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Abstract - Recently model order reduction techniques for 
second-order systems have obtained many research interests 
for the simulation of RCS interconnect circuits employing 
susceptance elements. In this paper, we propose a Block 
SAPOR (Block Second-order Arnoldi method for Passive 
Order Reduction) for Multi-Input Multi-Output RCS Circuits. 
The proposed Block SAPOR algorithm can simultaneously 
guarantee passivity and achieve higher accuracy than the first 
order reduction technique PRIMA. Most importantly, the 
reduced system matrices obtained by the proposed method can 
preserve the structure of the original system matrices. Such a 
nice property makes it possible to construct an equivalent RCS 
circuit for the reduced system. 

I. INTRODUCTION 

In today’s high-speed deep sub-micron ULSI design, 
interconnect has become a dominating factor in determining 
the performance and reliability of the whole chip. Generally, 
the on-chip interconnects are modeled as RLC circuits. As 
the operating frequencies keep increasing, magnetic 
coupling effects of interconnects become more and more 
prominent. Consequently, the resulted partial inductance 
matrix is extremely large and dense [1], which limits the 
application of fast and accuracy numerical techniques in 
interconnect simulation. As the inverse of a partial 
inductance matrix, susceptance has recently emerged as an 
alternative way for modeling magnetic coupling [2-4]. 
Since the mutual susceptance terms drop off much faster 
than the mutual inductance terms as the distance increases, 
the susceptance matrix is diagonally dominant and can be 
sparsified by simple truncation without lossing positive 
definiteness. This enables the development of fast   
simulation methods.  
Model-order reduction (MOR) techniques have been well 
investigated during the last decade to fasten the 

interconnect simulation. Usually, a linear circuit can be 
equivalently formulated in the form of a first-order system 
[5][6], or a second-order system [4]. Hence MOR 
techniques can be classified into two categories, 
accordingly. 
For MOR of the first-order formulation, the pioneering 
work is AWE [7], which uses a reduced-order system to 
match the explicitly-calculated moments of the original 
system. However, AWE suffers from numerical instability 
and cannot generate high-order models. Therefore, Krylov 
subspace based MOR techniques [6] were proposed later on. 
They often lead to a numerically stable order reduction 
process, which is highly desired for practical applications. 
Furthermore, special attention has been paid to maintain the 
passivity of the reduced-order model. In [5], PRIMA was 
developed based on Arnoldi process, which may provide 
guaranteed passivity. However, when directly applied to 
RCS circuits, PRIMA cannot guarantee passivity [4]. 
For an RCS circuit, it’s better to be formulated as a 
second-order system, since many good properties of the 
susceptance matrix can be preserved in this form [4]. 
However, up to now, existing MOR techniques [9][4] for 
the second-order formulation leave many key issues to be 
resolved. For instance, ENOR [9] is not numerically stable 
while SMOR [4] cannot match the moments of the original 
system exactly. Therefore, an efficient Krylov subspace 
based MOR technique is much desired for the second-order 
formulation, just like PRIMA for the first-order systems.  
Recently, Bai and Su introduced a second-order Arnoldi 
method (SOAR) [10] for the solution of the quadratic 
eigenvalue problem. Based on SOAR [10], an SAPOR 
(Second-order Arnoldi method for Passive Order Reduction) 
was further developed in [11] for SISO (Single-Input 
Single-Output) RCS circuits to guarantee the numerical 
stability, accuracy as well as passivity of the reduced 
system.  
In this paper, we propose Block SAPOR: Block 
Second-order Arnoldi method for Passive Order Reduction 
of MIMO (Multi-Input Multi-Output) RCS circuits. This 
novel reduction method is numerically stable and 
passivity-guaranteed. Furthermore, it outperforms PRIMA 
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with better accuracy for the same reduced order. Contrary to 
the existing MOR methods, which can not generate the 
equivelant circuits for the reduced systems, the Block 
SAPOR algorithm can construct the equivalent circuit for 
the reduced system. 
The rest of the paper is organized as follows. In section II, a 
brief review of PRIMA is presented. In section III, the 
novel Block SAPOR algorithm is developed in detail. In 
section IV, a comparison of Block SAPOR and PRIMA is 
introduced. Numerical experiments are demonstrated in 
section V to show the efficiency of our proposed method. 
Concluding remarks are drawn in Section VI. 

