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Abstract—This paper presents a multiparameter moment-
matching based model order reduction technique for parameter-
ized interconnect networks via a novel two-directional Arnoldi
process. It is referred to as a PIMTAP algorithm, which stands
for Parameterized Interconnect Macromodeling algorithm via a
Two-directional Arnoldi Process. PIMTAP inherits the advan-
tages of previous multiparameter moment-matching algorithms
and avoids their shortfalls. It is numerically stable and adaptive,
and preserves the passivity of parameterized RLC networks.

I. INTRODUCTION

With the decrease of IC feature size and increase of sig-
nal frequency, interconnect has become a dominant factor
in the whole chip performance. Interconnect networks are
represented by large scale system equations with respect to
frequency parameter. However, during the circuit synthesis of
large scale digital or analog applications, it is also crucial to
evaluate the response of interconnect as functions of other
design parameters, such as geometry and temperature. Parame-
terized model order reduction (PMOR) methods are considered
as necessary techniques. In addition, the indetermination in
the manufacturing of IC chips may cause system variations
of critical dimensions and inter level dielectric thicknesses of
interconnects, which could make the chip performance unpre-
dictable and cause significant parametric yield lose. Therefore,
it becomes necessary to use PMOR algorithms for the analysis
of interconnects in the presence of process variations [1]–[8].

A number of PMOR methods have been developed. The
perturbation technique [5] is one of the early work to capture
small variation around the nominal circuit values. It becomes
inefficient when modeling strong nonlinear effects caused by
the intra-die variations [7]. Multiparameter moment-matching
methods presented in [3], [9] use a subspace projection ap-
proach and guarantee the passivity. However, the proposed
computational procedures are potentially numerical unstable
due to the fact that basis vectors of underlying projection
subspaces are calculated explicitly. The method in [10], [11]
uses a multiseries expansion but is difficult to generalize to
several parameters. The CORE algorithm [7] is numerically
stable. Unfortunately, it does not provide the reduced system
in state equation form and does not preserve the passivity.

In this paper, we pursue the multiparameter moment-
matching approach and present a new algorithm, referred to

as PIMTAP (Parameterized Interconnect Macromodeling via
a Two-directional Arnoldi Process). The PIMTAP algorithm
inherits the advantages of previous moment-matching based
methods. However, it avoids their shortfalls. PIMTAP method
is computationally stable and robust. PIMTAP model preserves
the structure of the original state equations like PRIMA [12]
for non-parameterized RLC networks.

All multiparameter moment-matching based PMOR tech-
niques, including the one proposed in this paper, are generally
designed for a low-dimensional parameter space. Variations in
modern VLSI technologies may introduce a high-dimensional
parameter space, and is referred to as the curse of dimension-
ality. In [13] a two-step approach is introduced to construct
a compact model of parameterized system: (1) parameter
dimension reduction, i.e. construct reduced-parameter inter-
connect models which reduce a high-dimensional parameter
space to a low-dimensional parameter space. (2) parameterized
model order reduction, i.e., construct reduced order models
from reduced-parameter models by applying parameterized
model reduction techniques. Moment-matching based PMOR
techniques are intended to be used for the second step to
address the challenge of the curse of dimensionality.

We note that it is beyond the scope of this paper to compare
the PIMTAP method with other parameterized and variational
MOR techniques, such as truncated balance realization based
approaches [8], stochastic spectral Galerkin method [1], [14],
and rational approximation methods [15], [16].

II. BACKGROUND

We consider a single-input and single-output (SISO) param-
eterized linear dynamical system of the form{

C(λ)ẋ + G(λ)x = bu
y = lT x (1)

with initial conditions x(λ, 0) = x0(λ) where λ =
(λ1, λ2, · · · , λk) are parameters. The matrices C(λ) and G(λ)
are of affine forms:

C(λ) = C0 + λ1C1 + · · · + λkCk,
G(λ) = G0 + λ1G1 + · · · + λkGk,

(2)

where Ci and Gi are N × N constant matrices. b is an
excitation vector and l is a selector vector of the output of
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interest y. x is a state vector of the system. The affine model
(2) arises from parameterized interconnect networks, where
C(λ) and G(λ) are the contributions of parameter dependent
memory and memoryless elements of the network [5], [9],
[17], [18], λi represent the geometry of the network, such as
the width and height of an interconnect line. In [19], FEA
of parametric electrothermal simulation also gives rise to the
affine model (2).

