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a b s t r a c t

We consider a two-directional Krylov subspace Kk(A[j], b[j]), where besides the
dimensionality k of the subspace increases, the matrix A[j] and vector b[j] which induce the
subspace may also augment. Specifically, we consider the case where the matrix A[j] and
the vector b[j] are augmented by block triangular bordering. We present a two-directional
Arnoldi process to efficiently generate a sequence of orthonormal bases Q[j]k of the Krylov
subspaces. The concept of a two-directional Krylov subspace and an Arnoldi process is
triggered by the need of amultiparametermoment-matching basedmodel order reduction
technique for parameterized linear dynamical systems. Numerical examples illustrate
computational efficiency and flexibility of the proposed two-directional Arnoldi process.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A Krylov subspaceKk(A, b) based on a matrix A and a vector b is a subspace spanned by a sequence of column vectors:

Kk(A, b) = span
{
b,Ab,A2b, . . . ,Ak−1b

}
. (1)

The Arnoldi process [1] is an efficient numerical procedure to generate an orthonormal basis of the subspace. The
Krylov subspace and Arnoldi process play an important role in modern computational techniques for large-scale matrix
computation problems, such as solving linear systems of equations [13,15,23,24], computing a few selected eigenpairs [3,
25,21] and reduced-order modeling of dynamical systems [18,2,16]. A Krylov subspace-based method is often the method
of choice due to its simplicity and efficiency.
In this paper, we consider a two-directional Krylov subspace:

Kk(A[j], b[j]) = span
{
b[j], A[j]b[j], A2[j]b[j], . . . ,A

k−1
[j] b[j]

}
, (2)

where besides the dimensionality k of the subspace increases, the matrix A[j] and vector b[j] that induce the subspace are
augmented by block triangular bordering.We present a two-directional Arnoldi process to efficiently generate a sequence of
orthonormal bases Q[j]k of the Krylov subspaces. The concept of a two-directional Krylov subspace and an Arnoldi process is
triggered by the need of a multiparameter moment-matching based model order reduction technique for parameterized
linear dynamical systems. Numerical examples illustrate computational efficiency and flexibility of the proposed two-
directional Arnoldi process.

∗ Corresponding author.
E-mail addresses: ytli@math.ucdavis.edu (Y.-T. Li), bai@cs.ucdavis.edu (Z. Bai), yfsu@fudan.edu.cn (Y. Su).

0377-0427/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.05.059

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:ytli@math.ucdavis.edu
mailto:bai@cs.ucdavis.edu
mailto:yfsu@fudan.edu.cn
http://dx.doi.org/10.1016/j.cam.2008.05.059


Y.-T. Li et al. / Journal of Computational and Applied Mathematics 226 (2009) 10–21 11

The rest of this paper is organized as follows. In Section 2, we first review the Arnoldi decomposition and process
associated with the Krylov subspace Kk(A, b), and then introduce a two-directional Krylov subspace and Arnoldi
decomposition. In Section 3, we derive a two-directional Arnoldi process for orthonormal bases of the Krylov subspaces
and the corresponding Arnoldi decompositions. In Section 4, we discuss an origin of the concept of the two-directional
Krylov subspace and its application. Numerical examples and concluding remarks are in Sections 5 and 6, respectively.
Throughout the paper, we follow the notational convention used in matrix computation literature. Specifically, boldface

letters denote vectors (lower cases) and matrices (upper cases), I is the identity matrix, ei is the ith column of the identity
matrix I, 0 denotes zero vectors or matrices. The dimensions of these vectors and matrices are conformed with dimensions
used in the context. ·T denotes the transpose. span{q1, q2, . . . , qk} and span{Qk} denote the subspace spanned by the
sequence q1, q2, . . . , qk and the columns of the matrix Qk, respectively. ‖ · ‖1 and ‖ · ‖ designate the 1-norm and 2-norm,
respectively. x(i : j) denotes the ith to jth entries of the vector x. A(i : j, k : `) consists of elements in the ith through jth
rows and kth through `th columns of the matrix A. A(:, `) denotes the `th column of the matrix A.

2. Arnoldi decompositions

The Arnoldi process [1] is an algorithm for computing an orthonormal basis {q1, q2, . . . , qk} of the kth Krylov subspace
Kk(A, q1), namely,

span{q1, q2, . . . , qk} = Kk(A, b). (3)

Let

Qk =
[
q1 q2 · · · qk

]
,

then the Arnoldi process can be summarized by the following governing equation:

AQk = QkHk + hk+1,kqk+1e
T
k, (4)

where Hk is a k× k unreduced upper Hessenberg matrix. If we denote

Qk+1 =
[
Qk qk+1

]
and Ĥk =

[
Hk

hk+1,keTk

]
,

then the Eq. (4) can be recast as the following compact form:

AQk = Qk+1Ĥk. (5)

The decomposition (4) or (5) is referred to as an order-k Arnoldi decomposition induced byA and b. The following is a pseudo-
code of the Arnoldi process.