II. REVIEW OF PRIMA 

A.  Formulation of RLC circuits 

For a p-input q-output MIMO RLC interconnect network, 
time-domain Modified Nodal Analysis (MNA) circuit 
equations can be given in the following. 
    ( ) ( ) ( )X XC X t G X t BU t

⋅

+ =       (1) 
      ( ) ( )TY t L X t=         (2) 
where MNRX +∈  represents the unknown vector, which 
consists of N nodal voltages, denoted by NRV ∈  and M 
auxiliary branch currents, denoted by M

b RI ∈ . The 
matrices )()( MNMN

X RC +×+∈  and )()( MNMN
X RG +×+∈  are the 

system matrices. pRU ∈  and qRY ∈ are the input vector 
and output vector. pMNRB ×+∈ )(  and )( MNqRL +×∈  denote 
the incidence matrices for the input sources and output 
variables, respectively.  
Generally, equation (1) is formulated as: 

( )
( ) ( )

( )0
( )00

L
T

bLb

V tG EC V t
BU t

I tEH I t
     

+ =      −      
   (3) 

where MMNN RHRC ×× ∈∈ , and NNRG ×∈ represent the 
contributions of the capacitors, the inductances and the 
resistances, respectively. MN

L RE ×∈  is the incidence 
matrix for inductances. 

B.  PRIMA 

In frequency domain, equations (1) and (2) can be rewritten 
as (4) and (5), which is a first-order system, in terms of s. 
   )()()( sBUsXGsC XX =+       (4) 
   )()( sXLsY T=         (5) 
With unit impulse excitations at the inputs, we can easily 
obtain the system transfer function matrix. 

1( ) ( )T
X XH s L G sC B−= +       (6) 

Apply Taylor expansion to H(s), we have 
  2

0 1 2( )H s H H s H s= + + +         (7) 
where H0, H1, H2, … are the block moments of H. These 
block moments can be computed using the relation: 

( )T i q p
i X iH L A R H ×= ∈ℜ       (8) 

where 1 1,X X X XA G C R G B− −= − = . 

In PRIMA, a block Arnoldi procedure is employed for the 
construction of an orthonormal basis W spanning the block 

Krylov subspace as described below (for simplicity, we 
assume in the paper that the reduced order n is k times of p) 

{ }2 1( , ) , , , k
X X X X

nKr A R span R A R A R A R k p
−= =     (9) 