For the clarity of exposition, we only consider the affine
system of a single parameter:{

(C0 + λC1)ẋ + (G0 + λG1)x = bu
y = lT x (3)

and λ is a scalar. It is assumed that G0 is nonsingular. The
technique we present in this paper can be extended to systems
of multiple parameters, see example B in section V and [20].

The transfer function of the system (3) is given by

h(s, λ) = lT (G0 + λG1 + s(C0 + λC1))−1b, (4)

where s = 2πfi, f is referred to as the frequency and i =√−1. A power series expansion of h(s, λ) about (s, λ) =
(0, 0) via a symbolic way [21] is given as

h(s, λ) =
∞∑

j=0

( ∞∑
i=0

mj
is

i

)
λj ,

where mj
i = lT rj

i are referred to as (multiparameter) mo-
ments. The vectors rj

i , are moment generating vectors defined
by the following two-directional recurrence

rj
i = −G−1

0 (C0r
j
i−1 + G1 rj−1

i + C1 rj−1
i−1 ). (5)

The initial vector is r0
0 = G−1

0 b. Note that rj
i = 0 if i < 0 or

j < 0.
We pursue a moment-matching based algorithm under the

framework of a subspace projection technique [4], [12], [22].
Specifically, let V be an orthonormal basis of a proper defined
projection subspace V of dimension n, n ≤ N , then the
reduced model of order n is given by{

(Ĉ0 + λĈ1)ż + (Ĝ0 + λĜ1)z = b̂u

ŷ = l̂T z,
(6)

where (Ĉ0, Ĉ1, Ĝ0, Ĝ1) ≡ VT (C0,C1,G0,G1)V and
(b̂, l̂) ≡ VT (b, l).

Given desired approximation orders p and q of frequency
and geometric parameters s and λ, respectively, a proper
choice of the projection subspace V should produce a reduced
system (6) matching the following (p + 1)(q + 1) moments:

mj
i = m̂j

i (7)

for i = 0, 1, 2, . . . , p and j = 0, 1, 2, . . . , q. This implies
that the transfer function ĥ(s, λ) of the reduced system (6) is
an order-(p, q) approximation of the original transfer function
h(s, λ), i.e., h(s, λ) − ĥ(s, λ) = O(sp+1) + O(λq+1).

To this end, it is clear that the gists of a moment-matching
PMOR are (1) a proper choice of projection subspaces V and

(2) a stable and efficient algorithm to compute an orthonormal
basis V of V .

III. PREVIOUS WORK

A multivariable Taylor series method is proposed in [9].
By introducing an auxiliary parameter µ = sλ, and using the
multivariable Taylor series expansion, the transfer function (4)
can be written as

h(λ, s, µ) =
∞∑

k=0

k∑
j=0

k−j∑
i=0

mi,j,kλk−(i+j)siµj ,

where mi,j,k = lT fi,j,k are the multiparameter moments, and

fi,j,k = −G−1
0 (C0fi−1,j,k−1 + G1fi,j,k−1 + C1fi,j−1,k−1)

(8)
with the initial f0,0,0 = G−1

0 b, where fi,j,k = 0, if i, j, i+j /∈
{0, 1, . . . , k}. To match the (p + 1)(q + 1) moments defined
in (7), the dimension of the projection subspace span{fi,j,k}
has to be O((p + q)3).

An explicit-and-implicit moment-matching technique, re-
ferred to as Compact Order Reduction for parameterized
Extraction (CORE) algorithm, is proposed [7]. CORE has two
steps. At step 1: CORE defines the following linear system to
explicitly approximate the geometric parameter λ to the qth
order:{

(G[q+1] + sC[q+1])x̃[q+1] = b̃[q+1]ũ
ỹ[q+1] = (l[q+1](λ))T x̃[q+1],

(9)

where G[q+1] and C[q+1] are (q + 1) by (q + 1) block lower
bidiagonal matrices and b̃[q+1] and l[q+1](λ) are column vec-
tors. The transfer function of (9) is an order-q approximation
of the transfer function of the original system (3) in λ. At
step 2, CORE applies a subspace projection method with the
Krylov subspace

V = Kp+1

(
−G−1

[q+1]C[q+1],G
−1
[q+1]b̃[q+1]

)
to implicitly match the moments of s. A so-called recursive
Arnoldi algorithm is used to generate an orthonormal basis
V of V , which effectively utilizes the block lower triangular
structures of G[q+1] and C[q+1].

