SIAM J. MATRIX ANAL. APPL. (© 2010 Society for Industrial and Applied Mathematics
Vol. 31, No. 4, pp. 1642-1662

THE LANCZOS METHOD FOR PARAMETERIZED SYMMETRIC
LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES*
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Abstract. The solution of linear systems with a parameter is an important problem in en-
gineering applications, including structural dynamics, acoustics, and electronic circuit simulations,
and in related model order reduction methods such as Padé via Lanczos. In this paper, we present a
Lanczos-based method for solving parameterized symmetric linear systems with multiple right-hand
sides. We show that for this class of applications, a simple deflation method can be used.
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1. Introduction. In engineering applications including structural dynamics and
acoustics, the computation of the frequency response function of a vibrating system
over a given frequency range = [Wmin, Wmax] €an be a time-consuming operation.
In applications on closed domains without damping, the frequency response function
often is the solution of the parameterized linear system

(1.1) Ar=f with A=K —w’M,

where K and M are large and sparse real symmetric matrices, and M is symmetric
positive definite. We have chosen w to be the frequency, but it could also be the an-
gular frequency, the wave number, or the characteristic (dimensionless) wave number.
The frequency range ( is discretized into the set {w1,ws,...,wm,} where m can be
of the order 100 or 1000. This solution process is called frequency sweeping. Since A
is large, the solution of (1.1) is expensive when it is solved for the frequency points
W = wi,ws,...,wn, independently. In this paper, we study frequency sweeping with
multiple right-hand sides; i.e., f can take different values fi, fa,..., fs in (1.1).

A number of solution methods to this parameterized linear system have been pro-
posed in the literature. The most famous approach in engineering is undoubtedly the
modal superposition method. References can be found in textbooks on engineering,
e.g., [10]. The method projects the right-hand sides and solution vectors on a basis
of eigenvectors of the underlying eigenvalue problem

(1.2) Ku= AMu,

where A € [Amin, Amax], With Amin < w2, and Apayx > w?2 This method is usually

min max"*

experienced as efficient when the eigenvectors and eigenvalues are available, since (1.1)
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SHIFTED SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES 1643

is transformed into a diagonal linear system. The practical problem is that it is not
always clear how to choose Apnin and Apax. For example, when wy;, = 0, we could
use Apin = 0 and Apax = nwfnax with 7 € [2,10]. The eigenvalues and eigenvectors of
(1.2) are in practice computed by the (block) Lanczos method; see, e.g., [17] or the
automated multilevel substructuring (AMLS) method [6, 5, 7] which is advocated for
very large scale problems.

Another technique that received quite some attention is the parameterized Lanczos

method. It is an iterative method for the preconditioned system
(1.3) (K —oM) 'Az = (K —oM)"'f .

The solution vector x appears to be a truncated vector Padé series with interpolation
point o [13, 2, 3]. See also [30, 22] in the context of parameterized iterative linear
system solvers and [23] for Rayleigh damping. This method is related to the Lanczos
eigenvalue solver and the conjugate gradient method. The limitation of the method
is that the right-hand side vector f should not have a spatial dependency on w;
ie, f = fé(w) where f does not depend on w and ¢ is a scalar function. In the
engineering literature, this is called the Ritz vector technique [33]. The connection
between the Lanczos method and a vector Padé series is important in applications,
since the frequency response function is a rational function with the eigenvalues as
poles. The approximation preferably respects this rational nature. This is one reason
why the Lanczos method is preferred to the minimal residual (MINRES) method [22].

In contrast to the Lanczos method, the modal superposition method does not
pose a condition on the right-hand side. The difficulty with the modal superposition
method is that a relatively large number of eigenvectors may be required with a rel-
atively high precision. In [5, 19], the AMLS frequency sweeping method is studied
which makes a combination of modal superposition and a stationary iterative method.
The method uses only the modes corresponding to the frequency range of interest;
i.e., eigenvalues outside this interval are not used. Superposition on this reduced set of
eigenvectors does produce the peaks in the frequency response function, but the zeros
are wrong. Therefore, the AMLS frequency sweeping method uses an iterative method
to improve the solution obtained by superposition on a reduced modal basis. The iter-
ative method uses the eigenbasis as a preconditioner. Such preconditioner is also called
deflation preconditioning and is related to augmented Krylov subspace methods [28].
It can be viewed as an iterative method on the subspace orthogonal to the given eigen-
vectors. Since the eigenvalues play an important role in the convergence of iterative
methods, eliminating the eigenvalues that hinder convergence can be effective indeed.

The use of deflation preconditioning and recycling Ritz vectors is not new in the
context of iterative linear system solvers [8, 28, 26, 32, 31]. In [28], a sequence of
linear systems { Az = fi for k =1,2,...} is solved. The Ritz vectors of A, computed
by the conjugate gradient method for solving the first system, are used in a deflation
preconditioner for the second. In the Init-CG method, the recycled Ritz vectors are
only deflated from the right-hand side; i.e., no deflation preconditioner is used. See
[15] for an overview of methods. Recycling subspaces for linear systems with a pa-
rameter was recently introduced in [18,; 11]. In both papers, the Ritz vectors for the
solution of the first right-hand side are recycled for preconditioning the systems with
the remaining right-hand sides. In [18], the generalized conjugate residual orthogo-
nal (GCRO) method was extended to linear systems with a parameter. The authors
prefer the situation where eigenvectors are recycled (or Ritz vectors with small resid-
ual norm), since this simplifies the method. In [11], recycling was proposed for the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1644 KARL MEERBERGEN AND ZHAOJUN BAI

generalized minimal residual (GMRES) method. The residual vectors for the addi-
tional right-hand sides are not parallel to the GMRES residual vector, which creates
difficulties for recycling. A remedy was proposed for this problem.