Then by performing an orthogonal projection on the 
original system using W, we reduce the system (1) and (2) 
of order MN +  to a system of order n as shown in (10) 
and (11). 
  )()()(

~~~~
sUBsXGCs XX =+       (10) 

   )()(
~~

sXLsY
T

=        (11) 

where 
~

T
X XC W C W= ,

~
T

X XG W G W= , 
~

TX W X= , 
~

TB W B=  

and 
~

TL W L= . 
The transfer function matrix of the reduced system can be 
described as  
   1( ) ( )

T
X XH s L G sC B−= +      (12) 

It is proven in [5] that k block moments of the transfer 
function matrix H(s) are preserved in the reduced system. 
Moreover, when applied to the system described in (3), 
PRIMA can generate a passive reduced-order system [5]. 

III. BLOCK SAPOR 

A.  Formulation of RCS circuits 

For RCS circuits, since the susceptance S matrix can be 
regarded as the inverse of the inductance matrix H, the 
MNA equations (3) and (2) may be formulated as (13) and 
(14). Note that since only the nodal voltages are of interests 
in most cases, we assume the output variables are only 
relevant to nodal voltages. Moreover, for simplicity, we 
assume the inputs are all current sources. 
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where S LE E= , N p
uB R ×∈  and q N

VL R ×∈  are incidence 
matrices for susceptances, current sources and the output 
voltage variables, respectively.  
Performing the Laplace transform to (13) and (14), we have 
the MNA equations in frequency domain. 
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 ( ) ( )T
VY s L V s=  (16) 

where )(),( sIsV b  and )(sU are Laplace transforms of 
)(),( tItV b  and )(tU , respectively. Obviously, this is also a 

first-order system, in terms of s. 
In most applications, the auxiliary currents are generally 
intermediate variables. Therefore, we may eliminate )(sIb  
from (15). From the lower part of the above frequency 
domain equation (15), it can be obtained that 

 1( ) ( )T
b SI s SE V s

s
=  (17) 

Substituting (17) into the upper part of (15), we have the 
formula (18), which is a second-order formulation 
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equivalent to (15), except for the elimination of the 
auxiliary branch currents. Therefore, RCS circuit can be 
viewed as a second-order system 

 )()(1 sUBsV
s

GsC u=





 Γ++  (18) 

where T
S SE SEΓ = , and the matrices C, G and Г are all 

symmetry positive semi-definite.  
B.  Block SAPOR  
Similar to the output to input transfer function H(s) in (7), 
we define node voltage variables ( )V s   to input variables 
( )U s  transfer function ( )VH s  in the following.  

( ) ( ) ( )VV s H s U s=       (19) 
The entry in the jth row, kth column of ( )VH s  is the 
response of jth voltage variable under the excitation of the 
kth source. 
According to (18), we have 

( )2 ( )V us C sG H s sB+ +Γ =      (20) 
Shift (20) with σ+= 0ss , we have 

( )2
0 1( )VC D K H B Bσ σ σ σ+ + = +     (21) 

where GCsD += 02 , Γ++= GsCsK 0
2
0 , uBsB 00 = , and 

uBB =1 . 

Apply Taylor expansion to ( )VH σ in (21), we have 
( ) ( )2

0 1 0 1
i

V V ViC D K H H H B Bσ σ σ σ σ+ + + + + = + (22) 

where 
0 1,, , ,V V ViH H H are defined as the block 

moments of 
VH . In circuit terms, the entry in the jth row, 

kth column of 
ViH  is the ith moments of the jth voltage 

variable under the excitation of the kth source . By 
comparing the left side and the right side of the above 
equation, we may have the following recurrence relation. 

1
0 0VH K B−=       1 1

1 0 1V VH K DH K B− −= − +  
1 1

1 2Vi Vi ViH K DH K CH− −
− −= − −   for 2i ≥    (23) 

Numerical instability will occur if we use the above 
recurrence to explicitly calculate the block moments of 

VH . 
Instead, a Krylov subspace based technique is more desired 
to obtain an orthonormal basis of the block moment space 
of ( )VH s . In [10], a second-order Arnoldi method (SOAR) 
was proposed for the quadratic eigenvalue problem. The 
SOAR method is generalized and a Second-order Arnoldi 
method for Passive Order Reduction (SAPOR) of SISO 
RCS circuits is introduced in [11]. SAPOR is passivity 
guaranteed [11] and numerical experiments show the 
