fact that q1 = X2j−1e1 is known to

be orthogonal to X2j−1(:, 2 : 2j−1). Since X2j−1 is rank deficient, Aqj ∈ span{X2j−1} = span{X2j−2}.
Therefore the subspace span{X2j−2} = K2j−2(A; q1) is an invariant subspace. The matrix X2j−1 and

the vector qj satisfy the following decomposition:

AX2j−2 = X2j−2

⎡⎣Rj−1 Sj−1

Tj−1 0

⎤⎦ + sj,j−1qje
�
2j−2. (3.9)

Now let us turn to the second part of computing the SQA decomposition (3.5) of order j, namely

compute the jth column of Sn and the vector qj+1 in (3.5). By equating the 2jth column of (3.5), we

have

Apj = q1s1j + · · · + qjsjj + qj+1sj+1,j = Qjsj + qj+1sj+1,j,

where sj = [ s1j, . . . , sjj ]� and qj+1 are to be determined. Let g = Apj − Qjsj , then if sj = Q�
j Apj , g

is a projection of Apj onto the orthogonal complement of span{Qj}. If sj+1,j = ‖g‖2 	= 0, then qj+1 =
g/sj+1,j . If sj+1,j = 0, then we have the case-B breakdown and have computed the decomposition

AX2j = X2j

⎡⎢⎣Rj Sj

Tj 0

⎤⎥⎦ , (3.10)

since Apj ∈ span{Qj} and the subspace span{X2j} = K2j(A; q1) is an invariant subspace.

This completes the derivation of the procedure to compute the SQA decomposition (3.5). Before

presenting a pseudocode for the complete algorithm, two remarks are in order.

Remark 3.2. The main computational cost of the procedure is to compute the vector d∗ defined in

(3.7) and determine whether the basis matrix X2j−1(:, 2 : 2j − 1) is of full column rank. Note that the

vector d∗ is the solution of the least squares (LS) problem:

d∗ = argmind

∥∥∥̂f − X2j−1(:, 2 : 2j − 1)d
∥∥∥
2
. (3.11)

A stable method described in [22, p. 297] to solve the problem (3.11) is to first compute the following

QR factorization of an augmented LS matrix:

[
X2j−1(:, 2 : 2j − 1) f̂

]
=

[
Q q

] ⎡⎣R r

0 ρ

⎤⎦ . (3.12)

If R is nonsingular, then X2j−1(:, 2 : 2j − 1) is full rank, and the solution vector d∗ is obtained by

solving the upper triangular system

Rd∗ = r. (3.13)

If R is singular, then X2j−1(:, 2 : 2j − 1) is rank deficient. This is the case-C breakdown.

Remark 3.3. There is an efficient solver for the LS problem (3.11) by updating the QR factorization

(3.12) from steps j to j + 1. It is based on the relation

X̃2j−1 =
[
X̃2j−3 pj−1 qj

]
, (3.14)
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where X̃2j−1 = X2j−1�2j−1 and X̃2j−3 = X2j−3�2j−3. Permutations �2j−1 and �2j−3 are defined by

�2j−1 =
⎡⎣�2j−2 0

0 1

⎤⎦ and �2j−3 =
⎡⎣�2j−4 0

0 1

⎤⎦ with the perfect shuffles �2j−2 and �2j−4 defined in

(3.3). By the identity (3.14), we know that the Q-factor of the QR factorization of X̃2j−3(:, 2 : 2j − 3)

is the first 2j − 4 columns of the Q-factor of the QR factorization of X̃2j−1(:, 2 : 2j − 1). Note that the

first columns of X̃2j−1 and X̃2j−3 are the same. Hence we can rewrite the LS problem (3.11) as

d∗ = argminh

∥∥∥̂f − X̃2j−1(:, 2 : 2j − 1)�̃
�
2j−2h

∥∥∥
2
, (3.15)

where �̃2j−2 = [ ej−1, e1, ej, e2, . . . , e2j−3, e2j−2 ]. To solve the LS problem (3.15), we first compute

a QR factorization of the augmented LS matrix

[
X̃2j−1(:, 2 : 2j − 1) f̂

]
=

[
Q q

] ⎡⎣R r

0 ρ

⎤⎦ (3.16)

and then solve the triangular linear system

R�̃
�
2j−2d∗ = r (3.17)

for d∗ by back substitution and permutation. An advantage of calculating the vector d∗ through (3.16)

and (3.17) instead of (3.12) and (3.13) is that we can obtain the QR factorization (3.16) from updating

the QR factorization of X̃2j−3(:, 2:2j−3). An efficient QR updating algorithm can be found in [22, p.