There are important differences with this paper and the cited work. We assume
it is allowed to factor a large sparse matrix. This is a reasonable assumption in
vibration problems, since direct methods are commonly used in the mechanical and
civil engineering communities. For improving AMLS frequency sweeping, diagonal
linear systems are solved. Another difference with the cited work is that the number
of iterations is typically low for frequency sweeping, i.e., typically less than a hundred.

Suppose that for a given right-hand side the preconditioned residual norms of
(1.3) are small; i.e., the solutions are accurate for w € . The key observation in the
current paper is that the recycled Ritz vectors then have small residual norms, which
allows for efficient deflation and recycling.

Our contributions can be summarized as follows. First, we show that the parame-
terized Lanczos method converges quickly when Ritz vectors are recycled. This allows
us to propose a simple algorithm. Second, we show that the residual norms of the
Ritz pairs associated with the interval Q? = [w2. w2 ] computed by the Lanczos
method are small. Third, we show a connection with the Padé via Lanczos method
[13, 2, 3] for the model order reduction problem. If the deflated Ritz pairs have zero
residual norms, we have an exact vector Padé approximation.

The paper is organized as follows. In section 2, we introduce a numerical method
that applies the parameterized Lanczos method to the deflated right-hand side (as in
Init-CG). In section 3, we perform a spectral analysis and we show spectral properties
of the deflated linear system. In section 4, we discuss how Ritz pairs can be computed
using the Lanczos method and how accurate they are. Section 5 presents a practical
procedure for solving (1.1) with multiple right-hand sides recycling Ritz vectors from
the first right-hand side. Section 6 shows numerical examples for applications from
structural engineering acoustics and one academic example with multiple eigenvalues,
which shows slower convergence. We close the paper with concluding remarks.

We summarize the used notation. The interval of w’s for which = needs to be
computed is denoted by Q = [Wmin, Wmax]- In our applications, wmin, > 0. We have
also defined 0% = [w2. w2 ]. The transpose is denoted by 7. The M norm ||z

min’ *max

is defined as the induced norm from the M inner product: Va7 Mzx.

2. Deflation in parameterized linear systems. In this section, we explain
the ideas of deflation for solving (1.1). We start from the viewpoint of rational ap-
proximation, since x is a rational function in w?. Then, we discuss deflation of a part
of the spectrum. This leads to a linear system which will be solved iteratively.

2.1. Rational function splitting. Let
(2.1) KU = MUA

be an eigendecomposition of (1.2), where A is a diagonal matrix with diagonal elements
Aj, i =1,...,n, and UTMU = I. By (2.1), we have that M = U-TU~! and
K = U-TAU~!. Therefore, the solution z of (1.1) can be written as

(2.2) T = U(A—wQI)_lUTf=Zujﬁ,
j=1

where u; is the jth column of U. The vector  is a rational function with the eigenvalues
of (1.2) as poles. As a function of w?, x has a vertical asymptote for each \; € 2.
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The idea in [5, 19] is to first compute the eigenvalues in Q2 and then compute the
solution vector x as the sum

v =2 4 2@

where
p T n T
1) _ uj f 2) _ uj f
x()_Zuj/\j_wQ and x()_z uj/\j—LUQ’
Jj=1 Jj=p+1
where i, A2, ..., )\, are the eigenvalues of (1.2) in Q2. The first term z(!) is then

computed straightforwardly as a sum, whereas the second term z(?) is computed by
an iterative process.

2.2. Deflated linear system. We first introduce the following notation. Let
the columns of U, = [u1,... ,up] € R™? Dbe a selection of eigenvectors of (1.2).
We denote by L, = {A1,..., A} the set of associated eigenvalues. Define A,
diag([A1,. .., Ap]). Recall that KU, = MUyA, and U MU, = I. Define the Shlft—
and-invert matrix K, 1M with K, = K — UM Then

K;'MU,=U,0, with ©,=(A,—al)"".
O, is a diagonal matrix with §; = (A\; — ) ! on the main diagonal. We will also use
the Cayley transform, K; 1A = (K —oM) (K — w?M), and we have
K;YAU, = Uy(A, — o) 1Ay — w?I) = Upy(I — (w? — 0)0,) .
Let us now return to the solution of (1.1). We first precondition with K !:
(2.3) K;'Avr =b with b=K,'f.

As we shall see in section 2.3, this preconditioning is required for using the parame-
terized Lanczos method.

Let P = UpUgM be the M-orthogonal projector onto the subspace U, =
range(U,). Correspondingly, P, = I — UPUEM is an M orthogonal projector onto
Uy, the M-orthogonal complement of U,,.