numerical stability of SAPOR. In the following, we will 
extend SAPOR to block SAPOR for MIMO RCS circuits. 

B-1.  System Linearization 

Introduce a new matrix ( )ZH σ  satisfying 
 1( ) ( )V ZCH H Bσ σ σ+ =  (24) 
Substituting (24 ) into (21), we may have 
 ( ) ( ) ( ) 0Z V VH DH KH Bσ σ σ σ σ− + + =  (25) 
Combining (24) and (25), we get 

 ( ) ( )
( )

0

0

 V

Z

QH
I A

PH
σ

σ
σ

   
− =   

  
 (26) 

where 








−
−

=
−−

0

11

C
KDK

A , 0
1

0 BKQ −=  and 10 BP = .  

By moving ( )AI σ−  to the RHS of (26) and performing a 
Maclaurin series expansion, we have: 

  ( ) 02 2 3 3

0

( )
( )

V

Z

QH
I A A A

PH
σ

σ σ σ
σ

  
= + + + +   

   
      (27) 

Here, 0

0

i Q
A

P
 
 
 

 is the i-th block moment of ( )
( )

V

Z

H
H

σ
σ

 
 
 

, and 

[ ] 0

0

0 i Q
I A

P
 
 
 

 must be equal to the i-th block moment of 

( )VH σ . Moreover, 
0Q  and 

0P  are actually the zeroth 
block moments of 

VH  and 
ZH , respectively.  

B-2.  Orthonormalization Process 

To generate an orthonormal basis of the block second-order 
Krylov subspace spanned by the block moments of 

VH , we 
propose the block SOAR procedure. Block SOAR is the 
block extension of SOAR [11], similar to the Block Arnoldi 
being an extension of Arnoldi.  

The Block SOAR algorithm is summarized in Figure 1. In 
order to generate an orthonormal basis Q of the block 
moment space of 

VH , we need to match the first k block 
moments of 

VH . Therefore, k iterations are involved in 

Algorithm: Block SOAR 
Input: A, Q0, P0 and integer orders n, p 
Output: the orthonormal matrix Q  
1. nk

p
=  

2. 01

01

QQ
SOrth

PP
   

=    
    

   

3. For 1,  2,  ,  1i k= −  

4.   
^

1
^

1

i i

i
i

Q Q
A

PP

+

+

     =      

 

5.       For 1,  2,  ,  j i=  

6.         
^

1
T

ji j iH Q Q +=  

7.    
^ ^

1 1
^ ^

1 1

ji i
ji

j
i i

QQ Q
H

PP P

+ +

+ +

        = −          

 

8.       End 

9.       
^

1 1
^

1
1

i i

i
i

Q Q
SOrth

P P

+ +

+
+

      =         

 

10.  End 
11. [ ]1 kQ Q Q=  

Figure 1.    Block SOAR algorithm 
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block SOAR procedure. In each iteration, a new i

i

Q
P
 
 
 

 is 

generated. Since a number of p basis vectors are included in 

each i

i

Q
P
 
 
 

, we need an extra orthonormalization procedure 

to realize the orthogonalization of these p basis vectors at 
the end of each iteration.  We use Gram-Schmidt algorithm 
to realize the orthonormalization, which is called SOrth 
(Second-order Orthonormalization) procedure, as shown in 
Figure 2.  
Once the orthonormal basis Q is obtained, we perform an 
orthogonal projection on the original second-order system 
(18) using Q, and obtain a reduced-order system of the 
same form. 

 )(~)(~~1~~ sUBsV
s

GCs u=





 Γ++  (28) 

 ( ) ( )
T

VY s L V s=  (29) 
where CQQC T=

~ , GQQG T=
~ , QQTΓ=Γ~ , VQV T=~ , 

u
T

u BQB =~  and 
V

T
V LQL =

~
. 

Since the matrices C, G and Г in (18) are all symmetry 
positive semi-definite, it is proven in [9] that the orthogonal 
projection preserves the passivity of the original system. 
Similarly, we conclude that the reduced-order system in (28) 

has guaranteed passivity. 

B-3. Summary of Block SAPOR 

Our novel technique Block SAPOR (Second-Order Arnoldi 
based Passive Order Reduction) can be outlined as follows: 
1) Formulating the RCS circuit as the second-order 

system in (18) and (16). 
2) Shifting (18) with σ+= 0ss  and obtain (21) and 

(26). 
3) Using the block SOAR algorithm in Figure 1 and 

Sorth algorithm in Figure 2 to construct the 
orthonormal matrix Q. 

4) Performing an orthogonal projection on the original 
system and obtain the reduced-order system as in (28) 
and (29). 

In the following, we provide some theorems for Block 
SAPOR. For SISO cases, similar theorems have been 
proven in [12], and we can easily extend them to MIMO 
cases. Due to the limited space, the proofs for these 
theorems are omitted here. 
Theorem 1:  Under the assumption of no deflation and 
breakdown, the vectors 

1 1, , kQ Q Q  generated in Block 
SOAR algorithm form an orthonormal basis of the block 
moment space of 

VH . 