The CORE reduced-order model is defined by{
(Ĝ[q+1] + sĈ[q+1])z̃[q+1] = b̂[q+1]ũ̂̃y[q+1] = (̂l[q+1](λ))T z̃[q+1],

(10)
where (Ĝ[q+1], Ĉ[q+1]) ≡ VT (G[q+1],C[q+1])V, b̂[q+1] ≡
VT b[q+1] and l̂[q+1](λ) ≡ VT l[q+1](λ). The total number of
matched-moments is (p + 1)(q + 1). But the dimension n of
the reduced linear system (10) is p + 1, independent of q.
This is an advantage of the CORE method. However, due to
the geometric parameter λ appears in a truncated power form
of the reduced transfer function, it could lead to numerical
instability illustrated by example A in section V. Moreover,
CORE method does not preserve the structure of the original
system, and it is not a passivity-preserving PMOR scheme.
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IV. PIMTAP ALGORITHM

To match the moments defined in (7), a natural choice of
the projection subspace V is

V = span{rj
i : i = 0, 1, . . . p, j = 0, 1, . . . , q} (11)

= span


r0
0, r0

1, r0
2, . . . , r0

p,
r1
0, r1

1, r1
2, . . . , r1

p,
...

...
...

...
...

rq
0, rq

1, rq
2, . . . , rq

p.

 , (12)

where the horizontal direction is for the approximation orders
in frequency parameter s, and the vertical direction is for
geometric parameter λ. A proof of the moment-matching
property (7) with the projection subspace (11) is given in [20].
The dimension n of the reduced-order system (6) is no greater
than (p + 1)(q + 1). It could be smaller if deflations occur.

The critical question is how to stably and efficiently com-
pute an orthonormal basis V of V . The algorithm we propose
in this section is to construct V incrementally in two direc-
tions. If Vj is an orthonormal basis of the subspace spanned
by rj

i of the first j rows of the r-vector array (12), then to
compute Vj+1, we first form a basis Lj+1 of the subspace
spanned by the (j + 1)st row vectors, i.e.,

span{Lj+1} = span{rj
0, r

j
1, . . . , r

j
p}, (13)

and then combine Vj and Lj+1, we have

Vj+1 = orth(
[

Vj Lj+1

]
), (14)

where orth(X) stands for an orthonormal basis of the range
of X. This process is done iteratively for j = 1, 2, . . . , q and
V = Vq+1.

Specifically, we first compute an orthonormal basis V1 of
the subspace spanned by the first row vectors r0

i . It is easy to
see that the vectors r0

i satisfy the recurrence

r0
i = A[1]r0

i−1,

where A[1] = −G−1
0 C0 and r0

0 = G−1
0 b ≡ b[1]. Hence

the vectors r0
i span the Krylov subspace Kp+1(A[1],b[1]). An

orthonormal basis V1 of span{r0
i } can be computed by the

Arnoldi procedure [23].

We now consider how to compute the basis Lj+1, 1 ≤ j ≤
q. By stacking the vectors rj

i columnwise and defining

r[j+1]
[i] =


r0

i−1

r1
i−1
...

rj
i−1

 ≡
 r[j]

[i]

rj
i−1

 ,

it can be shown that we have the following recurrence

r[j+1]
[i] = A[j+1]r

[j+1]
[i−1] ,

where

A[j+1] =
[

A[j]

A[j+1,:] Aj+1

]
, (15)

and

A[j+1,:] = −G−1
0

([
0 G1

]
A[j] +

[
0 C1

])
,

Aj+1 = −G−1
0 C0.

The initial vector is

r[j+1]
[1] =

[
b[j]

rj
0

]
≡ b[j+1] (16)

where
rj
0 = −G−1

0

[
0 G1

]
b[j].

Thus the vectors r[j+1]
[i] span the Krylov subspace

span
{
r[j+1]
[1] , r[j+1]

[2] , . . . , r[j+1]
[p+1]

}
= Kp+1(A[j+1],b[j+1]).

We have two ways to generate the basis Lj+1. The first way
is to apply the Arnoldi procedure with A[j+1] and b[j+1] to

obtain an orthonormal basis Q[j+1]
p+1 of Kp+1(A[j+1],b[j+1]).