First assume that Pb = b; i.e., b lies in the range of U,. The solution of (2.3) is
then

2V = AT K, U, UL Mb = Uy (I — (w* — 0)0,) " UL Mb
uT Mb

z:ujl w2—0)6‘

We can prove that

P T
QN o uj f
X —4 uj)\j—a'.

J=1

For general b, we use (1) as an initial guess for an iterative procedure for solving (2.3).
So, the problem now is to find #(?) so that z = (V) 4+ 2(?) with (2 the solution of

K, A 4+ 2) = b,
K;'Az® = b — K71 Az,
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1646 KARL MEERBERGEN AND ZHAOJUN BAI

and with K;'Az(!) = Pb, we have
(2.4) K;'Az® =b—Pb=P,b.

In [19], a stationary iterative solver was used for each value of w for which z is
computed. Experiments showed that only a few iterations (less than 10) for each w;
are usually sufficient for convergence, where z(2) (wj—1) is used as the starting vector
for computing 2(?)(w;). The explanation relies on the fact that z(?) does not have
vertical asymptotes in Q2 and that 2(?) is a much smoother function than (). When
the number of w’s is a few hundred, the total cost is still significant. Instead of a
stationary solver, we can use the parameterized Lanczos method [22] since P, b is
independent of w. This reduces the cost even more since = is computed for all w’s at
once with a marginal additional cost per w. We will discuss this in sections 2.3 and
2.4.

2.3. Lanczos method. In this section, we present the parameterized Lanczos
method for the solution of (1.1), first without deflation and then with deflation. The
method starts with the spectral transformation Lanczos procedure using M orthogo-
nalization [20, 21, 12].

ALGORITHM 2.1 (Lanczos procedure).

1. Let vy = 0 and set By = 0.

2. Solve K,b = f for b.

3. Let v = b/”b”M

4. For j=1,2,...,k do:

4.1. Solve K,w; = Mwv; for w;.

4.2. Compute W; = w; — vj_15;—1.

4.3. Compute a; = UfM@j.

4.4. Compute w; = W; — vjq;.

4.5. Let ﬁj = ||1T)J||M and Vj4+1 = {LVJJ/ﬁJ

The computation of w; in step 4.1 requires a linear system solve with K,. In
frequency response function computations in structural dynamics usually a direct
solver is used. Alternatively, the AMLS method leads to a diagonal K, .

Define the tridiagonal matrix

ar f
T, = B
Br—1
Br—1
and Vi = [v1,...,vx]. The following equations readily follow from Algorithm 2.1:
(2.5) K;'"MVy, = ViTx + ves1Beeq

VI MVip =1 .

Equation (2.5) is called the Lanczos recurrence relation.

The parameterized Lanczos method for the solution of (1.1) was first proposed
in papers on model order reduction by the Padé via Lanczos method [13, 2, 3] and
later studied in the context of frequency response computation by the shifted Lanczos
method [14, 29, 30, 22]. This method solves the preconditioned system (2.3). This
preconditioner is needed to be able to use the same Krylov space for all values of w,
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as we now explain. From (2.5), it follows that, for all w,
K YK — > M)V;, = Vi (I — (W? — 0)Tk) — (w? — 0)vpy1Brer

with Vi and T}, satisfying (2.5). This is the Lanczos recurrence relation for K, A for
solving (2.3) by the Lanczos method (or CG). An approximate solution Z of (1.1) is
given by

(2.6) T = Viz,
where z is the solution of the linear system
(I = (W = 0)Ti)z = ex[b]lar -

This requires the solution of a k x k tridiagonal linear system. If k is small, its cost
is low. The preconditioned residual is
r=K;'(f - (K —w’M)T) = (w? — 0)vpy10ket 2 .

We assume that the Lanczos method is able to compute z with a small residual norm
for w € Q. If not, a larger value of k could be used. An alternative is to split € in
smaller intervals and to perform a separate Lanczos run with a new o for each interval
as for the eigenvalue problem [17]. This is outside the scope of this paper. Therefore,
we assume that ||7(w)||ar is “small” for all w € €.

Note that the vectors Vi need not be stored if x is updated in each Lanczos
iteration. Often, only a few elements of x are wanted, and so we only need to store
the desired elements of ¥ for all wanted w’s. In finite precision arithmetic, the columns
of Vi lose orthogonality. Reorthogonalization can be used to restore the orthogonality
although, strictly speaking, this is not required for convergence. Reorthogonalization,
however, may produce a smaller residual norm: See, e.g., the numerical examples
in [22].

2.4. Deflation with inexact eigenvectors. In exact arithmetic, Z/{pl is an
invariant subspace of K;*M. With P, b € Z/{pL, the Lanczos method applied to K 1M
with starting vector P, b produces Vi whose columns are in Z/{If-. Therefore, the
convergence is determined only by the eigenvalues of K ;! A associated with L{;-. As
we shall see in section 3.1, these eigenvalues are favorable for fast convergence.

In practical computations, the eigenpairs are not available to full accuracy. Al-
ternatively, if we do not need accurate eigenvalue estimates, we may save compu-
tation time in the eigenvalue computation. Define U, = [44,...,1p] and ©, =
diag([él, .. .,ép]), with (éj,aj) for j = 1,...,p approximate eigenpairs of K, 1M.
We assume that UEMUP — I. We introduce the projectors P = ﬁpﬁgM and
P =1-U,U"'M.