Theorem 2: If we use the matrix Q obtained by the Block 
SOAR algorithm to perform a projection on the system (18) 
and obtain the projected system (28), the reduced-order 
system (28) will match n

p
 
  

 block moments of the output 

to input transfer function matrix of the original system (18). 
Theorem 3: If 

V uL B=  in the original system (13) and (14), 
the first 2 n

p
 
  

 block moments of the ouput to input 

transfer function matrix of the original system are matched 
in the reduced system by Block SAPOR. 

IV. COMPARISON BETWEEN BLOCK 
SAPOR AND PRIMA 

In this section, we compare the Block SAPOR algorithm 
with PRIMA in the following aspects. 
A. Structure Preservation  
In PRIMA, the original system matrices 

X XC and G  have 
the block structure in (3), where C, G and H present the 
contribution of capacitances, resistances and inductances. 
After order reduction, the reduced system matrices 

X XC and G  become dense, and no longer preserve the 
block structure of the original 

X XC and G  in (3). Therefore, 
it is impossible to reconstruct an equivalent RLC circuit of 
n-th order reduced system. 
However, Block SAPOR can preserve the structure of the 
orginal system. As formulated in (15), the original system 
with order of N M+ can also be formulated as (30) by 
introducing a new variable vector I  satisfying 

S bI E I= . 
( )0 ( )

0 0 0( )
u

V sG I C B U s
s

I I s

       
+ =       −Γ        

      (30) 

Using Block SAPOR, we obtain the reduced system (28) 

Algorithm: SOrth 
Input: 

^^
, mm PQ , p 
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8.     End 
9.   

iii qR =  

10.     If 0≅iiR , stop (deflation) 

11.   

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


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12.     End 
13. End  
14. [ ]pm qqqQ 21=  [ ]pm pppP 21=  

Figure 2.  SOrth Procedure 
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with order of n. By defining a new variable vector TI Q I= , 
the reduced system (28) can be reformulated in (31). 

( )0 ( )
0 00 ( )

uG I V sC B U ss
I I s

       
 + =       −Γ          

    (31) 

Obviously, the above reduced-order system (31) exactly 
preserves the structure of the original system (30).  
Based on the advantage of structure preservation, we can 
easily reconstruct an equivalent RCS circuits of n-th order 
to substitute the original large one of N M+ order, which 
may benefit the future simulation procedures. 
We recall the reduced system (28), which is equivalent to 
(31), to clarify the basic idea of the equivalent circuit 
reconstruction. The equation (28) can be viewed as an 
expression of Kirchhoff Current Law, where the left hand 
part denotes the current contribution from the capacitances, 
resistances and susceptances in the equivalent circuit, and 
the right hand part denotesthe contribution of the current 
sources. For each node of the total n nodes in the equivalent 
circuit, we can easily acquire the capacitances, resistances, 
susceptances and current sources ,which are connected to 
the node,from the matrices , , uC G and BΓ , respectively.  
B.  Superior Efficiency 

In PRIMA, the n-th order reduced system can be obtained 
in (32) by projecting the original system using an n 
dimensional projection subspace spanned by the columns of 
matrix W of ( )N M n+ ×ℜ .  

( ) ( ) ( )T T T
X XW sC G WW X s W BU s+ =    (32) 

Similarly, in Block SAPOR, the reduced second-order 
system (28) with order of n is equivalent to a first-order 
system (33) with order of n+M. 

( )0 00 0
0 ( )0 00 0

( )0
(33)

00

T T
S

T
S b

T
u

G E V sC QQ Q
s

SE I sI II I
B U sQ

I

          
+         −           
   

=    
  

 

Equation (33) indicates that the reduced system by Block 
SAPOR is a projection of the original system in (15) by the 

projection matrix 0
0
Q

I
 
 
 

 of ( ) ( )N M n M+ × +ℜ  

Theorem 4 The n dimensional subspace spanned by the 
columns of W in (32) is included in the n+M dimensional 

subspace spanned by the columns of 0
0
Q

I
 
 
 

 in (33). 

Theorem 4 can be readily proved. From it, we can see that 
the projection subspace in Block SAPOR is larger than the 
