
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2008 1571
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Abstract—This paper presents a multiparameter moment-
matching-based model order reduction technique for parameter-
ized interconnect networks via a novel two-directional Arnoldi
process (TAP). It is referred to as a Parameterized Interconnect
Macromodeling via a TAP (PIMTAP) algorithm. PIMTAP inher-
its the advantages of previous multiparameter moment-matching
algorithms and avoids their shortfalls. It is numerically stable and
adaptive. PIMTAP model yields the same form of the original
state equations and preserves the passivity of parameterized RLC
networks like the well-known method passive reduced-order inter-
connect macromodeling algorithm for nonparameterized RLC
networks.

Index Terms—Arnoldi process, moment matching, parameter-
ized model order reduction (PMOR).

I. INTRODUCTION

W ITH THE decrease of IC feature size and the increase of
signal frequency, interconnect has become a dominant

factor for the determination of the whole chip performance.
Interconnect networks are typically represented by large-scale
system equations with respect to frequency parameter. How-
ever, during the circuit synthesis of large-scale digital or ana-
log applications, it is also crucial to evaluate the response
of interconnect as functions of other design parameters, such
as geometry and temperature. In these cases, parameterized
model order reduction (PMOR) methods are necessary simu-
lation techniques for the analysis of parameterized interconnect
circuits. In addition, the indetermination in the manufacturing
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of IC chips also causes system variations of critical dimensions
and interlevel dielectric thicknesses of interconnects, which
could make the chip performance unpredictable and cause sig-
nificant parametric yield lose. Therefore, it becomes necessary
to use PMOR methods for the analysis of interconnect system
in the presence of process variations [1]–[8].

A number of PMOR methods have been developed for
modeling large-scale parameterized interconnect systems. The
perturbation technique [5] is one of the early work to capture
small variation around the nominal circuit values. It becomes
inefficient when modeling strong nonlinear effects caused by
the intradie variations [7]. Multiparameter moment-matching
methods [3], [9] preserve the structure and, therefore, guarantee
the passivity. However, the computational procedures of the
methods are potentially numerical unstable due to the fact that
the basis vectors of the underlying projection subspace are
explicitly calculated. To overcome the numerical instability,
in [10] and [11], it is proposed to first find a linear com-
bination of the basis vectors with respect to an orthonormal
basis and performs matrix-vector products on the orthonormal
basis. However, it is not a fully implicit method and could still
be numerically unstable. In [12], the projection subspace for
moment matching is defined as a union of Krylov subspaces.
As a result, the number of Krylov basis vectors needed to be
computed is substantially larger than the dimensionality of the
required projection subspace. The method proposed in [13] and
[14] uses a multiseries expansion of the transfer function to
generate the projection matrix. However, the method is diffi-
cult to generalize to several parameters. The Compact Order
Reduction for parameterized Extraction (CORE) algorithm [7]
is an explicit-and-implicit scheme. Unfortunately, it does not
preserve the structure of the state equation form and, therefore,
does not preserve the passivity.

Truncated balance realization-based approaches have also
been extended for variational MOR [8], [15]. In general, the
approaches have high computational complexity due to a large
amount of sampling points typically required to calculate the
system Grammians. Stochastic spectral Galerkin method is
another approach for analyzing interconnect circuits [1] and
power grid circuits [16] with process variations. Homogeneous
chaos is applied in the approach to capture the impact of
process variations on the interconnect response. However, this
method cannot be regarded as a true PMOR method, and it
does not preserve the structure of the state equations. Ratio-
nal interpolation-based methods are proposed for including
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variations of electrical and geometrical parameters in macro-
models of lossy transmission lines [17] and for RF inductor
design [18]. These methods have been applied for frequency
domain identification.

In this paper, we present a multiparameter moment-
matching-based PMOR technique for parameterized RLC inter-
connect networks via a novel two-directional Arnoldi process
(TAP). We call it the Parameterized Interconnect Macromod-
eling via a TAP (PIMTAP) algorithm. The PIMTAP algorithm
inherits the advantages of multiparameter moment-matching-
based methods, such as multivariable Taylor series approach [9]
and the CORE algorithm [7]. However, it avoids their shortfalls.
PIMTAP method is computationally stable and robust. PIMTAP
model preserves the structure of the original state equations like
passive reduced-order interconnect macromodeling algorithm
[19] for nonparameterized RLC networks.

All multiparameter moment-matching-based PMOR tech-
niques, including the one proposed in this paper, are designed
for a low-dimensional parameter space. Variations in modern
VLSI technologies sometimes introduce a high-dimensional
parameter space. It is referred to as the curse of dimensionality.
In [20], a two-step approach is introduced to construct a
compact model of parameterized system. The first step is
for parameter reduction to reduce high-dimensional parameter
space. The second step is to construct a reduced-order model
by applying a PMOR technique. Moment-matching techniques
discussed in this paper are intended for the application of the
second step.

The remainder of this paper is organized as follows. In
Section II, we review the system equations, the series expansion
of the transfer function, and the MOR framework via subspace
projection. Section III reviews related multiparameter moment-
matching methods presented in [7], [9], [13], and [14]. In
Section IV, we present the PIMTAP algorithm for systems
of single geometric parameter. The extension of the PIMTAP
algorithm to multiple geometric parameter systems is described
in Section V. Numerical results, including the comparison with
the CORE method, are presented in Section VI. Concluding
remarks are presented in Section VII.

II. BACKGROUND

We consider a single-input and single-output parameterized
linear dynamical system of the form{

C(λ)ẋ + G(λ)x = bu
y = lTx

(1)

with initial conditions x(λ, 0) = x0(λ), where λ =
(λ1, λ2, . . . , λk) are parameters. The matrices C(λ) and
G(λ) are of affine forms

C(λ) =C0 + λ1C1 + · · · + λkCk,

G(λ) =G0 + λ1G1 + · · · + λkGk (2)

where Ci and Gi are N × N constant matrices. b is an
excitation vector, and l is a selector vector of the output of
interest y. x is a state vector of the system.