Algorithm 1. Arnoldi process

[Qk+1, Ĥk] = Arnoldi(A, b, k)
(1) q1 = b/ ‖b‖
(2) for j = 1, 2, . . . , k
(3) vj = Aqj
(4) for i = 1, . . . , j
(5) hij = qTi vj
(6) vj := vj − hij qi
(7) end for i
(8) hj+1,j =

∥∥vj∥∥
(9) If hj+1,j = 0, break
(10) qj+1 = vj/hj+1,j
(11) end for j.

Note that when hj+1,j = 0 for some j (line 8), the Arnoldi process breaks down. This is a pleasant but unlikely possibility
since it happens if and only ifKj(A, b) is an invariant subspace of A. In this case, {q1, . . . , qj} form an orthonormal basis of
Kj(A, b).
Algorithm 1 is known as an implementation of the Arnoldi process in the modified Gram–Schmidt (MGS)

orthogonalization form. In the presence of finite precision arithmetic, the MGS-based implementation is numerically more
accurate than themathematically equivalent classical Gram–Schmidt (CGS)-based implementation; for examples see [4,22].
There is also an implementation based on the Householder transformation [26]. It is numerically more accurate than the
MGS-based implementation but doubles the number of floating points operations.
We regard the Krylov subspace (3) and the corresponding Arnoldi decomposition (4) as a one-directional subspace and

decomposition, where the matrix A and vector b are fixed; only the dimensionality k of the subspace increases. We now



12 Y.-T. Li et al. / Journal of Computational and Applied Mathematics 226 (2009) 10–21

consider a situation where the underlying matrix and vector and the dimensionality of the subspace are varied. Specifically,
we consider a (j, k)th Krylov subspace defined as

Kk(A[j], b[j]) = span
{
b[j], A[j]b[j], A2[j]b[j], . . . ,A

k−1
[j] b[j]

}
, (6)

where A[j] and b[j] are given by the following block triangular recursion:

A[j] =
[
A[j−1] 0
A[j,:] Aj

]
, b[j] =

[
b[j−1]
bj

]
(7)

with the initials A[1] = A1 and b[1] = b1. We assume that the diagonal submatrix Aj is a square matrix of the order nj and bj
is a column vector of nj elements. Consequently, the off-diagonal submatrix A[j,:] is an nj × n[j−1] rectangular matrix, where
n[j−1] = n1 + n2 + · · · + nj−1. In Section 4, we will see that a sequence of matrices and vectors of the triangular block
recursion (7) arises from a model order reduction technique for parameterized linear dynamical systems.
When the index j is fixed, by (4), an order-k Arnoldi decomposition based on A[j] and b[j] is given by

A[j]Q
[j]
k = Q[j]k H[j]k + h

[j]
k+1,kq

[j]
k+1e

T
k (8)

= Q[j]k+1Ĥ
[j]
k , (9)

where Q[j]k is an orthonormal basis of the (j, k)th Krylov subspaceKk(A[j], b[j]), and

Q[j]k+1 =
[
Q[j]k q[j]k+1

]
and Ĥ[j]k =

[
H[j]k

h[j]k+1,ke
T
k

]
.

The decomposition (9) can also varywith the index j, say from an order-k Arnoldi decomposition induced by A[j−1] and b[j−1]
to an order-k Arnoldi decomposition induced by A[j] and b[j]. Therefore, we call the decomposition (8) or (9) an order-(j, k)
Arnoldi decomposition.
LetQ[j−1]k andQ[j]k be orthonormal bases of the (j−1, k)th and (j, k)th Krylov subspacesKk(A[j−1], b[j−1]) andKk(A[j], b[j]),

respectively. The following theorem characterizes the relationship between the orthonormal bases Q[j−1]k and Q[j]k .

Theorem 1. Let A[j] and b[j] be recursively defined in (7). Then the orthonormal bases Q
[j−1]
k and Q[j]k satisfy the relation

Q[j]k =
[
Q[j−1]k R

L

]
, (10)

where R is a k× k nonsingular upper triangular matrix and L is an nj × k matrix.