one in PRIMA. As a result, Block SAPOR surely provides 
better accuracy than PRIMA for the same reduction order. 
Furthermore, as described in theorem 3, when applied to 
those circuits where

V uL B= , Block SAPOR can always 
ensure matching 2k block moments of the system transfer 
function matrix and guarantee passivity simultaneously. 
However, PRIMA cannot ensure these two properties at the 
same time [6], i.e. if passivity is guaranteed, only k block 
moments can be matched, comparatively, if we prefer 2k 

block moment matching, the passivity can no longer be 
preserved. Consequently, Block SAPOR can provide more 
prominent superiority to PRIMA in terms of accuracy and 
passivity. 
C.    Lower Cost in Time and in Memory 
In PRIMA, RLC model is used, which results in the 
first-order system in (4) and (5). The introduction of extra 
current variables makes the system matrices are 
non-positive definite, which limits many efficient numerical 
techniques to be applied to MOR procedure. Comparatively, 
we use the RCS model instead of RLC model in Block 
SAPOR. The elimination of the intermediate current 
variables makes the matrices in the resulted second-order 
system (18) all symmetric positive definite and sparse. 
These merits of system matrices benefit time complexity in 
MOR computation. For example, a sparse Cholesky 
factorization of K can be employed to the matrix-vector 
multiplication involving 1−K .  
To reduce memory consumption, it is possible to derive a 
memory saving version of Block SAPOR, which will save 
almost half memory usage comparing with PRIMA. The 
basic idea is similar to the SOAR procedure with memory 
saving introduced in [10], and we don’t expand it here due 
to the limited length of this paper.   

V. NUMERICAL EXPERIMENTS 
In this section, we present numerical experiments to 
demonstrate the efficiency of the proposed Block SAPOR 
method. We will compare Block SAPOR with PRIMA. 
Both methods are implemented in MATLAB.  
A.  Example I with uV BL ≠  

The first example is a 16-bit bus line circuit. Here the 
circuit is driven by 16 current sources at the near ends and 
observed at the output voltages at the far ends, which means 

uV BL ≠  in the corresponding MNA equations. The order of 
the circuit is 1746, including 1170 nodal voltages and 576 
auxiliary currents. 
For simplicity, we use the first element in transfer function 
matrix, which denotes the impulse response of the far end 
of the first line when only the source of the first line is 
active, as a criteria for judging the reduction accuracy. In 
Figure 3 (a), we plot the frequency response errors of Block 
SAPOR with three different reduced orders, i.e. 240,320 
and 400. It can be seen that the reduced errors become 
smaller as the reduced order goes higher. 
For comparison, we perform PRIMA to the same circuit. 
The comparisons of the frequency response errors by 
PRIMA and Block SAPOR are plotted in figure 3 (b,c,d), 
with the same reduced order 240, 320 and 400, respectively. 
We can see that Block SAPOR obtains better accuracy in a 
wider frequency range than PRIMA, which is owing to its 
larger projection space.  
We also compare the run time between PRIMA and Block 
SAPOR in Table 1. The first part lists the time used for 
obtaining the reduced system. It is clear that the reduction 
time by Block SAPOR is much less than that by PRIMA. 
The second part of the table lists the total time, which 
includes the reduction time and the time for calculating the 
frequency responses of the reduced system. It can be seen 
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that the total time speedup by Block SAPOR compared to 
PRIMA is not so significant as the reduction time speedup. 
This is because when calculating the reduced system by 
Block SAPOR, we didn’t apply any special numerical 
technique. By taking advantage of the symmetry and 
positive definition properties in (28), simulation time for 
solving the reduced system by Block SAPOR can be further 
reduced.  
B.  Example II with 

V uL B=  
In the second example, the same 16-bit bus line circuit is 

excited by 16 current sources at the near ends and the 16 