Let Q[j+1]
p+1 be partitioned into

Q[j+1]
p+1 =

[
Q̃1

Q̃2

]
jN

N
. (17)

Then we have

span{Q̃2} = span{Lj+1} = span{rj
0, r

j
1, . . . , r

j
p}. (18)

Alternatively, an efficient way is to exploit the rela-
tion between the Krylov subspaces Kp+1(A[j],b[j]) and
Kp+1(A[j+1],b[j+1]). By (15) and (16), we note that A[j+1]

and b[j+1] are the bordered matrix and vector of A[j] and b[j],

respectively, Therefore, if Q[j+1]
p+1 is an orthonormal basis of

Kp+1(A[j+1],b[j+1]), where Q[1]
p+1 = V1, and partitioned as

in equation (17), then we have the following two facts:
1) span{r[j]

[1], r
[j]
[2], . . . , r

[j]
[p+1]} = span{Q̃1}.

2) span{rj
0, r

j
1, . . . , r

j
p} = span{Q̃2}.

Fact 1) is due to the relation (15). Fact 2) is given by the
same argument used for equation (18). Therefore Q[j+1]

p+1 can
be written in the form

Q[j+1]
p+1 =

[
Q[j]

p+1Rj+1

Lj+1

]
, (19)

where Rj+1 is upper triangular and Lj+1 satisfies (13). As
a result, we can exploit the relation (19) and compute Lj+1

directly. Such a computational procedure is given in Appendix,
referred to as a Two-directional Arnoldi Process (TAP). In the
TAP, only the submatrices A[j+1,:] and Aj+1 are referenced
through matrix-vector products, instead of A[j+1].

Once the basis Lj+1 is available, an orthonormal basis
matrix Vj+1 is computed by (14). In summary, the following
algorithm is for computing the reduced system (6) satisfying
the moment-matching property (7):

PIMTAP ALGORITHM

1) Run Arnoldi algorithm with A[1] and b[1] to

construct the orthonormal basis V1 ≡ Q[1]
p+1.

2) For j = 1, 2, . . . , q,
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a) Run TAP (Appendix) with A[j+1,:], Aj+1

and rj
0 to construct the basis matrix Lj+1.

b) Vj+1 = orth
([

Vj Lj+1

])
.

c) Construct Q[j+1]
p+1 by (19).

3) Set V = Vq+1.
4) Compute the reduced-order model (6).

The costs of floating point operations of PIMTAP and
CORE are essentially the same. However, PIMTAP has the
following advantages:

• It is a stable process to generate an orthonormal basis V
due to the stability of the 2D Arnoldi process.

• It produces a reduced system in the same form of the
original system (3).

• It preserves important properties such as passivity and
stability.

PIMTAP is an adaptive process with respect to the increase
of the approximation order of geometric and/or frequency
parameters, shown in Example B in Section V.

V. NUMERICAL RESULTS

In this section we present two examples to demonstrate the
accuracy and efficiency of a Matlab implementation of the
PIMTAP algorithm on a PC with 1.6 GHz Intel Core Duo
T2050 processor.

EXAMPLE A. We consider an interconnect circuit, consisting
of an 8-bit bus and two shielding lines from an industrial
application. An RLC MNA formulation is used to model the
capacitive and magnetic coupling effects between any two of
these lines. The description matrices are

C(λ) =
[

(1 + λ)C 0
0 L

]
, G(λ) =

[
(1 + λ)G E
−ET 0

]
,

where C, L and G are capacitance, inductance and conduc-
tance matrices, respectively. E is the incident matrix associated
with the connectivity of the circuit. λ represents the fabrication
variation, and is assumed to be varied within ±15%. The order
of C and G is 330. The order of L is 160.

Fig. 1 shows the relative errors of the transfer functions
computed by CORE and PIMTAP at λ = 0.06. It clearly
shows that PIMTAP with (p, q) = (40, 1) is more accurate
than CORE with (p, q) = (80, 1). Note that the order of
PIMTAP model is 76, instead of 82, due to the deflation among
the basis vectors rj

i . The order of the CORE model is 81.
One way to improve the approximation accuracy is to

increase the order q of λ. By Fig. 2, we see that the CORE
model becomes unstable at high frequencies . On the other
hand, such instability does not occur in the PIMTAP model
(the PIMTAP curve is visually indistinguishable from the
original one).