Proof. By the recursion (7), for any integer ` ≥ 1, the Krylov vectors (A[j])`b[j] and (A[j−1])`b[j−1] satisfy

(A[j])`b[j] =
[
(A[j−1])`b[j−1]

w`

]
, (11)

wherew` is a vector of nj elements.
By the Arnoldi decomposition (9), we know that the Krylov vector (A[j])`b[j] can be expressed as a linear combination of

the orthonormal basis Q[j]` . Namely, we have the QR decomposition of the Krylov matrix[
b[j] A[j]b[j] · · · (A[j])k−1b[j]

]
= Q[j]k R1, (12)

where R1 ∈ Rk×k is nonsingular upper triangular.
Combining the expressions (11) and (12), we have

Q[j]k R1 =
[
Q[j−1]k R2

W

]
whereW is an nj×kmatrix, and R1 and R2 are k×k nonsingular upper triangular matrices. The theorem is proved by taking
R = R2R−11 and L = WR−11 . �

In the next section, we derive a computational procedure to compute the matrices R and L. In Section 4, we will show that
the relationship (10) can be used to characterize orthonormal bases of a required projection subspace for parametric model
order reduction. In fact, it is the matrix L that is exactly needed for the application.
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3. Two-directional Arnoldi process

In this section we derive a computational procedure, referred to as a two-directional Arnoldi process, to compute the
Arnoldi decomposition (9). Specifically, assume we have an order-(j − 1, k) Arnoldi decomposition induced by A[j−1] and
b[j−1]:

A[j−1]Q
[j−1]
k = Q[j−1]k+1 Ĥ[j−1]k , (13)

where q[j−1]1 = b[j−1]/‖b[j−1]‖. We want to compute an order-(j, k) Arnoldi decomposition induced by A[j] and b[j]:

A[j]Q
[j]
k = Q[j]k+1Ĥ

[j]
k , (14)

where q[j]1 = b[j]/‖b[j]‖, and the orthonormal basis matrix Q
[j]
k+1 is of the form

Q[j]k+1 =
[
Q[j−1]k+1 R

L

]
, (15)

where R is (k+ 1)× (k+ 1) upper triangular and L is nj × (k+ 1).
Let us begin with a proper normalization of the initial vector b[j] to get the first column q

[j]
1 of Q

[j]
k+1. Let γj = ‖b[j]‖, then

q[j]1 is given by

q[j]1 =
1
γj
b[j] =

1
γj

[
b[j−1]
bj

]
=

[
q[j−1]1 γj−1/γj

bj/γj

]
, (16)

where for the last equality, we use the facts b[j−1] = γj−1q
[j−1]
1 and γj−1 = ‖b[j−1]‖ in the order-(j − 1, k) decomposition

(13). Hence, let

r1 =
γj−1

γj
and l1 =

bj
γj
, (17)

then the vector q[j]1 has the desired form (15):

q[j]1 =
[
q[j−1]1 r1

l1

]
, (18)

where r1 = R(1 : 1, 1) is the first entry of the first column of the upper triangular matrix R and l1 = L(:, 1) is the first
column of the matrix L. Note that if let

τj =
γj

γj−1
,

then by (16) it is easy to see

τj =

∥∥∥∥∥
[
(q[j−1]1 )T

(
bj
γj−1

)T ]T∥∥∥∥∥ =
[
1+

(
‖bj‖
γj−1

)2]1/2
.

Therefore, the scaling factor γj can be computed recursively:

γj = γj−1 τj.

In general, at the ith step, we have computed orthonormal basis vectors q[j]` of the forms

q[j]` =
[
Q[j−1]` r`

l`

]
, (19)

where r` = R(1 : `; `) and l` = L(:, `) for ` = 1, 2, . . . , i. Following the ith column of the order-(j, k) decomposition (14):

A[j]q
[j]
i = q[j]1 h1i + q[j]2 h2i + · · · + q[j]i hii + q[j]i+1 hi+1,i, (20)

our task is to compute the coefficients h`i such that the vector q
[j]
i+1 is orthonormal to q

[j]
` and is of the form

q[j]i+1 =
[
Q[j−1]i+1 ri+1

li+1

]
(21)

for some vectors ri+1 and li+1.
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First, by the order-(j − 1, k) decomposition (13), the matrix-vector product A[j]q
[j]
i in the left-hand side of Eq. (20) has

the form

A[j]q
[j]
i =

[
A[j−1]Q

[j−1]
i ri

A[j,:]Q
[j−1]
i ri + Ajli

]
=

[
Q[j−1]i+1 Ĥ[j−1]i ri
A[j,:]Q

[j−1]
i ri + Ajli

]

=

[
Q[j−1]i+1 xt
A[j,:]Q

[j−1]
i ri + Ajli

]
≡

[
vt
vb

]
= v,

where

xt = Ĥ[j−1]i ri.