The linear dynamical system (1) of the affine form (2) arises
from parameterized interconnect networks, where C(λ) and
G(λ) are the contributions of parameter dependent memory
and memoryless elements of the network [5], [9], [21], [22].
The parameters λi represent the geometry of the network,
such as the width and height of an interconnect line and
are referred to as geometric parameters in [9]. In [12] and
[23], the finite element analysis of parametric electrothermal
simulation of a microelectromechanical system (MEMS) also
gives rise to the affine model (2). Linear systems of the poly-
nomial form have also been considered [7], [10], [11]. More
general forms of system matrices G(λ) and C(λ) could be
approximated through power series expansion and truncation
[7], [22]. PIMTAP method discussed in this paper can be
extended to treat the polynomial form and will be presented
elsewhere.

In this section, for the clarity of exposition, we only consider
the affine system of a single parameter{

(C0 + λC1)ẋ + (G0 + λG1)x = bu
y = lTx

(3)

and λ is a scalar. Through this paper, it is assumed that G0

is nonsingular. In Section V, we will discuss multiparameter
systems that is k ≥ 2 in (2).

By the Laplace transform, the behavior of the system (3) in
frequency domain is characterized by the transfer function

h(s, λ) = lT (G0 + λG1 + s(C0 + λC1))
−1 b (4)

=

( ∞∑
i=0

mj
is

i

)
λj (5)

where s = 2πfi, f is referred to as the frequency and i =√
−1. mj

i = lTrj
i are referred to as (multiparameter) moments.

The vectors rj
i are moment generating vectors defined by the

following two-directional recurrence:

rj
i = −G−1

0

(
C0r

j
i−1 + G1 rj−1

i + C1 rj−1
i−1

)
(6)

with r0
0 = G−1

0 b and rj
i = 0 if i < 0 or j < 0.

We pursue a moment-matching-based algorithm by a sub-
space projection technique presented in [4], [19], [24]. Specif-
ically, let V be an orthonormal basis of a proper defined
projection subspace V of dimension n, n ≤ N , and let the state
variable

x ≈ Vz

where z is a vector of dimension n. Substituting x by Vz into
(3) and premultiplying the equation (3) by VT, we derive the
following reduced-order model:{

(Ĉ0 + λĈ1)ż + (Ĝ0 + λĜ1)z = b̂u

ŷ = l̂Tz
(7)

where (Ĉ0, Ĉ1, Ĝ0, Ĝ1) ≡ VT(C0,C1,G0,G1)V and
(b̂, l̂) ≡ VT(b, l). Similar to (4) and (5), the transfer function
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Fig. 1. Forty matched moments are the filled circles when (p, q) = (9, 3).

of the reduced-order system (7) is given by

ĥ(s, λ) = l̂T
(
Ĝ0 + λĜ1 + s(Ĉ0 + λĈ1)

)−1

b̂

=
∞∑

j=0

( ∞∑
i=0

m̂j
is

i

)
λj

where m̂j
i = l̂Tr̂j

i are (multiparameter) moments and the
moment generating vectors r̂j

i satisfy the recurrence relation

r̂j
i = −Ĝ−1

0

(
Ĉ0r̂

j
i−1 + Ĝ1r̂

j−1
i + Ĉ1r̂

j−1
i−1

)
(8)

with r̂0
0 = Ĝ−1

0 b̂, and r̂j
i = 0 if i < 0 or j < 0.

Given desired approximation orders p and q of frequency
parameter s and geometric parameter λ, respectively, our goal is
to define a proper projection subspace V such that the reduced-
order system matches the following (p + 1)(q + 1) moments:

mj
i = m̂j

i , i = 0 : p, j = 0 : q. (9)

This implies that the reduced transfer function ĥ(s, λ) is an
order-(p, q) approximation of h(s, λ)

h(s, λ) − ĥ(s, λ) =
∞∑

i=p+1

 q∑
j=0

(
mj

i − m̂j
i

)
λj

 si

︸ ︷︷ ︸
O(sp+1)

+
∞∑

j=q+1

( ∞∑
i=0

(
mj

i − m̂j
i

)
si

)
λj

︸ ︷︷ ︸
O(λq+1)

.

Fig. 1 shows that the total of 40 moments matched by
ĥ(s, λ) when (p, q) = (9, 3). Therefore, the gists of a moment-
matching PMOR method are the choice of the projection sub-
space V and a stable and efficient algorithm to generate an
orthonormal basis V of V .

III. PREVIOUS WORK

A multivariable Taylor series method is proposed in [9].
By introducing an auxiliary parameter µ = sλ and using the

multivariable Taylor series expansion, the transfer function (4)
can be written as

h(λ, s, µ) =
∞∑

k=0

k∑
j=0

k−j∑
i=0

mi,j,kλk−(i+j)siµj

where mi,j,k = lTfi,j,k are the multiparameter moments, and

fi,j,k = −G−1
0 (C0fi−1,j,k−1 + G1fi,j,k−1 + C1fi,j−1,k−1)

(10)

with the initial f0,0,0 = G−1
0 b, where fi,j,k = 0, if i, j, i + j /∈

{0, 1, . . . , k}. To match the (p + 1)(q + 1) moments defined in
(9), the dimension of the projection subspace span{fi,j,k} has
to be O((p + q)3).

A multiseries expansion method proposed in [13] and [14]
uses a different approach to expand the transfer function into a
series. Under the assumption of the coefficient matrix C1 = 0,
a series expansion of the transfer function h(s, λ) is

h(s, λ) = lT
( ∞∑

i=0

r(i)(s)λi

)
.

Here, r(i)(s) is defined and expanded into a series of s as
follows:

r(i)(s) =
[
−(G0 + sC0)−1G1

]i (G0 + sC0)−1b

=
∞∑

�i=0

. . .
∞∑

�1=0

∞∑
�0=0

r�i,...,�1,�0s
�i . . . s�1s�0

where

r�i,...,�1,�0 = (−1)i

(
i∏

k=1

(
−G−1

0 C0

)�k
(
−G−1

0 G1

))

×
(
−G−1

0 C0

)�0 (G−1
0 b

)
.