Define the residual of the approximate eigenpairs by

(2.7) R,=K;'MU,—-U,0, .

2.4.1. Deflated right-hand side Lanczos (DRHSL). The Init-CG method
[9, 28, 15, 31] is an iterative method that uses inexact eigenvectors as a preconditioner.
Let us first compute

# =02 with 20 = (I - ( — 0)8,) " T Mb
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1648 KARL MEERBERGEN AND ZHAOJUN BAI

as the solution of K;'AZ(®) = Pb, From (2.7), we deduce that
K ATy = Up(I = (@* = 0)8y) — (&% — o) Ry,
Pb— K;'Az™ = (W% — 0)R,z) .
Then, compute T = () + 72 where ) is the solution of
K714:® = b — K71 Az
So,
K;'AZ® = P b+ (Pb— K;'AzW)
(2.8) =Pib+ (w®— o)R, 2 .

The difficulty is that the parameterized Lanczos method cannot be used since the
right-hand side in (2.8) depends on w. However, if R,z(!) is small, we can omit the
second term in (2.8) and work with P, b as for exact deflation.

So, we solve the preconditioned equation with deflated right-hand side:

K;'Az® = P b
by the parameterized Lanczos procedure. We have the recurrence relation
Ka_lMVk = W1y + ﬁkvkﬂeg,

where Vj, is not necessarily orthogonal to ﬁp. An approximate solution Z to (1.1)
takes the form

= ﬁpz(l) + V3z®
with
2@ = (I — (w? —0)Tk) ter || Prblas -
The residual for this solution takes the form
(2.9) r=K;1f - AT) = (w? — 0)RpzM + (w? — 0)vps1 Bret 2,

where the second term can be made arbitrarily small by increasing k. The first term
is small only if R, is small enough. We will comment on this in sections 3.3 and 4.

The Proj-CG method [15] is a variation on the Init-CG method, where the Lanczos
method is applied to p ' K;'A. We have the same difficulty as with the Init-CG
method; i.e., the right-hand side depends on w.

2.4.2. Deflated Matrix Lanczos (DML). A practical problem with DRHSL
is that in finite precision arithmetic, the components in the deflated eigenvectors can
grow in the Lanczos method due to rounding errors. It is therefore usually wise to
explicitly orthogonalize. The Lanczos method is now applied to the deflated matrix

P K;'MP, .
We then have the recurrence relation

(PLK;'MP Vi, = Vi Ty, + Brvrsrer,
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SHIFTED SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES 1649
where P V. = V.. We thus obtain
(I - U,UF M)K,; ' MVy, = ViTy + Brosel,

which we can rewrite as

(2.10) K; "MV, = ViTy + U,C + Brvpsrel
with ¢ = UTMK;'MV;. From (2.7), we have that UTMK;' = RT + 6,07

Together with U MV;, = 0, we derive that C' = RT MV
We compute the solution by projecting (2.3) on the space spanned by the Krylov
vectors and the Ritz vectors [18], i.e., compute z from

(2.11) @, Vk}TMKglA [0, ] = = [ %;%2 } .

If we use the spectral transformation Lanczos method as eigenvalue solver, with shift
o, we have that UTMU =1, @ UTMK 1MUp, and U MR, = 0. As a result,
(2.11) can be ertten as

o [Trlsse e Tl ][ G ).

It is easy to see that the residual is

=K Nf = Ay +Vie®))
(2.13) = (W? —o)(I — ViViIM)R,zW + (w? — 0)Brvgsret 2

There is no guarantee that it is small unless || R,z || is small. We will discuss this
in section 4.

Since we expect || R,|| to be small, the off-diagonal blocks in the matrix in (2.12)
can usually be omitted. We then obtain two decoupled equations, one for z(!) and
one for z(2), as for DRHSL.

It should be noted that this method can be quite expensive due to the orthogo-
nalization of V}, against Uy, especially when p is large. Without discussing the details,
the orthogonalization cost has been successfully reduced for eigenvalue computations
by selective reorthogonalization [17] and can be applied in the context of deflated
iterative methods as well [31].

3. Convergence analysis. We analyze the spectral properties in order to un-
derstand the convergence behavior of the iterative process. We also show a connection
with Padé approximation and make a statement about the required accuracy of the
deflated eigenvalues.

3.1. Spectral convergence analysis. The spectrum of B = K14 is

A —w?
3.1 =2 , J=1,...,n.
The spectral condition number of K14 is
mas; {[6;])
min; {|¢;]}
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1650 KARL MEERBERGEN AND ZHAOJUN BAI

When ); is far away from both o and w?, then ¢; is close to one. If ); is close to
w?, |¢;| is small. When ); is close to o, then |¢;| is large. We want to deflate the
eigenvalues that make the condition number large.

LEMMA 3.1. The matriz B defined is self-adjoint with respect to the M inner
product, i.e., T M By = y" M Bx. In addition, if L, contains all eigenvalues of (1.2)
between o and w?, then the matriz B, restricted to Z/{pl, is positive definite.