Premultiplying Eq. (20) by (q[j]1 )
T and using the orthogonality condition of the vectors {q[j]` } for ` ≤ i, we have

h1i = (q
[j]
1 )
Tv =

[
q[j−1]1 r1

l1

]T [vt
vb

]
= r1(q

[j−1]
1 )TQ[j−1]i+1 xt + lT1vb = r1eT1xt + lT1vb,

where for the last equality, it uses the assumption of Q[j−1]i+1 being an orthogonal matrix.
Subtracting q[j]1 h1i = q[j]1 (q

[j]
1 )
T v from Eq. (20) we get(

I− q[j]1 (q
[j]
1 )
T
)
v = q[j]2 h2i + · · · + q[j]i hii + q[j]i+1 hi+1,i. (22)

By writing the left-hand side of (22) in the partitioned form(
I− q[j]1 (q

[j]
1 )
T
)
v =

[
vt
vb

]
−

[
q[j−1]1 r1

l1

]
h1i =

[
Q[j−1]i+1 xt

vb

]
−

[
q[j−1]1 r1h1i

l1h1i

]
(23)

and updating the first entry of xt and the vector vb by

xt(1) := xt(1)− r1h1i and vb := vb − l1h1i,

the left-hand side of (22) is recast as(
I− q[j]1 (q

[j]
1 )
T
)
v =

[
Q[j−1]i+1 xt

vb

]
. (24)

To continue the process, premultiply (24) by (q[j]2 )
T to get

h2i = (q
[j]
2 )
T
(
I− q[j]1 (q

[j]
1 )
T
)
v =

[
Q[j−1]2 r2

l2

]T [
Q[j−1]i+1 xt

vb

]
= rT2(Q

[j−1]
2 )TQ[j−1]i+1 xt + lT2vb = rT2

[
I2 0

]
xt + lT2vb = rT2xt(1 : 2)+ lT2vb.

Subtracting q[j]2 h2i from (22), we get(
I− q[j]2 (q

[j]
2 )
T
) (

I− q[j]1 (q
[j]
1 )
T
)
v = q[j]3 h3i + · · · + q[j]i hii + q[j]i+1 hi+1,i. (25)

Again, after updating the first two entries of xt and vb by

xt(1 : 2) := xt(1 : 2)− r2h2i and vb := vb − l2 h2i,

the left-hand side of (25) can be recast as(
I− q[j]2 (q

[j]
2 )
T
) (

I− q[j]1 (q
[j]
1 )
T
)
v =

[
Q[j−1]i+1 xt

vb

]
.

This process can be continued to compute the coefficients h3i, h4i, . . . , hii until all that is left is the term q[j]i+1 hi+1,i, and we
have [

Q[j−1]i+1 xt
vb

]
= q[j]i+1 hi+1,i. (26)

It is immediately seen that if we let

ri+1 =
1
hi+1,i

xt , li+1 =
1
hi+1,i

vb,
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then the vector q[j]i+1 has the desired form (21), where

hi+1,i =
∥∥∥∥[Q[j−1]i+1 xt

vb

]∥∥∥∥ = ∥∥∥∥[xtvb
]∥∥∥∥ .

The following pseudo-code is a complete list of the aforementioned scheme. On input, it is assumed that we have the order-
(j−1, k) Arnoldi decomposition (13). On output, Q[j]k+1 and Ĥ

[j]
k satisfy the order-(j, k) Arnoldi decomposition (14). Note that

for clarity of exposition, the superscript [j− 1] of Q[j−1]k+1 and Ĥ
[j−1]
k is omitted.

Algorithm 2. Two-directional Arnoldi Process (TAP)[
Q[j]k+1, Ĥ

[j]
k , γj

]
= TAP

(
Aj,A[j,:], bj, k,Qk+1, Ĥk, γj−1

)
(1) τj = (1+ (‖bj‖/γj−1)2)1/2
(2) γj = γj−1 τj

(3) r1 = 1/τj; q
[j]
1 (1 : n[j−1]) = Q1r1

(4) l1 = (bj/γj); q
[j]
1 (n[j−1] + 1 : n[j]) = l1

(5) Ĥ[j]0 = [ ]
(6) for i = 1, 2, . . . , k
(7) xt = Ĥk(1 : i+ 1, 1 : i) ri
(8) vb := A[j,:]q