To match the (p + 1)(q + 1) moments defined in (9), the di-
mension of the projection subspace span{r�i,...,�1,�0} has to be
O((p + 1)q+1).

An explicit-and-implicit moment-matching technique, re-
ferred to as CORE algorithm, is proposed [7]. It has two
steps. First, it defines the following linear system to explicitly
approximate the geometric parameter λ to the qth order:{

(G[q+1] + sC[q+1])x̃[q+1] = b̃[q+1]ũ

ỹ[q+1] =
(
l[q+1](λ)

)T x̃[q+1]

(11)

where G[q+1] and C[q+1] are (q + 1) by (q + 1) block lower

bidiagonal matrices and b̃[q+1] and l[q+1](λ) are column vec-
tors. It is easy to see that the transfer function of (11) is an
order-q approximation of the transfer function of the original
system (3) in λ. At the second step, CORE applies the subspace
projection method with the Krylov subspace

V = Kp+1

(
−G−1

[q+1]C[q+1],G−1
[q+1]b̃[q+1]

)
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to implicitly match the moments of s. A so-called recursive
Arnoldi algorithm is used to generate an orthonormal basis
V of V , which effectively utilizes the block lower triangular
structures of G[q+1] and C[q+1]. The reduced-order model is
then defined by (Ĝ[q+1] + sĈ[q+1])z̃[q+1] = b̂[q+1]ũ̂̃y[q+1] =

(̂
l[q+1](λ)

)T

z̃[q+1]

(12)

where (Ĝ[q+1], Ĉ[q+1]) ≡ VT(G[q+1],C[q+1])V, b̂[q+1] ≡
VTb[q+1] and l̂[q+1](λ) ≡ VTl[q+1](λ). Although the order of
the reduced system (12) is p + 1 independent of q, the number
of matched-moments is (p + 1)(q + 1). This is an advantage of
the CORE method. However, due to the geometric parameter
λ appears in a power form of the reduced transfer function, it
could lead to numerical instability, as illustrated in Section VI.
Moreover, the reduced-order model does not preserve the struc-
ture of the original system. CORE is not a passivity-preserving
scheme.

IV. PIMTAP ALGORITHM

To match the desired multiparameter moments as defined
in (9), a natural choice of the projection subspace V is the
subspace spanned by the corresponding moment generating
vectors rj

i defined by the recurrence (6)

V = span{rj
i : i = 0 : p, j = 0 : q} (13)

= span


r0
0, r0

1, r0
2, . . . , r0

p,
r1
0, r1

1, r1
2, . . . , r1

p,
...

...
...

...
...

rq
0, rq

1, rq
2, . . . , rq

p.

 (14)

where the horizontal direction is for frequency parameter s, and
the vertical direction is for geometric parameter λ. A proof of
the moment-matching property (9) using the projection sub-
space (13) is given in Appendix A. Note that the dimension n of
the reduced-order system (7) is no greater than (p + 1)(q + 1).
It is smaller if deflations occur. See examples in Section VI.

The key question is how to stably and efficiently compute
an orthonormal basis V of the subspace V . The algorithm we
propose in this section is to construct V incrementally in two
directions as displayed in (14). If Vj−1 is an orthonormal basis
of the subspace spanned by the first j − 1 rows of the vectors
in the array (14), then to compute Vj , we first form a basis Lj

of the subspace spanned by the jth row vectors, i.e.,

span{lj} = span
{
rj−1
0 , rj−1

1 , . . . , rj−1
p

}
(15)

and then combine Vj−1 and Lj , we have

Vj = orth ([Vj−1 Lj ]) (16)

where orth(X) stands for an orthonormal basis of the range of
X. This process is done incrementally for j = 2 : q + 1 and
V = Vq+1.

Specifically, we first compute an orthonormal basis V1 of the
subspace spanned by the first row vectors r0

i . By the recursion
(6), the vectors r0

i satisfy the linear recurrence

−G[1]r0
i = C[1]r0

i−1, for i ≥ 1

with r0
0 = G−1

0 b. Hence, the vectors r0
i span the Krylov sub-

space Kp+1(A[1],b[1]), where A[1] = −G−1
[1]C[1] ≡ −G−1

0 C0

and b[1] = r0
0. An orthonormal basis V1 of span{r0

i } can be
computed by the Arnoldi procedure [25].

We now consider how to compute the basis Lj for j = 2 :
q + 1. By stacking the vectors rj

i columnwise and defining

r[j]
[i] =


r0

i−1

r1
i−1
...

rj−1
i−1

 ≡

 r[j−1]
[i]

rj−1
i−1

(j−1)N

N

(17)

the two-directional recurrence (6) can be formally expressed by
the following linear recurrence:

−G[j]r
[j]
[i] = C[j]r

[j]
[i−1], for i > 1 (18)

where G[j] and C[j] are jN by jN matrices of the forms

G[j] =

[
G[j−1]

0 G1 G0

]
C[j] =

[
C[j−1]

0 C1 C0

]
.

(19)

The initial vector is r[j]
[1] = G−1

[j]

[
b
0

]
.

To verify the recurrence (18), let us first write it explicitly for
j = 2

−
[
G0

G1 G0

] [
r0

i

r1
i

]
=
[
C0

C1 C0

] [
r0

i−1

r1
i−1

]
.

Hence, we have

−G0r0
i =C0r0

i−1

−G0r1
i =C0r1

i−1 + G1r0
i + C1r0

i−1.

By inverting the matrix G0, we immediately have the recursion
(6) for j = 0 and j = 1, respectively. In general, by the defini-
tion (19) of the matrices G[j] and C[j], we have

−G0r
j−1
i = C0r

j−1
i−1 + G1r

j−1
i + C1r

j−2
i−1

which immediately leads to the two-directional recurrence (6)
by inverting the matrix G0.

The linear recurrence (18) suggests that the vectors r[j]
[i] span

the Krylov subspace

span
{
r[j]
[1], r

[j]
[2], . . . , r

[j]
[p+1]

}
= Kp+1

(
A[j],b[j]

)
where A[j] = −G−1

[j] C[j] and b[j] = r[j]
[1].