338].

The following pseudocode summarizes the procedure to compute the SQA decomposition (3.5)

with the orthogonality conditions (3.6).

SQA algorithm

1: X̃(:, 1) = b/‖b‖2,

2: for j = 1, 2, . . . , n do

3: f = AX̃(:, 2j − 1)
4: r1j = X̃(:, 1)�f

5: f := f − X̃(:, 1)r1j
6: if j � 2 then

7: update the QR factorization
[
X̃(:, 2 : 2j − 1) f

]
=

[
Q q

] ⎡⎣R r

0 ρ

⎤⎦
8: if R is singular, stop (case-C breakdown)

9: solve R�̃
�
2j−2d = r for d , where �̃2j−2 = [ ej−1, e1, ej, e2, . . . , e2j−3, e2j−2 ].

10: f := f − X̃(:, 2 : 2j − 1)�̃
�
2j−2d

11: end if

12: tjj = ‖f‖2. If tjj = 0, stop (case-A breakdown)

13: X̃(:, 2j) = f/tjj
14: g = AX̃(:, 2j)
15: for i = 1, 2, . . . , j do
16: sij = X̃(:, 2j − 1)�g

17: g := g − X̃(:, 2j − 1)sij
18: end for

19: sj+1,j = ‖g‖2. If sj+1,j = 0, stop (case-B breakdown)

20: X̃(:, 2j + 1) = g/sj+1,j

21: end for
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By the discussion in Remark 3.3, the QR factorization at line 7 of the algorithm is computed via

updating the QR factorization of X̃2j−3(:, 2 : 2j− 3)with appending of the three column vectors pj−1,

qj and f . To numerically detect the breakdowns, we need to provide a tolerance ε in lines 8, 12 and 19.

4. Model reduction based on the SQA procedure

In this section, we construct a reduced second-order system �n (1.2) via the SQA decomposition

(3.1) computed by the SQA algorithm with

A = G−1C =
⎡⎣K−1D K−1M

−I 0

⎤⎦ and b0 = G−1b =
⎡⎣K−1r

0

⎤⎦ .

Let us first consider the situationwhere there is no breakdown. In this case,X2n+1 is of full rank. Define

Y2n = (X
†
2n+1)

�
⎡⎣I2n

0

⎤⎦ .

Then it can be verified thatY2n andX2n are biorthogonalY
�
2nX2n = I2n andY�

2nqn+1 = 0. Consequently

by the decomposition (3.1), we have

Y�
2nAX2n =

⎡⎣Rn Sn

Tn 0

⎤⎦ .

Furthermore, since b0 = γ x1 with γ = ‖K−1r‖2, we have

Y�
2nb0 = Y�

2n(γ x1) = γ Y�
2nX2ne1 = γ e1.

Finally, for X2n = [Qn Pn ], the matrix–vector multiplication X�
2nl has the natural partition

X�
2nl =

⎡⎣Q�
n l

P�
n l

⎤⎦ .

Following the projection framework presented in Section 2, we immediately have the following re-

duced second-order system of order n:

�n :
⎧⎨⎩ Mnξ̈(t) + Dnξ̇(t) + Knξ(t) = rnu(t),

η(t) = w�
n ξ̇(t) + v�

n ξ(t),
(4.1)

where the system matrices areMn = −SnTn, Dn = Rn and Kn = In. The input and output vectors are

rn = γ e1, vn = Q�
n l andwn = −T�

n P�
n l.

Remark 4.1. System matrices Mn, Dn and Kn of the reduced-order systems �n are obtained from Rn,

Sn and Tn of the SQA procedure directly. To form the output vectors vn and wn, we need to compute

the matrix–vector products Q�
n l and P�

n l. These operations can be embedded in the SQA algorithm.

Therefore, there is no need to return the basismatricesQn andPn from the SQA algorithmand compute

the matrix–vector explicitly to obtain the reduced-order model.