[j]
i (1 : n[j−1])+ Ajli

(9) for ` = 1, 2, . . . , i
(10) h`,i = rT` xt(1 : `)+ lT` vb
(11) xt(1 : `) := xt(1 : `)− h`,i r`
(12) vb := vb − h`,i l`
(13) end for `
(14) hi+1,i =

(
‖xt‖2 + ‖vb‖2

)1/2
(15) If hi+1,i = 0, break
(16) ri+1 = xt/hi+1,i; q

[j]
i+1(1 : n[j−1]) = Qi+1ri+1

(17) li+1 = vb/hi+1,i; q
[j]
i+1(n[j−1] + 1 : n[j]) = li+1

(18) Ĥ[j]i =
[
Ĥ[j]i−1 hi
0 hi+1,i

]
(19) end for i.

We note that the initial orthonormal basis matrix Q[1]k and the Hessenberg matrix Ĥ[1]k for the order-(1, k) Arnoldi
decomposition are computed by the standard Arnoldi process (Algorithm 1). The scalar γ1 is set as ‖b[1]‖. Similar to the
standard Arnoldi process, the algorithm breaks down when hi+1,i = 0 for some i (line 15). This occurs if and only if the
subspaceKi(A[j], b[j]) is an invariant subspace of A[j].
To end this section,wenote that so farwehave only considered the casewhere as the index j is varying, the dimensionality

k of the Krylov subspaces is the same. In practice, we may want to use different dimensionality kj. There are three possible
cases: (1) kj < kj−1. This can be easily done by inputting the desired dimensionality kj in Algorithm 2. On output, Q

[j]
kj+1
is

an orthonormal basis matrix of order n[j] × (kj + 1). (2) kj > kj−1 and the columns of Q
[j−1]
kj−1

span an invariant subspace of

A[j−1]. In this case, the desired orthonormal basis matrixQ
[j]
kj+1
is still of the form (15) with a kj−1×(kj+1) upper trapezoidal

matrix R and an nj× (kj+ 1)matrix L. Algorithm 2 can be modified slightly to accommodate it. The detail is omitted due to
the limitation of the length of this paper. (3) kj > kj−1 and the columns of Q

[j−1]
kj−1

do not span an invariant subspace of A[j−1].

In this case, one cannot directly generate the desired orthonormal basis matrix Q[j]kj+1, since the required information of the
matrix-vector multiplications with respect to the matrix A[j−1] is not available.

4. Application

In this section we show how the concept of the two-directional Krylov subspace Kk(A[j], b[j]) arises from a
multiparameter moment-matching based model order reduction technique of parameterized linear dynamical systems.
We consider the following parameterized linear dynamical systems:{

(C0 + λC1)ẋ+ (G0 + λG1)x = bu
y = lTx, (27)
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Fig. 1. (p0, p1, p2, p3) = (10, 6, 3, 1) and q = 3.

whereC0,C1,G0 andG1 are constantmatrices of the ordern. The parameter vectorλ is a scalar and is referred to as a geometric
parameter. x ∈ Rn is the state vector. u, y ∈ R are the input and output functions, respectively. b, l ∈ Rn are input and output
distribution vectors. For simplicity of presentation, we only consider the simple single geometric parameter λ. The method
discussed in this section can be generalized to treat multiple parameters λ = (λ1, λ2, . . .). See [7,17] for details.
The transfer function of the system (27) is defined as the Laplace transform of the impulse response of the system:
h(s, λ) = lT(G0 + λG1 + s(C0 + λC1))−1b,

where s = 2π f i, f is referred to as the frequency and i =
√
−1. Assuming that G0 is nonsingular, a series expansion of

h(s, λ) around (s, λ) = (0, 0) is formally given by

h(s, λ) =
∞∑
j=0

∞∑
i=0

mijsiλj,

where mij = lTrji are referred to as multiparameter moments, and rji are moment generating vectors satisfying the two-
directional recurrence:

rji = −G
−1
0

(
C0r

j
i−1 + G1 r

j−1
i + C1 r

j−1
i−1

)
(28)

with the initial vector r00 = G−10 b. Note that rji = 0 if i < 0 or j < 0.
Let q be a prescribed approximation order of the geometric parameter λ of the transfer function, and pj be a prescribed

approximation order of frequency parameter s with respect to the geometric term λj, then it is necessary to match the
momentsmij for j = 0, 1, 2, . . . , q and i = 0, 1, 2, . . . , pj. The corresponding reduced-order system is given by{