voltage outputs at the same ends are observed. In this 
testing, we have 

V uL B=  in the corresponding MNA 
equations.  
In Figure 4(a), we plot the frequency response errors of 
Block SAPOR with three different reduced orders, i.e. 240, 
320 and 400. The comparisons of the frequency response 
errors by PRIMA and Block SAPOR are plotted in figure 4 
(b-d), with the same reduced order 240, 320 and 400, 
respectively. We can see that when 

V uL B= , Block SAPOR 
is even more accurate than PRIMA comparing with the case 
of uV BL ≠ . The run time for example II is similar to 
example I. 

VI CONCLUSION 
In this paper, we presented Block SAPOR algorithm for the 
model order reduction of MIMO RCS interconnect circuits. 
The novel technique can guarantee passivity and present 
higher accuracy than the well known PRIMA. Moreover, 
the reduced system matrices can preserve the structure of 
the original system matrices such that equivelent circuit can 
be developped for the reduced system. 
Reference: 
[1] D. Ling and A. Ruehli, Circuit Analysis, Simulation and 
Design – Advances in CAD for VLSI. Vol. 3, Part II, Chap. 11, 
Elsevier Science Publisher, 1987.   
[2] A. Devgan, H. Ji and W. Dai, How to Efficiently Capture 
On-Chip Inductance Effects: Introducing a New Circuit Element K. 
Proc. of IEEE/ACM ICCAD 2000, pp. 150–155, 2000. 
[3] H. Zheng, B. Krauter, M. Beattie and L. Pileggi, 
Window-Based Susceptance Models for Large-Scale RLC Circuit 
Analyses. Proc. of IEEE/ACM DATE 2002, pp. 628–633, 2002. 
[4] H. Zheng and L. Pileggi, Robust and Passive Model Order 
Reduction for Circuits Containing Susceptance Elements. Proc. of 
IEEE/ACM ICCAD 2002, pp. 761–766, 2002. 
[5] A. Odabasioglu, M. Celik and L. Pileggi, PRIMA: Passive 
Reduced-Order Interconnect Macromodeling Algorithm. IEEE 
Trans. on CAD of Integrated Circuits and Systems, vol. 17, no. 8, 
pp. 645–654, Aug. 1998. 
[6] R. W. Freund, Reduced-Order Modeling Techniques Based 
on Krylov Subspaces and Their Use in Circuit Simulation. 
Numerical Analysis Manuscript, No. 98-3-02, Bell Laboratories, 
Feb. 1998. 
[7] L. Pillage, and R. A. Rohrer, Asymptotic Waveform Evaluation 
for Timing Analysis. IEEE Trans. on CAD of Integrated Circuits and 
Systems, Vol. 9, No. 4, pp. 352–366, Apr. 1990. 
[8] L. M. Silveira, M. Kamon, I. M. Elfadel, and J. White. 
Coordinate-transformed Arnoldi for generating guaranteed stable 
reduced-order models for RLC circuits.Proc. Of ICCAD'96, pages 
288-294, San Jose, CA, November 1996. 
[9] B. N. Sheehan, ENOR: Model Order Reduction of RLC 
Circuits Using Nodal Equations for Efficient Factorization. Proc. 
of IEEE/ACM DAC ’99, pp. 17–21, 1999. 
[10] Z. Bai and Y. –F. Su, SOAR: A Second-Order Arnoldi 
Method for the Solution of the Quadratic Eigenvalue Problem. 
Computer Science Technical Report, CSE-2003-21, University of 
California, Davis, 2003. To appear in SIAM J. Matrix Anal. Appl. 
[11] Y. –F. Su,  J, Wang, X, Zeng, Z Bai, Charles Chiang and D. 
Zhou, SAPOR: Second-Order Arnoldi Method for Passive Order 
Reduction of RCS Circuits. Proc. of IEEE/ACM ICCAD 
2004. 
[12] Z. Bai and Y. –F. Su, Dimension Reduction of Second-Order 
Dynamical Systems via a Second-Order Arnoldi Method. 
Computer Science Technical Report, CSE-2004-1, University of 
California, Davis, 2003. To appear in SIAM J. Sci. Comp. 

 
( a )       ( b ) 

 
( c )       ( d ) 

Figure 3. Comparison of frequency response errors in 
example I. (a) Block SAPOR with three different reduced 
order; (b,c,d) PRIMA and Block SAPOR with the same 
reduced-order, 240, 320 and 400, respectively 

Table 1 Comparisons of run time in example I 
Reduction time (s) Total time (s)  

Reduced 
order PRIMA Block 

SAPOR PRIMA Block 
SAPOR 

240 21.141 5.265 22.688 11.172 
320 24.562 7.422 27.609 20.079 
400 29.235 9.812 34.407 32.406 

 
( a )        ( b )  

 
( c )      ( d ) 

Figure 4. Comparison of frequency response errors in 
example II. (a) Block SAPOR with three different reduced 
order; (b,c,d) PRIMA and Block SAPOR with the same 
reduced-order, 240, 320 and 400, respectively 
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