The convergence rate of the Lanczos method for the positive definite matrix B
(i.e., the conjugate gradients method) is then bounded from above by

()

where « is the condition number of B restricted to Z/{;-; see, e.g., [16, Theorem 3.1.1.].
THEOREM 3.2. Let L, contain all eigenvalues in I, = [min(L,), max(L,)]. Let

Am =max{A: A € L\L,, A <min(L,)},
Ay = min{\: A € L\L,, A > max(L,)},

and

A —w? Jw? =\,
V(W) = :

A — O o — Am
If 0,w? € T, then
ki (B) < max(y(w),y(w) ™) .

If there are no eigenvalues on the left of min(L,), then

_ AM_CLJQ
B /\M—CT

A similar conclusion holds when there are no eigenvalues to the right of max(Ly).
Proof. The condition number of B restricted to L{pL is defined by

MaXdet(B—g1)=0 |F]

KM (B) = .
MINGet(B—¢I)=0,p7#0 |¢|
A —w? A—w?
= max min
MeL\L, | A— 0 |" Xel\L, | A— 0

Figure 3.1 shows the situation where o and w? lie in Z,, = [min(L,), max(L,)]. The
Figure also plots |¢| = |\ — W?|/|X —o|. If 0 < w?, [p(N\)] > 1 for X < N, and
|p(N)] < 1 for A > Apr. The maximum of |¢| outside Z, is attained at A, and the
minimum at Ays. So, k =471 If 0 > w?, [#(A)] < 1 for A < Ay, and |¢(A)| > 1 for
A > Ap. The maximum of |¢| outside Z, is attained at Ay and the minimum at A,,.
So, k = 7. This proves the theorem. ad

Figure 3.1 shows the situation where o and w? lie in Z, = [min(L,), max(L,)].
We see that if w? is somewhere in the middle of the interval Z,,, |\ — w?| and |\ — o]
are both large so that their ratio is almost one, leading to a small x. When w? lies
close to min(LL,,) or max(Ly), then some |¢;| may be small.
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Am  min(Lp)

Fic. 3.1. |¢p(\)| where o and w? lie in Lyp.

Consider as an example, the interval Z, = [0,100] and o = 80. Let the eigenvalues
be \; = 5+ 10j for j = 1,...,n = 1000. Note that Ai,..., A9 lie in Z,. Then for
w? =10,

¢4_imj—5__2j—1
7105 -7 25 —15 "

We find that max;{|¢;|} = 15 and min;{|¢;|} = 1/13, so x = 325. When we restrict
to R\Z,, we have max;{|¢;|} = 19/5 and min;{|¢;|} = 9995/9925 ~ 1, so that x ~ 4.
When L, includes eigenvalues outside 02, A\ and ), move farther away from o,

2. and w2, and 7 gets closer to one.

min’ max’

3.2. Vector Padé connection. As we know from [13, 2, 3, 22|, k steps of the
Lanczos method produce a rational function that matches the first k derivatives of
23 in o. In the case of exact deflation, the solution # = z() + 23 has two terms:

w

1 - uj f 2
@ :Zuj/\j—wQ and 2 =V, 2.

The first term is the exact solution for the right-hand side Pb, and the (higher order)
derivatives are also exact.

The second term is computed by the Lanczos method, which means that the
k — p first derivatives of £(2) match with the exact solution for the right-hand side
P, b. As a conclusion, & matches the first & — p derivatives of the exact solution of
(1.1) and interpolates the function value and the derivatives in the deflated eigenvalues
AL,y ..., Ap exactly.

3.3. Residual terms. Let
(3.3) T,Y = YO,

be the eigendecomposition of T}, where Y = [y1,...,yx] and O = diag(gl, cee (?k)
The @\j’s are called Ritz values and the columns of ﬁk = WY = [d1,...,0] Ritz
vectors of K 1M.

In practical algorithms, k is either fixed beforehand or determined dynamically
within the iterative process so that the solution is accurate. See [30, 22] for more
details. The residuals in (2.9) and (2.13) have two terms. The second term is small
when k is selected high enough. The first term in (2.9) cannot be controlled by k. In
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1652 KARL MEERBERGEN AND ZHAOJUN BAI

(2.9), we have the term

~T 2
9 uJMb g —WwW" _p
w—o)Re,———— ~ R e-Aiulf,

( )le_(w2_0)9j :DJ)\j_wz 7

which can be large if A; € 92, but which is small otherwise. If we want ||R,z1)||
smaller than some tolerance, we have to require that ||Rpe;|| is small when Xj €02
We do not have to put a strong condition on || Rpe;|| for Xj ¢ Q2. This also holds to
some extent for (2.13).

4. Lanczos Ritz values. Ritz pairs are often computed by the Lanczos method.
In this section, we make a connection between the solution of (1.1) by the parameter-
ized Lanczos method and the solution of (1.2).
Recall (3.3). From (2.5), we find that
pj = 1K Mu; — 05|
= [lons1Breq yjllm
= Brleryjl -
Then define Xj =0+ 5;1. If p; is small, we have that
Kﬁj >~ //\\j Mﬂ\j .

The Ritz vectors form a basis of the Krylov space. Following (2.6), the solution of
(1.1) can thus be expressed in terms of Ritz vectors as follows :

k ~T k ~T
w5 Mb w;
(4.1) P Y PR LR o PR £
j=1 1— (w? = 0)f; j=1 Aj—w?
with
b= 0 YK M Brei Yi
w; =0;"Kg Uj = Uj + Vg1 7.
J

the purified Ritz vector [25]. The right-hand side in (4.1) follows from 4% Mb =
(7K, M),

In this section, we analyze how close these Ritz values are to the eigenvalues of
K;'A when the Lanczos method is applied to solve (1.1).