(̂C0 + λ̂C1)ż+ (̂G0 + λĜ1)z = b̂u
ŷ = l̂ Tz,

(29)

where (̂C0, Ĉ1, Ĝ0, Ĝ1) ≡ VT(C0, C1,G0,G1)V and (̂b,̂ l) ≡ VT(b, l). V is an orthonormal basis of the following projection
subspace:

V = span{rj0, r
j
1, . . . , r

j
pj : j = 0, 1, . . . , q}. (30)

We note that, in practice, the frequency approximation orders pj are chosen to satisfy p0 ≥ p1 ≥ · · · ≥ pq. This is due to the
dominant effect of the lower-order geometric terms λj in the approximation of the transfer function. Fig. 1 illustrates the
choice of (p0, p1, p2, p3) = (10, 6, 3, 1) and q = 3. The total of 24 matched-moments are the filled circles.
Hence the gist of the approximation of the transfer function, or the computation of a reduced-order system is to generate

an orthonormal basis V of the projection subspaceV defined as (30). Let us rewrite the vectors of the subspaceV in an array
as follows:

V = span


r00, r01, r02, . . . , . . . . . . r0p0 ,
r10, r11, r12, . . . , . . . r1p1 ,
...

...
...

...
...

rq0, rq1, rq2, . . . , rqpq

 . (31)

Let r[j]
[i] be the vector by stacking the vectors of the first j rows in the ith column of the array (31), i.e.,

r[j]
[i] =


r0i−1
r1i−1
...

rj−1i−1

 ≡
 r[j−1]
[i]

rj−1i−1


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with the initial r[1]
[i] = r0i−1. Then by the recurrence (28), we see that, when j = 1, the vectors r

[1]
[i] satisfy the linear recurrence

r[1]
[i] = A[1]r[1][i−1],

where

A[1] = −G−10 C0 and r[1]
[1] = r00 = b[1].

Hence the first row vectors of the array (31) span a (1, k1)th Krylov subspace:

span
{
r[1]
[1], r

[1]
[2], . . . , r

[1]
[k1]

}
= span

{
r00, r

0
1, . . . , r

0
p0

}
= Kk1(A[1], b[1]). (32)

In general, it can be shown that the first j row vectors r[j]
[i] satisfy the linear recurrence:

r[j]
[i] = A[j]r

[j]
[i−1],

where the matrix A[j] and the initial vector r
[j]
[1] are the bordered matrix and vector of A[j−1] and b[j−1]:

A[j] =
[
A[j−1] 0
A[j,:] Aj

]
, r[j]

[1] = b[j] =
[
b[j−1]
bj

]
, (33)

and

Aj = −G−10 C0,

A[j,:] = −G−10
([
0 G1

]
A[j−1] +

[
0 C1

])
,

bj = rj−10 = −G
−1
0

[
0 G1

]
b[j−1].

Hence, the vectors r[j]
[i] are Krylov vectors of the (j, kj)th Krylov subspace:

span
{
r[j]
[1], r

[j]
[2], . . . , r

[j]
[kj]

}
= Kkj(A[j], b[j]). (34)

By the expression (32), an orthonormal basisV1 of the subspace spanned by the vectors in the first row ofV can be generated
by the standard AP (Algorithm 1) with A[1] and b[1]. By (34), we can recursively apply the TAP (Algorithm 2) with A[j] and
b[j] to compute an orthonormal basis Q

[j]
kj
of the (j, kj)th Krylov subspaceKkj(A[j], b[j]):

Q[j]kj =
[
Q[j−1]kj

R[j]
L[j]

]
, (35)

where L[j] is n× kj. Furthermore, L[j] is a basis matrix of the subspace spanned by the vectors in the jth row of V ,

span{L[j]} = span{r
j−1
0 , rj−11 , . . . , rj−1pj−1}.

As a result, an orthonormal basis V of V is given by

V = orth
([
V1 L[2] . . . L[q+1]

])
, (36)

where orth(X) denotes an orthonormal basis for the range of X.
There is an alternativeway to compute the desired orthonormal basis ofV . If the approximation order q for the geometric

parameter λ is fixed, we can apply the AP (Algorithm 1)withA[q+1] and b[q+1] to obtain an orthonormal basis Q̃
[q+1]
k1 of Krylov

subspaceKk1(A[q+1], b[q+1]), where k1 = p0 + 1. Let Q̃
[q+1]
k1 be partitioned into q+ 1 blocks:

Q̃[q+1]k1 =


Q̃1
Q̃2
...