We have two ways to generate the basis matrix Lj . One is
to apply the Arnoldi procedure with A[j] and b[j] to obtain
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an orthonormal basis Q[j]
p+1 of Kp+1(A[j],b[j]). Let Q[j]

p+1 be
partitioned into

Q[j]
p+1 =

[
Q̃1

Q̃2

](j−1)N

N

. (20)

Then, we have

span{Q̃2} = span{Lj}. (21)

Alternatively, we can exploit the relation between Krylov sub-
spaces Kp+1(A[j−1],b[j−1]) and Kp+1(A[j],b[j]) and directly
compute the basis matrix Lj . We note that A[j] and b[j] are the
bordered matrix and vector of A[j−1] and b[j−1]

A[j] =
[
A[j−1]

A[j,:] Aj

]
b[j] =

[
b[j−1]

b

]
(22)

where

A[j+1,:] = −G−1
0

(
[0 G1]A[j] + [0 C1]

)
Aj+1 = −G−1

0 C0

bj = rj−1
0 = −G−1

0 [0 G1]b[j−1].

If Q[j]
p+1 is an orthonormal basis of Kp+1(A[j],b[j]) and is

partitioned as in (20), then we have the following two facts:

1) span{r[j−1]
[1] , r[j−1]

[2] , . . . , r[j−1]
[p+1]} = span{Q̃1}.

2) span{rj−1
0 , rj−1

1 , . . . , rj−1
p } = span{Q̃2}.

Fact 1) is due to the relation (22). Fact 2) is given by the same
argument used for (21). Therefore, Q[j]

p+1 can be written in
the form

Q[j]
p+1 =

[
Q[j−1]

p+1 Rj

Lj

]
(23)

where Rj is upper triangular and Lj satisfies the property (15).
Subsequently, we can use the relation (23) and directly compute
Lj . Such a computational procedure is given in Appendix B and
is referred to as a TAP.

Once the basis Lj is available, an orthonormal basis matrix
Vj is computed by (16). Note that Vj−1 is already orthonormal,
there is an efficient method [26] to compute Vj . The following
outline is a summary to compute the reduced system (7) satis-
fying the moment-matching property (9):

PIMTAP ALGORITHM

1) Run the Arnoldi algorithm with A[1] and b[1] to con-

struct the orthonormal basis V1 ≡ Q[1]
p+1.

2) For j = 2, 3, . . . , q + 1,
a) Run the TAP (Appendix B) with A[j,:], Aj and bj to

construct the basis matrix Lj .
b) Vj = orth([Vj−1 Lj ]).

3) Set V = Vq+1.
4) Compute the reduced-order model (7).

A few remarks are in order: The PIMTAP is a stable process
since the TAP stably generates the basis matrix Lj . Meanwhile
the PIMTAP model has the same form of the original system
(3) and preserves important properties such as passivity and
stability. Furthermore, the PIMTAP is an adaptive process
with respect to the approximation orders of geometric and/or

frequency parameters since the TAP incrementally generates
the basis matrix Lj . This will be shown in Example C in
Section VI.

V. PIMTAP FOR MULTIPARAMETER SYSTEMS

In this section, we extend the PIMTAP for the multiparameter
affine linear system (1) and (2). It is sufficient to just consider
two-parameter λ = (λ1, λ2). The pattern for general k should
be clear. The transfer function h(s, λ) is given by

h(s, λ) = lT
(

G0 +
2∑

i=1

λiGi + s

(
C0 +

2∑
i=1

λiCi

))−1

b.

(24)

Let us define a multiindex α = (α1, α2), where α1 and α2 are
nonnegative integers. |α| = α1 + α2 is the order of α. The
monomial λα is defined by λα = λα1

1 λα2
2 . Following [27], a

power series expansion of (24) can be formally written as

h(s, λ) =
∞∑

|α|=0

∞∑
i=0

mα
i siλα

where mα
i = lTrα

i are (multiparameter) moments and the
vectors rα

i = rα1,α2
i are defined by the following recursion:

rα1,α2
i = −G−1

0

(
G1r

α1−1,α2
i + G2r

α1,α2−1
i

+ C0r
α1,α2
i−1 + C1r

α1−1,α2
i−1 + C2r

α1,α2−1
i−1

)
(25)

with r0,0
0 = G−1

0 b and rα1,α2
i = 0 if α1, α2 or i is negative.

Given desired approximation orders p and q of frequency
and geometric parameters s and λ, respectively, we seek a
projection subspace V that produces a reduced-order system
satisfying the following moment-matching property:

mα
i = m̂α

i , i = 0 : p, |α| = 0; q. (26)

The total number of the matched moments is (p + 1)(q +
2)(q + 1)/2. This implies that

h(s, λ) − ĥ(s, λ) =
∞∑

i=p+1

 q∑
|α|=0

(mα
i − m̂α

i ) λα

 si

︸ ︷︷ ︸
O(sp+1)

+
∞∑

|α|=q+1

( ∞∑
i=0

(mα
i − m̂α

i ) si

)
λα

︸ ︷︷ ︸
O(λq+1)

.

To match the desired multiparameter moments as defined in
(26), a choice of the projection subspace V is as the following:

V = span{rα
i : i = 0 : p, |α| = 0 : q} (27)

= span



r0,0
0 , r0,0

1 , r0,0
2 , . . . , r0,0

p

r1,0
0 , r1,0

1 , r1,0
2 , . . . , r1,0

p ,

r0,1
0 , r0,1

1 , r0,1
2 , . . . , r0,1

p ,
...

...
...

...
...

r0,q
0 , r0,q

1 , r0,q
2 , . . . , r0,q

p .


(28)
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where the horizontal direction is for frequency parameter s,
and the vertical direction is for geometric parameter λ, or-
dered by |α| = 0 : q, The vectors {rα

0 , rα
1 , . . . , rα

p : |α| = 0}
constitute the first row. The vectors {rα

0 , rα
1 , . . . , rα

p : |α| = 1}
constitute the second and third rows, and so on. The moment-
matching property can be shown by an analogous argument
in Appendix A.