Usually, the stopping criterion for solving (1.1) takes the form

(4.2) 7z < 7(Ibllas + 1S Al 2]l ar),

where 7 is a prescribed tolerance. The following theorem shows that the residual
norms of the Ritz pairs corresponding to S\j in (w2, ,w?,.] are proportional to the
residual tolerance for the linear system.

THEOREM 4.1. Let (0;,4;), j = 1,...,k be the Ritz pairs from the Lanczos
method. If (4.2) holds for all w* € O2, then

| K Mty — 61| ar < 6716, K5 All s

when 5\j =0+ éj_l €02,
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Proof. The proof is similar to the proof of Lemma 4.1 in [22]. Let a = w? — 0.

From
r=b-K;'Az,
K;'A=T1-aK;'M,
b = v1||b||m, and (2.6), we have
r = ||bllarvr — VeI — aTh)z 4+ afpvpiier 2
= aﬁkvkﬂefz .

Next, from (3.3) and (4.1), we have that

k .7 k Q
Y; €1||b||M Z u; Mb )\J—a' T
= U =D Ui = ) U5 (a] Mb)
= 1—ab; o l-ab; TN - w?
With p; = Brely;, we have
)\ -0 .7
r= Z aﬁkvk+1ek Yj——— /\ — (uj Mb)
j=1

= Qg1 ij - o.)2 Mb) .

For each ¢« = 1,...,k, for which i € Z,, we can determine w? € 7, so that the

following four statements hold:

5\ "T — 0 ~T
(43) pis 5 (@l Mb)| > 2 ijﬁ — (4] Mb)|,
i i# N
A A ’
(4.4) 22 (@ M) >Z — (@7 M)
)\i—w
J#i
A — w?
45 — bl < | KA,
(4.5) o o) a) [[bllar < || [
(4.6) lw? — | > |5\Z — o,

since |5\Z — w?| can be made arbitrarily small, by picking w? close to \i. Note that in
the Lanczos process all Ritz values are simple, so the terms in the summation for z
and r with j # ¢ remain small.

We then have from (4.3) that

5o
I7llar /| > | pi=—— (] Mb) pr al Mb)
/\i—wQ i j—w2
1 ;\i—U ~T
> = ;< T M)
Z5|P Ai_w2(ul )
\Ni—o

(4.7) Piﬁ(U?Mb) < 2[rfar /]l
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and from (4.4) that

Ai—0
Jollae < 2|2 T M)
From (4.2) and (4.7), we have that
5\1-—0 T T 1 \Ni—o T
Pij\i s (4; Mb)| < ZE <|b|M +2|| K, Al m(ui Mb) ) ;
i —w?

T _
|pil < 2@ ( 1bllar + 2/ K5 1A||> :

By applying (4.5) and (4.6), we finally have

(A — o) (aT Mb)

67 _
STV
lpi] < K Al

T

Note that
1K, My — 050 a = |ps] -

This proves the theorem. d

So, the backward error for the linear solves determines the backward error on the
Ritz pairs. A reasonable precision for x for all w € 7, does provide accurate enough
Ritz values near w? € Q2.

5. Multiple right-hand sides. The goal is to solve
(5.1) (K —W?M)[x1,. .. xs] = [f1,..., fs] -

We can use a block Krylov method for solving all right-hand sides at once. The
alternative is to solve each system independently, which can be useful for saving
memory (less vectors to store), or is the only option when the right-hand sides are
not available at once, or when s is large. (The latter is actually the case for the
application in example 6.2.) Probably the best alternative is to solve (5.1) block by
block, i.e., using a block method with n; right-hand sides (RHS) at a time, where ny,
is not too large, e.g., 5. This is conceptually similar to solving (5.1) right-hand side,
by right-hand side and therefore, we do not consider this approach.

The algorithms exploit simplifications by ignoring the second term in (2.8) and
dropping the diagonal elements in (2.12). Those will be used by the numerical exper-
iments.

We use the following algorithms.

ALGORITHM 5.1 (Multiple RHS solution using DRHSL).

1. Solve K;1(K — (w? — 0)M)z1 = K, ! f; using the parameterized Lanczos

method. SR

2. Compute Ritz pairs (0, U,) of K1 M.

3.For j=23,...,5:

3.1. Solve Kgbj = fj-

3.2. Solve the diagonal system (I — (w? — U)@p)zj = ﬁgMbj.

3.3. Solve K; (K — (w? — cr)M)%g?) = ﬁlbj using the parameterized
Lanczos method.

3.4. Let the solution be z; = Upz; + 55-2).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



SHIFTED SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES 1655

The following algorithm is conceptually close to [18] and is quite similar to [31, 32].

ALGORITHM 5.2 (Multiple RHS solution using DML).

1. Solve K;1(K — (w? — 0)M)z1 = K, ! f; using the parameterized Lanczos

method. R
2. Compute Ritz pairs (0, U,) of K ;' M.
3.For j=23,...,5:
3.1. Solve Kgbj = fj-
3.2. Compute the Krylov space for P K py V4 P, with starting vector
PlKg_lAfj. ~ N
3.3. Solve [U, Vi]TMK_YAlU, Vi)z; = [Up Vi]* Mb; for z;.
3.4. Let the solution be Z; = [U, Vi]z;.