When the SQA procedure terminates at the jth step for j < n, there are three possibilities as

discussed in Section 3. First, for the case-A breakdown, we have the decomposition (3.8). In this case,
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we can use the SQA decomposition of order 2j − 2

AX2j−2 = X2j−2

⎡⎢⎣Rj−1 Sj−1

Tj−1 0

⎤⎥⎦ + sj,j−1qje
�
2j−2

to define a reduced-order model. Specifically, define

Y2j−2 = (X
†
2j−1)

�
⎡⎢⎣I2j−2

0

⎤⎥⎦ .

Then it can be verified that Y2j−2 and X2j−2 are biorthogonal, Y�
2j−2X2j−2 = I2j−2, and Y�

2j−2qj = 0,

and

Y�
2j−2AX2j−2 =

⎡⎣Rj−1 Sj−1

Tj−1 0

⎤⎦ .

Furthermore, we have Y�
2j−2b0 = γ e1 where γ = ‖K−1r‖2, and X�

2j−2l =
⎡⎣Q�

j−1l

P�
j−1l

⎤⎦. Consequently,

we have a reduced second-order system of order j − 1:

�j−1 :
⎧⎪⎨⎪⎩

Mj−1ξ̈(t) + Dj−1ξ̇(t) + Kj−1ξ(t) = rnu(t),

η(t) = w�
j−1ξ̇(t) + v�

j−1ξ(t),

(4.2)

where the system matrices are Mj−1 = −Sj−1Tj−1, Dj−1 = Rj−1 and Kj−1 = Ij−1. The input and

output vectors are rj−1 = γ e1, vj−1 = Q�
j−1l andwj−1 = −T�

j−1P
�
j−1l.

Second, for the case-B breakdown, we have the decomposition (3.10) and span{X2j} is an invariant

subspace of A. Define

Y2j = (X
†
2j)

�.

Then we have

Y�
2jAX2j =

⎡⎢⎣Rj Sj

Tj 0

⎤⎥⎦ ,

andY�
2jb0 = γ e1 where γ = ‖K−1r‖2, andX�

2j l =
⎡⎣Q�

j l

P�
j l

⎤⎦. Consequently, we have a reduced second-

order system �j of order j defined as (4.2) with the systemmatricesMj = −SjTj , Dj = Rj and Kj = Ij .

The input and output vectors are rj = γ e1, vj = Q�
j l and wj = −T�

j P�
j l.

Finally, for thecase-Cbreakdown,wehave thedecomposition (3.9) and the subspace span{X2j−2} =
K2j−2(A; q1) is an invariant subspace. Since qj ∈ K2j−2(A; q1), we can compute the vectors υ, ϕ ∈
Rj−1 such that

sj,j−1qj = X2j−2

⎡⎣υ

ϕ

⎤⎦ . (4.3)
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Substituting the Eq. (4.3) into (3.9), we have

AX2j−2 = X2j−2

⎡⎢⎣Rj−1 S̃j−1

Tj−1 ϕe�
j−1

⎤⎥⎦ , (4.4)

where S̃j−1 = Sj−1 + υe�
j−1. Furthermore, let

F =
⎡⎢⎣Ij−1 −F12

0 Ij−1

⎤⎥⎦ ,

where F12 = T
−1
j−1ϕe�

j−1. Then we have

F−1

⎡⎢⎣Rj−1 S̃j−1

Tj−1 ϕe�
j−1

⎤⎥⎦ F =
⎡⎢⎣R̂j−1 Ŝj−1

Tj−1 0

⎤⎥⎦ , (4.5)

where R̂j−1 = Rj−1 + F12Tj−1 and Ŝj−1 = S̃j−1 − Rj−1F12. Combining (4.4) and (4.5), it yields the

decomposition

AX2j−2F = X2j−2F

⎡⎢⎣R̂j−1 Ŝj−1

Tj−1 0

⎤⎥⎦ .

Now define Y2j−2 as a pseudoinverse of X2j−2F:

Y2j−2 = X2j−2F(F
�X�

2j−2X2j−2F)
−1.

Then we have Y�
2j−2(X2j−2F) = I2j−2 and

Y�
2j−2A(X2j−2F) =

⎡⎢⎣R̂j−1 Ŝj−1

Tj−1 0

⎤⎥⎦ .