For the question of stably and efficiently generate an ortho-
normal basis V of the projection subspace V , in analogy to the
case of single parameter, we can incrementally construct V in
two directions. If Vj is an orthonormal basis of the subspace
spanned by rα

i of the first j(j + 1)/2 rows of (28), then for
computing Vj , we first form a basis Lj such that

span

Lj =


L̃1

L̃2
...

L̃j


 = span




rj−1,0
i

rj−2,1
i

...
r0,j−1

i

 : i = 0 : p


and then reshape Lj to define Xj

Xj = reshape(Lj) ≡ [L̃1 L̃2 . . . L̃j ]. (29)

It is easy to see that

span{Xj} = span
{
rα
0 , . . . , rα

p : |α| = j − 1
}

. (30)

We then combine Vj−1 and Xj to obtain an orthonormal basis

Vj = orth ([Vj−1 Xj ]) . (31)

The procedure is carried iteratively for j = 2 : q + 1 and V =
Vq+1.

To build an orthonormal basis V1 of the subspace spanned
by the first row vectors r0,0

i of (28), we observe the vectors r0,0
i

satisfy the linear recurrence

r0,0
i = A[1]r

0,0
i−1, for i ≥ 1

where A[1] = −G−1
0 C0 and r0,0

0 = G−1
0 b. Consequently,

the vectors of the first row span the Krylov subspace
Kp+1(A[1],b[1]), where b[1] = r0,0

0 . An orthonormal basis V1

of Kp+1(A[1],b[1]) can be obtained by the Arnoldi procedure.
We now consider how to compute L2, L3, . . . ,Lq+1 and

reshape them to obtain X2, X3, . . . ,Xq+1. In order to obtain
a basis Xj of the subspace

span
{
rα
0 , rα

1 , . . . , rα
p : |α| = j − 1

}
we first define a linear ordering of the set {α = (α1, α2) : |α| =
0, 1, 2, . . .} as the following:

(0, 0),

(1, 0), (0, 1),

(2, 0), (1, 1), (0, 2),

...

(j, 0), (j − 1, 1), . . . , (1, j − 1), (0, j). (32)

In other words, the pair (α1, α2) is mapped to the
k(α1, α2)th term in the linear ordering (32), where k(α1, α2) =
(1/2)(α1 + α2 + 1)(α1 + α2) + α2 + 1. Correspondingly, the
vectors rα

i are ordered according to the sequence (32). Let

the vector r[j]
[i] of the length j(j + 1)N/2 be defined through

stacking the vectors rα
i−1 in the same order

r[j]
[i] =



r0,0
i−1

r1,0
i−1

r0,1
i−1
...

rj−1,0
i−1

rj−2,1
i−1

...
r0,j−1

i−1


≡



r[j]
[i]

rj−1,0
i−1

rj−2,1
i−1

...
r0,j−1

i−1


.

Then, similarly to (18), we have the linear recurrence

r[j]
[i] = A[j]r

[j]
[i−1], for i > 1 (33)

where the coefficient matrix and the initial vector are

A[j] = −G−1
[j] C[j] r[j]

[1] = G−1
[j]

[
b
0

]
≡ b[j] (34)

G[j] and C[j] square matrices of size j(j + 1)N/2

∆[j] =
[
∆[j−1]

∆[j,:] Ij ⊗ ∆0

]
, ∆ ∈ {G,C}.

The operator ⊗ denotes the Kronecker product. The sub-
matrices G[j,:] and C[j,:] are jN by (j − 1)jN/2 defined by

∆[j,:] =


0 ∆1

0 ∆2 ∆1
... ∆2

. . .

0
. . . ∆1

0 ∆2

 , ∆ ∈ {G,C}

where the size of zero column is [(j − 1)j/2 − (j − 1)]N . By
the recurrence (33), the vectors r[j]

[i] span the Krylov subspace

span
{
r[j]
[1], r

[j]
[2], . . . , r

[j]
[p+1]

}
= Kp+1

(
A[j],b[j]

)
.

Since the matrix A[j] and the vector b[j] are the bordered matrix
and vector of A[j−1] and b[j−1], respectively,

A[j] =
[
A[j−1]

A[j,:] Aj

]
, b[j] =

[
b[j−1]

bj

]
where

A[j,:] = −
(
Ij ⊗ G−1

0

) (
G[j,:]A[j−1] + C[j,:]

)
Aj = −

(
Ij ⊗ G−1

0

)
(Ij ⊗ C0)

bj = −
(
Ij ⊗ G−1

0

) (
G[j,:]b[j−1]

)
.
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By the same argument for (23), an orthonormal basis Q[j]
p+1 of

Kp+1(A[j],b[j]) can be written in the form

Q[j]
p+1 =

[
Q[j−1]

p+1 Rj

Lj

]
where Rj is upper triangular and

span{Lj} = span




rj−1,0
i

rj−2,1
i

...
r0,j−1

i

 : i = 0, 1, 2, . . . , p

 .

Therefore, we can apply the TAP (see Appendix B) to directly
compute the matrices Rj and Lj . Subsequently, after reshaping
the matrix Lj by (29), we obtain the basis matrix Xj of
the subspace (30). An orthonormal basis Vj of the subspace
spanned by the vectors in the first j(j + 1)/2 rows of the vector
array (28) is computed by (31).

In summary, the procedure for systems of multiple geometric
parameters is similar to the single geometric parameter case
with the following two additional steps.

1) Order the vectors rα
i in the sequence as in (32).

2) Reshape the matrix Lj to get the matrix Xj as in (29).
The computational complexity of the PIMTAP for the affine

linear system (1) and (2) of k geometric parameters can be
characterized by the number of basis vectors rα

i of the pro-
jection subspace V . For simplicity, assume that all geometric
parameters are of the same order q of approximation, and the
approximation order of the frequency parameter s is p. Then,
by a straightforward calculation, the dimension of V is

n(k, p, q) = (p + 1)Cq+k
k (35)

where Cn
m = (n!/(n − m)!n!) is the binomial coefficient.

n(k, p, q) grows exponentially. This is known as the curse of di-
mensionality for all moment-matching-based PMOR methods.