To compare the CPU elapsed time, the geometric parameter
interval [−0.15, 0.15] is divided into 10 equal length subin-
tervals, and the frequency range [0, 10] GHz into 300 equal
length subintervals. Thus we have 11×301 grid points (λk, s�).
The following table shows that for about the same accuracy,
PIMTAP is about 30% faster than the CORE:
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Fig. 1. The relative errors of CORE and PIMTAP.
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Fig. 2. Frequency responses.

CORE PIMTAP
(p, q) (40,1) (80,1) (40,1)
Reduced-order n 41 81 76
Max relative-error 100 10−2 10−2

CPU-total (s) 2.578 10.490 7.172

Note that CORE with (p, q) = (40, 1) theoretically matches
the same number of moments as PIMTAP with (p, q) =
(40, 1). Unfortunately, the accuracy is not acceptable.

EXAMPLE B. We consider a multi-parameter model from a
electrothermal simulation of a MEMS device described in [19].
After discretization in space by a FEM, we have a 3-parameter
linear system:{

Eṫ(t) + (K +
∑

i∈{t,s,b}
λiKi)t(t) = bu(t)

y(t) = CT t(t),
(20)

where t(t) is the vector of unknown temperatures at 4257
nodes. E and K are of order 4257 representing the heat
capacity and conductivity. λt, λs, and λb are film coefficients
describing the heat flow between the device and three bound-
aries. Kt, Ks and Kb specify the contributions of the film
coefficients to the global system matrix K. u(t) is the heat
source. b is a column vector and C is a 4257 × 7 output
matrix. As discussed in [19], we consider an expansion of the
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transfer function h(s, λ) at (s, λt, λs, λb) = (0, 10, 10, 10):

h(s, λ) =
∞∑

|α|=0

∞∑
i=0

(CT rα
i )si λ̃α,

where rα
i are defined by the recurrence

rα
i = rαt,αs,αb

i = −K̃−1
(
Kt r

αt−1,αs,αb

i

+Ks rαt,αs−1,αb

i + Kb rαt,αs,αb−1
i + Erαt,αs,αb

i−1

)
with the initial r0,0,0

0 = K̃−1b, where K̃ = K + 10Kt +
10Ks + 10Kb and λ̃ = (λ̃t, λ̃s, λ̃b) = (λt − 10, λs − 10, λb −
10). α = (αt, αs, αb) and |α| = αt + αs + αb. By a priori
physical knowledge that λt plays a major role, a choice of
the projection subspace is to include only those vectors rα

i

corresponding to s and λt. PIMTAP has the flexibility to do
so. For example, we can require to match 28 moments in s and
8 moments in λt by using the following projection subspace

V = span

{
r0,0,0
0 , r0,0,0

1 , r0,0,0
2 , . . . . . . . . . , r0,0,0

27 ,

r1,0,0
0 , r1,0,0

1 , . . . , r1,0,0
7 .

}
.

As a result, the order of PIMTAP model is 36. The following
table shows the maximum relative errors of the PIMTAP model
on the frequency range [0, 100] Hz for 12 selected geometric
parameters (λt, λs, λb). It has about the same accuracy as
reported in [19].

λt λs λb max rel.-err
1 1 1 7.05 × 10−3

1 1 104 7.05 × 10−3

1 104 1 7.05 × 10−3

1 104 104 7.05 × 10−3

103 1 1 6.82 × 10−3

103 1 104 6.82 × 10−3

103 104 1 6.82 × 10−3

103 104 104 6.82 × 10−3

104 1 1 9.43 × 10−3

104 1 104 9.34 × 10−3

104 104 1 9.44 × 10−3

104 104 104 9.36 × 10−3

VI. CONCLUDING REMARKS

The main contributions of this paper are twofold. We
first give a rigorous definition of the projection subspace for
the multiparameter moment-matching property defined in (7).
Then we present a stable and efficient numerical procedure
to generate an orthonormal basis of the projection subspace.
The new Arnoldi-like procedure exploits the two directional
recurrence relationship among the moment generating vectors,
and therefore is referred to as Two-directional Arnoldi Process
(TAP). The resulting PIMTAP reduced order model has the
same form of the original system and preserves the passiv-
ity. Finally, we point out that as illustrated by Example B,
PIMTAP is flexible in matching selected numbers of moments
corresponding to different parameters.