Since X2j−2Fe1 = X2j−2e1 = b0/γ where γ = ‖K−1r‖2, we have

Y�
2j−2b0 = γ Y�

2j−2X2j−2Fe1 = γ e1.

The matrix–vector multiplication F�X�
2j−2l has the partitioned form

F�X2j−2l =
⎡⎢⎣ Q�

j−1l

−F�
12Q

�
j−1l + P�

j l

⎤⎥⎦ ≡
⎡⎢⎣vj−1

ŵj−1

⎤⎥⎦ .

Consequently, we have a reduced second-order system �j of order j defined as (4.2) with the system

matrices Mj−1 = −Ŝj−1Tj−1, Dj−1 = R̂j−1 and Kj−1 = Ij−1. The input and output vectors are

rj−1 = γ e1, vj−1 = Q�
j−1l andwj−1 = −T�

j−1ŵj−1.

In the rest of this section, we give the moment-matching property of the reduced second-order

systems. First we have the following theorem for the case where there is no breakdown.
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Theorem 4.1. The first 2n moments of the original system (1.1) and the reduced second-order system �n

(4.1) coincide, i.e.,

mi = (−1)il�Aib0 = (−1)il�X2n(Y
�
2nAX2n)

iY�
2nb0 = m

(n)
i (4.6)

for i = 0, 1, 2, . . . , 2n − 1. Hence hn(s) of �n is a Padé approximant of h(s):

h(s) = hn(s) + O(s2n).

Proof. By Theorem 3.1, it is known that X2n is a basis of the Krylov subspace K2n(A; b0). Hence there

exist vectors vi ∈ R2n such that Aib0 = X2nvi for i = 0, 1, . . . , 2n − 1. Together with Y�
2nX2n = I2n,

it yields that

X2nY
�
2nA

ib0 = X2nY
�
2nX2nvi = X2nvi = Aib0, for i = 0, 1, 2, . . . , 2n − 1. (4.7)

Next, we show by induction that

X2n(Y
�
2nAX2n)

iY�
2nb0 = Aib0, (4.8)

for i = 0, 1, . . . , 2n− 1. At the basis step i = 0, the identity (4.8) is the identity (4.7) for i = 0. When

i = 1, using the identity (4.7) with i = 0 and i = 1, we have

X2n(Y
�
2nAX2n)Y

�
2nb0 = X2nY

�
2nA(X2nY

�
2nb0) = X2nY

�
2nAb0 = Ab0

At the inductive step, for 2 � i � 2n − 1,

X2n(Y
�
2nAX2n)

iY�
2nb0 = X2n(Y

�
2nAX2n)(Y

�
2nAX2n)

i−1Y�
2nb0

= X2nY
�
2nA

[
X2n(Y

�
2nAX2n)

i−1Y�
2nb0

]
= X2nY

�
2nAA

i−1b0

= Aib0,

where for the second equality we used the hypothesis of the induction, and for the fourth equality we

use the identity (4.7). Themoment-matching property (4.6) is followed immediately from the identity

(4.8). �

Theorem4.1 shows that the reduced system�n of dimension nmatches 2nmoments of the original

system �N . In contrast, the order-n reduced system generated by the SOAR method [3] or the SPRIM

method [9] generally matches only nmoments.

When a breakdown occurs, the moment-matching properties of the original system �N and the

reduced second-order system �j−1 or �j are summarized in the following two theorems. First, by an

analogous proof of Theorem 4.1, we have the following theorem for the case-A breakdown.

Theorem 4.2. If SQA has the case-A breakdown at the jth step, then the first 2j−2moments of the original

system (1.1) and the reduced second-order system �j−1 (4.2) coincide.

At the case-B and case-C breakdowns, we use invariant Krylov subspaces K2j(A; b0) and K2j−2(A;
b0) to define reduced second-order systems. For these cases, we have the following theorem.