VI. NUMERICAL RESULTS

In this section, we present three numerical examples to
demonstrate the accuracy, stability and efficiency of the pro-
posed PIMTAP algorithm. All experiments are conducted in
MATLAB and run on a PC with a 1.6-GHz Intel Core Duo
T2050 processor.

EXAMPLE A. We consider an interconnect circuit consisting
of an 8-bit bus and two shielding lines from an industrial
application (see Fig. 2). The near end of the first line is
driven by a current source as the excitation and the voltage
of node A is regarded as the output signal. An RLC modified
nodal analysis formulation is used to model the capacitive and
magnetic coupling effects between any two of these lines. The
description matrices are

C(λ) =
[

(1 + λ)Q 0
0 H

]
G(λ) =

[
(1 + λ)N E
−ET 0

]
where Q, H, and N are capacitance, inductance, and resistance
matrices, respectively. E is the incident matrix associated with

Fig. 2. Eight-bit bus system with two shield lines.

Fig. 3. Relative errors of the PIMTAP and the CORE models.

the inductive connectivity. λ represents the fabrication variation
and is assumed to be varied within ±15%. The order of Q and
N is 330 and the order of H is 160.

Fig. 3 shows the relative errors of the transfer functions
computed by the CORE and the PIMTAP at λ = 0.06. It
clearly shows that the PIMTAP model with (p, q) = (40, 1)
is more accurate than the CORE model with (p, q) = (80, 1).
The order of the PIMTAP model is 76 instead of 82, due to the
deflations among the basis vectors rj

i . The order of the CORE
model is 81.

To improve the approximation accuracy, we increase the
approximation order q of λ. Fig. 4 shows that the CORE
model becomes unstable at high frequencies. On the other
hand, the PIMTAP model is stable, and its curve is visually
indistinguishable from the original one.

Fig. 5 shows that the PIMTAP model captures the frequency
response at three different geometric parameters. The maxi-
mum relative error is smaller than O(10−2) on the frequency
range [0, 10] GHz for all selected points of the geometric
parameter λ in the interval [−0.15, 0.15].

Finally, to compare the CPU elapsed time, we partition the
interval [−0.15, 0.15] of λ into ten equal length subintervals
and the frequency range [0, 10] GHz into 300 equal length
subintervals. Thus, we have 11 × 301 grid points (λk, s�).
Table I shows the approximation orders (p, q), dimensions
of the reduced-order systems, maximum relative errors and
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Fig. 4. Frequency responses for λ = 0.06.

Fig. 5. Frequency responses for λ = −0.15, 0, 0.15.

TABLE I
COMPARISON OF PIMTAP AND CORE

CPU elapsed time. CPU-pmor is the time for constructing
the reduced-order model including generating an orthonormal
basis V of the projection subspace. CPU-tfcal is the time
for calculating the transfer functions at all 11 × 301 points
(λk, s�). Note that the CORE model with (p, q) = (40, 1)
theoretically matches the same number of moments as the
PIMTAP model with (p, q) = (40, 1). The orders of the
CORE and the PIMTAP models are 41 and 76, respectively.
Hence, the CPU-tfcal of the CORE model is smaller than
the PIMTAP model. However, its accuracy is poor. To have a
comparable accuracy, the CORE needs to take (p, q) = (80, 1).
Subsequently, the order of the CORE model is 81 and takes
more time (CPU-tfcal) for transfer function evaluations.

Fig. 6. Frequency responses at selected pairs (λ1, λ2).

TABLE II
MAXIMUM RELATIVE ERRORS AT SELECTED POINTS

TABLE III
COMPARISON OF PIMTAP AND CORE

EXAMPLE B. We consider an RLC network with two
geometric parameters. The description matrices are

C(λ) =
[

(1 + λ1)Q 0
0 H

]
G(λ) =

[
(1 + λ2)N E

−ET 0

]
where λ1 and λ2 represent variations in capacitance Q and
resistance N, respectively. The order of Q nd N is 1222, and
the order of H is 544.

Fig. 6 shows that the PIMTAP model with approximation
order (p, q) = (150, 1) is visually indistinguishable from the
exact transfer function. Due to the deflations, the order of
the reduce PIMTAP model is 362. The number of matched
moments is (150 + 1)(1 + 2)(1 + 1)/2 = 453. The maximum
relative errors on the frequency range [0, 10] GHz of the
reduced-order PIMTAP models for ten selected pairs (λ1, λ2)
are presented in Table II. Table III compares the performance
of the PIMTAP and the CORE methods. It includes the
approximation order (p, q), dimension of a reduced-order
model, maximum relative errors, and profiles of CPU at ten
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selected pairs of (λ1, λ2) specified in Table II. We note that
even with the approximation order (450, 1), the accuracy of
the CORE model is still worse than the PIMTAP due to the
truncation error of the CORE model.

EXAMPLE C. In this example, we consider a multiparameter
model from a joint electrothermal simulation of a MEMS
device [23]. After discretization in space by a finite element
analysis of the heat transfer, we have a three-parameter linear
system of the formEṫ(t) +

(
K +

∑
i∈{t,s,b}

λiKi

)
t(t) = bu(t)

y(t) = CTt(t)

(36)

where t(t) is the vector of unknown temperatures, and E and K
are matrices representing the heat capacity and conductivity. λt,
λs, and λb are film coefficients describing the heat flow between
the device and three boundaries (top, side, and bottom), respec-
tively. The matrices Kt, Ks, and Kb specify the contributions
of the film coefficients to the global system matrix K. u(t) is
the heat source. Here, b is a column vector and C is an N × 7
output matrix, where the order N of the system is N = 4257.