APPENDIX TWO-DIRECTIONAL ARNOLDI PROCESS

Let A[j] and b[j] be a sequence of block lower triangular
matrices and vectors with conformal dimensions defined as

A[j] =
[

A[j−1] 0
A[j,:] Aj

]
, b[j] =

[
b[j−1]

bj

]
(21)

for j = 2, 3, . . ., with the initials A[1] = A1 and b[1] = b1,
where Aj are Nj ×Nj square matrices and A[j,:] are matrices
of conformal dimensions. The space

Kk(A[j],b[j]) = span
{
b[j], A[j]b[j], . . . ,A

k−1
[j] b[j]

}
is the kth Krylov subspace induced by A[j] and b[j], referred
to as the (j, k)th Krylov subspace for short.

The Arnoldi process [23], [24, sec.6.3] computes an or-
thonormal basis of the Krylov subspace with a fixed index j.
Here we consider the situation where both k and j increase.
Let Q[j]

k be an orthonormal basis of the (j, k)th Krylov
subspace Kk(A[j],b[j]), then the question is how to stably

and efficiently compute an orthonormal basis Q[j+1]
k of the

(j + 1, k)th Krylov subspace Kk(A[j+1],b[j+1]).
By (21), we have

(A[j+1])ib[j+1] =
[

(A[j])ib[j]

v

]
,

where v is a vector of the length Nj+1. Therefore, we can
conclude that Q[j]

k and Q[j+1]
k satisfy the following relation

Q[j+1]
k =

[
Q[j]

k Rj+1

Lj+1

]
, (22)

where Rj+1 is a k × k nonsingular upper triangular matrix
and Lj+1 is an Nj+1 × k matrix.

By the relation (22), we can derive a procedure to compute
Rj+1 and Lj+1 directly. To limit the length of this paper,
the derivation detail is omitted. In the following, we present
a pseudocode of such a procedure. On input, we have an
orthogonal matrix Q[j]

k+1 and a upper Hessenberg matrix Ĥ[j]
k

for the order-(j, k) Arnoldi decomposition induced by A[j]

and b[j]:

A[j]Q
[j]
k = Q[j]

k H[j]
k + h

[j]
k+1,kq

[j]
k+1e

T
k

= Q[j]
k+1Ĥ

[j]
k .

On output, we have the matrices Rj+1 and Lj+1 and the upper
Hessenberg matrix Ĥ[j+1]

k for the order-(j + 1, k) Arnoldi
decomposition induced by A[j+1] and b[j+1]. Note that in
the pseudocode the script j + 1 of Rj+1 and Lj+1 and the
superscript [j + 1] of Ĥ[j+1]

k are omitted for clarity.

TAP: TWO-DIRECTIONAL ARNOLDI PROCESS

1) Set

a) τ =
∥∥∥∥[ (q[j]

1 )T (bj+1/γj)T
]T
∥∥∥∥

b) γj+1 = γj τ
c) R = [r1] = [1/τ ]
d) L = [l1] = [bj+1/γj+1]
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e) Ĥ0 = ∅
2) For i = 1, 2, . . . , k

a) xt = H[j]
i ri

b) vb = A[j+1,:]Q
[j]
i ri + Aj+1li

c) hi = RT xt + LT vb

d) αt = h
[j]
i+1,i(e

T
i ri)

e) w = xt − Rhi

f) z = vb − Lhi

g) hi+1,i =

(∥∥∥∥[ w
αt

]∥∥∥∥2

+ ‖z‖2

)1/2

h) ri+1 =
[

w
αt

]
/hi+1,i

i) li+1 = z/hi+1,i

j) set

R =
[

R
0 ri+1

]
;

L =
[

L li+1

]
;

Ĥi =
[

Ĥi−1 hi

0 hi+1,i

]
Two remarks are in order:

1) The scalar γj at step 1)-a) is a scaling factor such that

the vector b̂[j+1] =
[
(q[j]

1 )T (bj+1/γj)T
]T

is parallel

to the vector b[j+1] and thus Kk+1(A[j+1], b̂[j+1]) =
Kk+1(A[j+1],b[j+1]). The sequence {γj} is defined by
γj+1 = ‖b̂[j+1]‖γj > 0 with the initial γ1 = ‖b[1]‖ and
γj+1 is computed at step 1)-b).

2) If the matrix A[j+1] and the vector b[j+1] are as defined
(15) and (16), we do not explicitly formulate A[j+1,:],
Aj+1 and bj+1. We can use a recursive algorithm
similar to the one presented at [7] for the vector bj+1 at
steps 1)-a) and d), and the matrix-vector multiplication
at step 2)-b).
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