Theorem 4.3. When there is the case-B or case-C breakdown, the transfer function of the reduced second-

order system �j or �j−1 is identical to the transfer function of the original system �N (1.1). Hence, the

case-B or case-C breakdown of the SQA procedure is regarded as a lucky breakdown.
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Proof. We can use an analogous argument for the proof of Theorem 4.1. The key difference here is that

when the case-B breakdown occurs, X2j is a basis of the invariant Krylov subspace K2j(A; b0), there

exist vectors vi ∈ R2j such that Aib0 = X2jvi for all i � 0. Thus together with the fact Y�
2jX2j = I2j , it

yields that X2jY
�
2jA

ib0 = X2jY
�
2jX2jvi = X2jvi = Aib0 for all i � 0. For the case-C breakdown, we just

need tonote that sinceF is nonsingular,X2j−2F is also abasis of the invariant subspaceK2j−2(A; b0). �

5. Numerical examples

In this section, we present numerical examples to compare the accuracy of reduced-order models

�n of order n generated by SQA, SOAR [3] and TS-SOAR [19]. In practice, often an approximation of

the transfer function h(s) of the original system �N around a selected expansion point σ 	= 0 is of

interest. In this case, we can rewrite h(s) in a shifted form

h(s) =
(
(s − σ)w� + ṽ�) (

(s − σ)2M + (s − σ)D̃ + K̃
)−1

r,

where ṽ = v + σw, D̃ = 2σM + D and K̃ = σ 2M + σD + K, and then apply a model reduction

methodwith thematricesM, D̃ and K̃. All numerical experiments were run inMATLAB. The numerical

tolerance ε for testing the breakdowns is set to be 10−15.

Example 5.1. We consider a proportionally damped second-order system (1.1), whereD = αM+βK

and w = 0. This is the butterfly gyroscope in the Oberwolfach benchmark collection [15,14]. It arises

from simulating a vibrating micromechanical gyroscope. The full system has N = 17,361 degrees of

freedom, 1 input and 12 outputs. For the experiments here the output vector v was taken to be the

first column of the 17,361 × 12 selector output matrix. The dampingmatrix is assumed to beD = βK

where β = 10−7. An expansion point σ = 1.05× 105 is used for approximating requested frequency

range 104–106 Hz. The Bode plot of h(s) is shown in the left plot of Fig. 1.

We find that a reduced SQA system of order n = 40 is sufficient for the desired accuracy. The

relative errors associatedwith SQA, SOAR and TS-SOAR are shown in the right plot of Fig. 1. The results

demonstrate that SQA and TS-SOAR are compatible because theymatch the samenumber ofmoments.

Both SQA and TS-SOAR models are more accurate than the SOAR model due to doubling the number

of matched moments.

Example 5.2. This large example is from the frequency response analysis of a second-order system

�N arising from fluid–structure interaction at an acoustic level [18]. The state-space dimension of the

original system �N is N = 89,120. The nonsymmetric mass and stiffness matrices M and K come
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Fig. 1. Bode plot of the transfer function of Example 5.1, the relative errors of SQA, TS-SOAR and SOAR models at n = 40.
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Fig. 2. Bode plot of the transfer function of Example 5.2, the relative errors of the SQA, TS-SOAR and SOAR models at n = 100.

from modeling fluid–structure coupling. The damping matrix D is symmetric. An expansion point

σ=2π × 50 is used approximating requested frequency range 0–100 Hz. The shifted stiffness matrix

K̃=s20M+s0D+K has 1-norm condition numberO(1011). The Bode plot of h(s) is shown in the left plot

of Fig. 2.

We find that a reduced SQAmodel of order n=100 is sufficient for the desired accuracy. The relative

errors of SQA, TS-SOAR and SOARmodels are shown in the right plot of Fig. 2. The results demonstrate

that the SQA method constructs much better approximation than SOAR, and slightly more accurate

than the TS-SOAR model although SQA and TS-SOAR models match the same number of moments.

6. Conclusions

Weproposed a new SQA decomposition and the corresponding SQA procedure. The SQA decompo-

sition can be used to define a structure-preservingmodel-order reduction of the second-order system

�N (1.1) directly, without the explicit projection as in the existing structure-preserving model-order

reduction methods. In terms of moment-matching property, it is equivalent to the TS-SOAR method.

The proposed SQA method could significantly reduce the memory I/O and the extra floating-point

arithmetic costs for very large systems on computer systems where the memory I/O costs have ex-

ceeded arithmetic costs by orders of magnitude. It is one of future work to provide quantitative per-

formance measurement of the benefit. Other future work include efficiently detecting the numerical

breakdowns, extension to the multiple expansion points and the development of the SQA method to

preserve the symmetry of a symmetric second-order system.
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