Following [23], we consider an expansion of the
transfer function h(s, λ) of the system (36) at the point
(s, λt, λs, λb) = (0, 10, 10, 10)

h(s, λ) =CT(K + λtKt + λsKs + λbKb + sE)−1b

=
∞∑

|α|=0

∞∑
i=0

(
CTrα

i

)
siλ̃α

where λ̃ = (λ̃t, λ̃s, λ̃b) = (λt − 10, λs − 10, λb − 10). α is a
multiindex α = (αt, αs, αb), where αt, αs, and αb are non-
negative integers. The moment generating vectors rα

i are
defined by the recurrence

rα
i = rαt,αs,αb

i = −K̃−1
(
Ktr

αt−1,αs,αb
i + Ksr

αt,αs−1,αb
i

+ Kbr
αt,αs,αb−1
i + Erαt,αs,αb

i−1

)
where K̃ = K + 10Kt + 10Ks + 10Kb and r0,0,0

0 = K̃−1b.
Let us first consider a PIMTAP model with (p, q) = (30, 2).

The corresponding projection subspace V is given by

V = span {rα
i : |α| = 0, 1, 2; i = 0, 1, 2, . . . , 30} . (37)

By (35), the total number of basis vectors is n(3, 30, 2) = 310.
Due to the deflations among these basis vectors, the actual
dimension of V is 165. The numerical results show that the
maximum relative errors at a selected points (λt, λs, λb) on the
frequency range [0, 100] Hz are O(10−3).

To compare with the method presented in [23], we apply a
priori physical knowledge that the film coefficient λt plays a
major role. Hence, the projection subspace is chosen to include
only those vectors rα

i corresponding to λt and s

V = span

{
r0,0,0
0 , r0,0,0

1 , r0,0,0
2 , . . . . . . . . . , r0,0,0

27 ,

r1,0,0
0 , r1,0,0

1 , r1,0,0
2 , . . . . . . . . . , r1,0,0

27 .

}
. (38)

We observed that the maximum relative errors are O(10−3) on
the frequency range [0, 100] Hz. The dimension of PIMTAP
model is 49 instead of 56 due to the deflations.

In fact, PIMTAP has the flexibility to match different
number of moments corresponding to different parameters. For
example, we use the following projection subspace to match
only eight moments associated with the geometric parameter λt

V = span

{
r0,0,0
0 , r0,0,0

1 , r0,0,0
2 , . . . . . . . . . , r0,0,0

27 ,

r1,0,0
0 , r1,0,0

1 , . . . , r1,0,0
7 .

}
. (39)

It is has the same accuracy as reported in [23], which applies
a priori knowledge of the system to construct a projection
subspace through a union of two Krylov subspaces with respect
to frequency s and film coefficient λt. The dimension of the
reduced-order model in [23] is 41, higher than the PIMTAP
model of order 35.

VII. CONCLUDING REMARKS

The main contributions of this paper are twofold. We give a
rigorous definition of the projection subspace for the multipara-
meter moment-matching property (9). We present a stable and
efficient numerical procedure to generate an orthonormal basis
of the projection subspace. The new Arnoldi-like procedure
exploits the two directional recurrence relationship among the
moment generating vectors and is referred to as a TAP. The
resulting PIMTAP reduced-order model has the same form of
the original system and preserves the passivity. As illustrated by
Example C, PIMTAP is flexible in matching selected numbers
of moments corresponding to different parameters.

APPENDIX A
PROOF OF THE MOMENT-MATCHING PROPERTY (9)

We first recall the following well-known lemma:

Lemma 7.1:

If the matrix V is orthogonal and z ∈ span{V}, then
VVTz = z.
Proof: Let P = VVT. Then, P is a projector since P2 =

(VVT)2 = VVT = P. The range of P is span{V}. There-
fore, Pz = z for every vector z in the range of P. �

Let V be an orthonormal basis of the projection subspace V
(13). To show the moment-matching property (9), it is sufficient
to prove the following identity:

VTrj
i = r̂j

i , i = 0, 1, . . . , p j = 0, 1, . . . , q (40)

since by Lemma 7.1 and l̂ = VTl, the identity (40) implies

mj
i = lTrj

i = l̂TVVTrj
i = l̂TVTrj

i = l̂Tr̂j
i = m̂j

i .

To prove (40), we first use induction on the index i to prove

VTr0
i = r̂0

i , i = 0, 1, 2, . . . , p. (41)
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For the initial step, since r0
0 ∈ span{V}, by Lemma 7.1,

we have

G0r0
0 = G0(VVTr0

0) = b. (42)

Premultiplying (42) by VT and using the definition of Ĝ0 and
b̂ yield the equation (41) for i = 0

VTr0
0 = (VTG0V)−1VTb = Ĝ−1

0 b̂ = r̂0
0.

For the inductive step, suppose (41) is true for some i = k, i.e.,
VTr0

k = r̂0
k, we show that it is also true for i = k + 1. Since

r0
k, r0

k+1 ∈ span{V}, by Lemma 7.1, we have

C0r0
k = C0(VVTr0

k), G0r0
k+1 = G0(VVTr0

k+1).

Since G0r0
k+1 = −C0r0

k by the recurrence relation (6),
we have

VTG0VVTr0
k+1 = −VTC0VVTr0

k. (43)

Substituting Ĝ0, Ĉ0, and r̂0
k into (43) and premultiplying Ĝ−1

0 ,
we have

VTr0
k+1 = −Ĝ−1

0 Ĉ0r̂0
k = r̂0

k+1 (44)

where the second identity is due to (8). By induction, the
identity (41) holds for i = 0, 1, . . . , p.

Next, we use induction on the index j to complete the proof
of the identity (40). Assume that VTrk

i = r̂k
i holds for i =

0, 1, . . . , p, we show that VTrk+1
i = r̂k+1

i for i = 0, 1, . . . , p.
Since rk

i−1, r
k
i , rk+1

i−1 , rk+1
i ∈ span{V}, by Lemma 7.1, the re-

currence relation (6) implies that

VTG0VVTrk+1
i = −VTC0VVTrk+1

i−1 − VTG1VVTrk
i

− VTC1VVTrk
i−1. (45)

Because of rk+1
−1 = rk

−1 ≡ 0 and the definitions of Ĝ0 and Ĝ1,
the equation (45) for i = 0 becomes

VTrk+1
0 = −Ĝ−1

0 Ĝ1r̂k
0 = r̂k+1

0 .