Q̃q+1

 , (37)

then an orthonormal basis Ṽ of V is given by

Ṽ = orth
([
Q̃1 Q̃2(:, 1 : k2) · · · Q̃q+1(:, 1 : kq+1)

])
. (38)

To end this section, we note that the difference in terms of the number of floating point operations (flops) of the TAP-based
and AP-based methods are on computing L[j] in (36) and Q̃j in (38). By a straightforward calculation, we can derive that
the number of floating point operations (flops) of the TAP-based method is ft = (2p20 +

∑q
j=1(2+ j)p

2
j )n, plus the number
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Fig. 2. The principal angle between subspaces spanned by Q[5]k and Q̃
[5]
k (left). The loss of orthogonality of Q

[5]
k (solid line) and Q̃

[5]
k (dotted line) (right).

of flops for the required matrix-vector multiplications, which depends on the sparsity of the underlying matrices. On the
other hand, the number of flops of the AP-based method needs fa = 2p20(q + 1)n plus the same number of the matrix-
vector multiplications. If one wants to match the same number of moments with respect to all geometric terms λj, namely,
p0 = p1 = · · · = pq, then the TAP-based method needs a factor of (1 + q/4) more flops than the AP-based method,
ft = (1 + q/4)fa. If we consider the practical application where it is sufficient to choose pj as a monotonically decreasing
sequence as we discussed in Section 4, then the TAP-based method is much more efficient than the AP-based method. For
example, if pj = (1/2)jp0, then the number of flops of the TAP-based method is ft ≤ 28

9 p
2
0n. Therefore, the flop cost of the

TAP-based method is about a factor of q less than the cost of the AP-based method.

5. Numerical examples

In this section, we use three numerical examples to illustrate numerical properties and application of the proposed two-
directional Arnoldi process (TAP) in Section 4. All numerical results are conducted under theMatlab environment and run
on a PC with 1.6 GHz Intel CoreDuo T2050 processor.

Example 1. In this example we show that the TAP (Algorithm 2) and AP (Algorithm 1) generally have similar numerical
behaviors in terms of the accuracy. Consider the matrices A[j] and vectors b[j] recursively generated by block triangular
bordering (7), where A[j] and b[j] are random matrices with entries chosen from a normal distribution with mean zero and
variance one. Let Q[j]k and Q̃[j]k be orthonormal bases of the (j, k)th Krylov subspaceKk(A[j], b[j]) generated by the TAP and
AP, respectively.
The left plot of Fig. 2 shows the distance between the subspaces span{Q[j]k } and span{Q̃

[j]
k } are under the order of 10

−13 for
j = 5 and k up to 100. The order of the submatrices Ai is ni = 200. Recall that the distance between two subspacesX andY
of equal dimension is defined by dist(X,Y) = sin(θk), where θk is the principal angle ofX andY, which is the arc-cosine of
the largest singular value of the matrix XTY and span(X) = X and span(Y) = Y [5,11]. The loss of orthogonality, measured
by ‖I− (Q[j]k )

TQ[j]k ‖1, of computed orthonormal basis Q
[j]
k is shown in the right plot of Fig. 2 as the solid line. The dotted line

is for the loss of orthogonality of Q̃[5]k . We observe that the two algorithms have almost the same behavior in terms of the
loss of orthogonality.

Example 2. It is well known the AP (Algorithm 1) may suffer severe loss of orthogonality due to the ill-conditioning of the
underlying matrix [8,12]. This example shows that the TAP behaves similarly. Let us consider the FS1836 matrix A[1] from
the Harwell–Boeing collection [6]. The order of the matrix A[1] is n1 = 207. Let

A[2] =
[
A[1] 0
A[2,:] A2

]
,

where A2 = A[1] and the elements of A[2,:] are chosen from a normal distribution with mean zero and variance one. The
elements of initial vectors b[1] and b[2] are set to be ones. Matrices A[1] and A[2] are very ill-conditioned, with the condition
numbers κ(A[1]) = 1.5× 1011 and κ(A[2]) = 1.2155× 1013. The loss of orthogonality of the computed orthonormal basis
Q̃[2]k by the AP is shown by the dash–dotted line in Fig. 3. On the other hand, by using the TAP (Algorithm 2), we first compute
Q[1]k and thenQ

[2]
k . We observe a similar behavior in terms of the loss of orthogonality ofQ

[2]
k , shown by the solid line in Fig. 3.



Y.-T. Li et al. / Journal of Computational and Applied Mathematics 226 (2009) 10–21 19

Fig. 3. The behaviors of loss of orthogonality.