Algorithm 5.1 does not require the storage of the Lanczos vectors since the so-
lution can be updated at each iteration step. However, Lanczos vectors cannot be
reorthogonalized, and this leads to a loss of precision; see [22]. Algorithm 5.2 requires
the storage of the Lanczos vectors, which may be undesirable when k is large.

If the Ritz pairs are computed by the Lanczos method for the first right-hand
side as in Algorithms 5.1 and 5.2, the residual terms related to Ritz values in Q2 are
small following the analysis in section 4. If the p Ritz values contain all eigenvalues
in Q2, all linear systems in step 2.3 are positive definite and condition numbers are
most likely good.

We have shown that & is usually not large, since the condition number x(B) is small.
There is one situation where x(B) can be large, i.e., when LL,, does not contain approxi-
mations to all eigenvalues in Q2. Although this is impossible to happen in theory when
ufM b # 0, it may happen in practice when eigenvalues are clustered or multiple.

A problem may arise also when Ritz values outside Q2 are deflated, since their
residual norms are not bounded by Theorem 4.1. However, from [4], the error on
x usually increases more or less monotonically when w? goes away from o. From
section 4, we may conclude that the Ritz residual norms also increase more or less
monotonically. Moreover, in section 3.3, we argued that the Ritz values outside Q2
do not have to have small residual norms.

6. Numerical examples. We now illustrate the algorithms for a number of
examples. In the first example, we compare Algorithms 5.1 and 5.2. Since the simplest
of both, DRHSL, performs as well as DML, we use this method for the remaining
examples. The second example is related to an industrial application. The third
example is constructed to make recycling fail.

The direct solver MUMPS [24] was used for solving the linear systems with K,
in the Lanczos procedure and Algorithms 5.1 and 5.2. The computations are domi-
nated by the sparse factorization of K, and the construction of the Krylov space. The
backward solves are the dominant cost in the Krylov methods. From experience in col-
laboration with industry (Free Field Technologies), the cost of the factorization often
corresponds to 20 to 100 times the cost of the backtransformation, depending on the
problem and the linear solver used. To illustrate this, we report timings for the largest
problem (second example).

6.1. Windscreen problem. In this section, we show the numerical performance
of Algorithms 5.1 and 5.2 for a test problem arising from a structural model of a car
windscreen. This is a three-dimensional (3D) problem discretized with 7564 nodes
and 5400 linear hexahedral elements (3 layers of 60 x 30 elements). The mesh is
shown in Figure 6.1(a). The material is glass with the following properties: the Young
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(a) Windscreen mesh. (b) Acoustic cavity mesh.

Fic. 6.1. Meshes of test examples.

modulus is 7x 10'°N/m?, the density is 2490kg/m?, and the Poisson ratio is 0.23. The
structural boundaries are free (free-free boundary conditions). The plate is subjected
to a point force applied on a corner node [22, 1].

The discretized problem has dimension n = 22,692. The goal is to compute z(w)
with w € [0,200]. In order to generate the plots, the frequency range was discretized
as {w1,...,wm} ={0.54,7=1,...,m} with m = 200. We used shift o = 1.

We performed a first run with right-hand side f with f; = 0 for j # 5673 and
fs673 = 1, which corresponds to a point load on a corner of the windscreen. We used
k = 20 Lanczos iterations. Then we kept the p = 14 Ritz values below 2 x 1002. The
residual norms of the eigenvalues in [0, 2 x 100?] were all below 3 x 10~7. The largest
residual norm is for the Ritz value corresponding to w = 104, which is just outside
the interval . The Ritz values in Q% = [0, 100?] have residual norms below 6 x 107°.

Next, we performed a second run with the right-hand side f with f; = 0for j > 1
and f; = 1. We used 6 (additional) Lanczos iterations to make a total of p + k = 20
vectors. For given w,

)\j—w2 . )\j—w2 ~ )\j—O‘ )\p+1—0’
K = max min < k:=1-max 5 = 3
J>p )\j — 0 J>p )\j — 0 J>p )\j — W /\p+1 — W

The largest % is for w = max(£2). In this example, the maximum % is (142.089% —
1)/(142.089? — 100?) = 1.9813, so the convergence ratio in (3.2) is 0.1693. After six
iterations, the error norm is reduced by approximately 2 x 10~°. Figure 6.2 shows the
results. Both Algorithms 5.1 and 5.2 produce the same results: Solution and error
curves cannot be distinguished in the figures. The additional iterations (only six) is
low so that loss of orthogonality in the Lanczos vectors is most likely not having an
impact.

To see the effect of ignoring that || R,|| is not zero, we compared with 20 Lanc-
zos iterations without recycling. We obtained the same number of vectors as with
recycling of 14 vectors and 6 additional iterations. We observed no visual difference
in the error curves for w’s below 80. For w between 80 and 100, 20 Lanczos itera-
tions gained one digit of accuracy. We also compared with 20 instead of 6 additional
iterations after recycling 14 Ritz vectors. The error curves did not show any visual dif-
ference with 6 additional iterations. In other words, performing 20 iterations without
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F1a. 6.2. Windscreen problem: solution norm ||z||2 (vertical azis) in function of w (horizontal
azxis) in solid line, error on ||z||2 for superposition on 14 modes as a dashed line, and error on ||z||2

for superposition

on 14 modes and 6 additional Lanczos iteration as a dotted line.

recycling is slightly more accurate for the higher frequencies (i.e., w’s farther away
from the shift) than 20 iterations with recycling. The observations confirm the anal-
ysis from section 3.3.