Assuming that VTrk+1
i−1 = r̂k+1

i−1 and using the definitions of

Ĝ0, Ĉ0, Ĝ1, and Ĉ1, we show that VTrk+1
i = r̂k+1

i from (45)

VTrk+1
i = −Ĝ−1

0 Ĉ0r̂k+1
i−1 − Ĝ−1

0 Ĝ1r̂k
i − Ĝ−1

0 Ĉ1r̂k
i−1

= r̂k+1
i

where the second equality is due to (8).
By induction on the indices i and j, the identity (40) is true

for i = 0, 1, 2, . . . , p, and j = 0, 1, 2, . . . , q. �

APPENDIX B
TAP

Assume that square matrices A[j] of order n[j] and vectors
b[j] of length n[j] be a sequence of block lower triangular
matrices and vectors with conformal dimensions defined as

A[j] =
[
A[j−1] 0
A[j,:] Aj

]
b[j] =

[
b[j−1]

bj

]
(46)

for j = 2, 3, . . ., with the initials A[1] = A1 and b[1] = b1,
where Aj are nj by nj matrices, and A[j,:] are matrices of
conformal dimensions. The space

Kk(A[j],b[j]) = span
{
b[j], A[j]b[j], . . . ,Ak−1

[j] b[j]

}
is the kth Krylov subspace induced by A[j] and b[j], referred to
as the (j, k)th Krylov subspace for short.

The standard Arnoldi process [25] computes an orthonormal
basis of the Krylov subspace with a fixed index j. Here, we
consider the situation where both k and j increase. Specifically,
if Q[j−1]

k be an orthonormal basis of the (j − 1, k)th Krylov
subspace Kk(A[j−1],b[j−1]), then the question is how to

stably and efficiently compute an orthonormal basis Q[j]
k of the

(j, k)th Krylov subspace Kk(A[j],b[j]).
Note that A[j] and b[j] are the bordered matrix and vector as

shown in (46). As the consequence of the observation

(A[j])ib[j] =
[

(A[j−1])ib[j−1]

wi

]
where wi is a vector of the length nj , we can immediately

conclude that the orthonormal bases Q[j−1]
k and Q[j]

k satisfy the
following relation:

Q[j]
k =

[
Q[j−1]

k R
L

]
(47)

where R is a k × k nonsingular upper triangular matrix and
L is an nj × k matrix. By the relation (47), we can derive
a computational procedure to compute R and L and obtain
Q[j]

k by updating Q[j−1]
k . To limit the length of this paper, the

derivation detail of the computational procedure is presented
in [28].

In the following, we present a pseudocode of the procedure.
On the input, we have an orthogonal matrix Q[j−1]

k+1 and an upper

Hessenberg matrix Ĥ[j−1]
k for the order-(j − 1, k) Arnoldi

decomposition induced by A[j−1] and b[j−1]

A[j−1]Q
[j−1]
k = Q[j−1]

k H[j−1]
k + h

[j−1]
k+1,kq

[j−1]
k+1 eT

k

or a compact form

A[j−1]Q
[j−1]
k = Q[j−1]

k+1 Ĥ[j−1]
k

where

Q[j−1]
k+1 =

[
Q[j−1]

k q[j−1]
k+1

]
Ĥ[j−1]

k =
[

H[j−1]
k

h
[j−1]
k+1,ke

T
k

]
.

On the output, we have the matrix Q[j]
k+1 and the upper

Hessenberg matrix Ĥ[j]
k for the order-(j, k) Arnoldi decompo-

sition induced by A[j] and b[j], and Q[j]
k+1 is of the form

Q[j]
k+1 =

[
Q[j−1]

k+1 R
L

]
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where R is a (k + 1) × (k + 1) nonsingular upper triangular
matrix and L is an nj × (k + 1) matrix. We will use the
MATLAB notation in the pseudocode, namely, ri = R(1 : i, i),
li = L(:, i). Note that for the clarity of exposition, the super-
script [j − 1] of Q[j−1]

k+1 and Ĥ[j−1]
k is omitted.

TAP
1) τj = (1 + (‖bj‖/γj−1)2)1/2

2) γj = γj−1 τj

3) r1 = 1/τj ; Q[j]
1 (1 : n[j−1]) = Q1r1

4) l1 = (bj/γj); q
[j]
1 (n[j−1] + 1 : n[j]) = l1

5) Ĥ[j]
0 = [ ]

6) for i = 1, 2, . . . , k
7) xt = Ĥk(1 : i + 1, 1 : i) ri

8) Vb := A[j,:]q
[j]
i (1 : n[j−1]) + Ajli

9) for � = 1, 2, . . . , i
10) h�,i = rT

� xt(1 : �) + lT� Vb

11) xt(1 : �) := xt(1 : �) − h�,i r�

12) vb := vb − h�,i l�
13) end for �
14) hi+1,i = (‖xt‖2 + ‖vb‖2)1/2

15) If hi+1,i = 0, break
16) ri+1 = xt/hi+1,i;

q[j]
i+1(1 : n[j−1]) = qi+1ri+1

17) li+1 = vb/hi+1,i

q[j]
i+1(n[j−1] + 1 : n[j]) = li+1

18) Ĥ[j]
i =

[
Ĥ[j]

i−1 hi

0 hi+1,i

]
19) end for i

Two remarks are in order: 1) The scalar γj−1 in
line 1 is a scaling factor such that the vector b̂[j] =
[(q[j−1]

1 )T (bj/γj)T]T is parallel to the vector b[j], and thus

Kk(A[j], b̂[j]) = Kk(A[j],b[j]). The norm of the vector b̂[j]

is computed in line 1. The sequence {γj} is defined by γj =
‖b̂[j]‖γj−1 > 0 with the initial γ1 = ‖b[1]‖ and γj is computed
in line 2.

2) If the matrix A[j] and the vector b[j] are of the type (34),
we do not explicitly compute A[j,:], Aj and bj . We can use a
recursive algorithm similar to the one presented in [7] for the
vector bj in lines 1 and 4, and the matrix-vector multiplications
associated with A[j,:] and Aj in line 8.
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