The loss of orthogonality of the AP is studied in [8,12]. It is characterized in terms of the condition number of the underlying
matrix. It is a subject of our future study to analyze the loss of orthogonality and present a proper reorthogonalization
scheme of the proposed TAP.

Example 3. In this example, we show the application of the TAP for generating an orthonormal basis of the projection
subspace for parametric model order reduction as discussed in Section 4. The matrices C0, C1, G0, G1 in the system (27) are
originated from a modified nodal analysis formulation of a linear RLC subcircuit that models the circuit’s interconnect and
package [14,20], and are of the following forms:

C0 + λC1 =
[
(1+ λ)C 0

0 L

]
, G0 + λG1 =

[
(1+ λ)G E

−ET 0

]
,

where C, L and G are capacitance, inductance and resistance matrices, respectively. E is the incident matrix associated with
the connectivity of the circuit. λ represents the fabrication variation, and is subject to±10% variation. The order of the full
system is n = 3298, where the order of the submatrices C and G is 2210 and the order of L is 1088.

As we discussed in Section 4, the kernel of computing a reduced-order model (29) is on computing an orthonormal basis V
of the projection subspaceV defined in (30). To have the relative error under O(10−3) for the approximate transfer function
ĥ(s, λ) on the frequency range [ 0, 4 ] GHz, it turns out that a TAP reduced-order model with q = 2, pj = (1/2)jp0 and
p0 = 200 is sufficient. The orthonormal basis V is given by

V = orth
([
V1 L[2] L[3]

])
,

where the matrices V1, L[2] and L[3] are defined in (36). The total number of basis vectors is k = k1 + k2 + k3 =
(p0 + 1) + (p1 + 1) + (p2 + 1) = 353. Fig. 4 shows the magnitudes of the original and approximate transfer functions
h(s, λ) and ĥ(s, λ) for λ = 0.02, and the relative errors on the frequency range [ 3, 4 ] GHz. The two curves are visually
indistinguishable. We do not show the results on the frequency range [0, 3] GHz since the relative errors are substantially
smaller than10−4. It took a total 55.91 s, including 34.99 s for computingV1, and 11.64 and5.53 s for L[2] and L[3], respectively.
We also use the AP (Algorithm 1) to compute an orthonormal basis Ṽ of the same projection subspace V:

Ṽ = orth
([
Q̃1 Q̃2(:, 1 : k2) Q̃3(:, 1 : k3)

])
, (39)

where the n × k1 matrices Q̃j are from the partition of an orthonormal basis Q̃
[3]
k1 of the Krylov subspaceKk1(A[3], b[3]) as

defined in (37). It took a total 174.74 s to compute the basis Ṽ, including 171.12 s for computing Q̃[3]k1 .
The results of the approximate transfer function h̃(s, λ) computed by the APmethod are also shown in Fig. 4. They reveal

that the TAP model is more than an order of the magnitude accurate than the AP model. Meanwhile, the CPU elapsed time
of the TAP-based method is only about one third of the AP-based method.
The evidence of the loss of the accuracy of the AP method is shown in the loss of accuracy in the computed first basis

vectors Q̃1. If we use the Householder transformation-based AP to compute the first basis vectors, denoted as VHO, then we
observe that dist(Q̃1,VHO) = 9.95 × 10−3. The Householder transformation-based AP is considered as the most accurate
and also most expensive implementation [26]. In contrast, for the first block vectors V1 computed in the TAP, we have
dist(V1,VHO) = 1.32× 10−9.
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Fig. 4. Themagnitude of the transfer function h(s, λ) and approximations on the frequency range [3, 4]GHz (left). The relative errors of the approximations
(right), where λ = 0.02.

Finally, we note that an additional advantage of the TAP-basedmethod is the flexibility. The approximation order j of the
geometric parameter λ and the associated approximation order pj of the frequency parameter can adaptively be selected
based on the required number of moments to be matched for achieving the desired accuracy, with only marginal increase
in the computational cost. Due to the scope of this paper, a further discussion of this issue is to be presented elsewhere.

6. Concluding remarks

The concept of a two-directional Krylov subspace and Arnoldi decomposition is motivated from the problem of
multiparameter moment-matching for model order reduction of parameterized dynamical systems. Numerical examples
illustrate the advantages of the TAP-based method in terms of CPU efficiency and accuracy. Our further study includes
the stability analysis of the two-directional Arnoldi process and reorthogonalization when necessary. The applications of
the two-directional Krylov subspace and the Arnoldi decomposition to other areas, such as the two-directional dynamical
systems described by the Fornasini–Marchesini model [9,10,19].
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