We performed a third run with f being 1 everywhere. The conclusions are similar
as for the previous situation. Figure 6.3 shows the results.
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F1a. 6.3. Windscreen problem: solution norm ||z||2 (vertical azis) in function of w (horizontal
azis) in solid line, error on ||z||2 for superposition on 14 modes as a dashed line, and error on ||z||2
for superposition on 14 modes and 6 additional Lanczos iteration as a dotted line.
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6.2. An acoustic cavity problem. We consider a model of an acoustic cavity
discretized by 42880 finite elements and 48158 nodes, whose mesh can be seen in
Figure 6.1(b). The excitation (i.e., the right-hand side) consists of 202 columns, each
of them corresponding to a velocity excitation applied to one element. (See the darker
elements in the mesh.) The frequency response function (FRF) is computed in the
frequency range Q = [0, 10000]. Computations were performed on a Dell Precision 390
with 2GB RAM. We applied the Lanczos method with 50 vectors for the first right-
hand side. The computational cost for the Krylov method was 8 seconds for the sparse
matrix factorization of K —o M and 6 seconds for the construction of the Krylov basis.

For the second right-hand side, we kept all 31 Ritz vectors associated with the
Ritz values in [0,2 x 10.000%]. We used the DRHSL method. We then performed the
following three experiments:

1. We performed 19 additional Lanczos iterations in order to obtain a basis of
dimension 50. The computational cost was approximately 2 seconds, i.e., the
computational cost was divided by approximately three. For 202 right-hand
sides the total cost with the original Lanczos method would be of the order
of 1220 seconds, whereas with recycling this would be only 416 seconds. The
results are shown in Figure 6.4(a): There is no visual difference between the
exact solution and the computed solution.

2. We performed k = 50 iterations of the Lanczos method (without recycling)
as a first reference. The results are shown in Figure 6.4(b): There is no visual
difference between the exact solution and the computed solution.

3. We performed k = 19 iterations of the Lanczos method (without recycling)
as a second reference. The results are shown in Figure 6.4(c): There is a clear
visual difference between the exact solution and the computed solution at a
relatively low cost.

These results show that recycling indeed has a positive impact on the accuracy of the
results.

6.3. Multiple eigenvalues. The following example illustrates the presence of
multiple eigenvalues. The matrix K is the discretization of the 3D Laplacian on a
unit cube and M is the identity matrix. The matrix pair has multiple eigenvalues.
Decompose the first right-hand side into

n
fi= E Q1
1=1

Let u; and us be (linearly independent) eigenvectors associated with a multiple eigen-
value, A1, say, so that ufM f; # 0 and ud M f; = 0. Consider a second right-hand side
so that uZ' M fo # 0. If a good approximation of u; is obtained by the Lanczos method
for fi, its recycling does not help the solution with right-hand side f>, since wus is not
computed. The Lanczos method cannot compute linearly independent eigenvectors of
multiple eigenvalues. A similar situation arises when f; has no components in eigen-
vectors. In both cases, we may expect recycling not to be effective. We have chosen
f1 all ones and fo = e;.

We first performed 30 steps of the Lanczos method for fi, leading to the result
shown in Figure 6.5(a). Note that the frequency response function does not show
many peaks. Recycling the 22 Ritz pairs associated with [0,21%], eight additional
Lanczos steps produce the results from Figure 6.5(b). Figure 6.5(c) shows the results
for a run with eight Lanczos iterations without recycling. The results are a little worse
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(a) With recycling.
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Fi1c. 6.4. FEzact and computed FRFs for the acoustic cavity problem. The horizontal axis
corresponds to w and the vertical azis corresponds to ||x(w)]|2.
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(a) Lanczos for fi.
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F1G. 6.5. Ezact and computed results for the 3D Laplacian on a unit cube. The horizontal axis
corresponds to w and the vertical azis corresponds to ||x(w)]|2.
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TABLE 6.1
Ritz values computed for the 8D Laplacian. The Ritz values printed in italics are multiple Ritz.

Kept Ritz values from first run:

20.87 20.0801 19.3112 18.9046 18.329
17.6468 17.0813 16.8657 15.8357 15.5699
14.1922 12.9514 12.3316 10.8806 10.3639
9.39104  8.78355  8.30884  8.30884  7.61551
6.23227  4.43694

Additional Ritz values from second run:

24.914 19.2669 14.7007 11.7212  9.48057

7.61745  6.92621  6.23791

than with recycling. We notice that recycling does not help much for this example.
The reason can be seen from Table 6.1: The second run computes a relatively large
number of Ritz values in Q2 that were not computed with the first run. These newly
computed eigenvalues slow down the convergence.

7. Conclusions. We have used recycling Ritz vectors for solving linear systems
with a parameter in frequency sweeping. We have presented an algorithm and theory
for the symmetric case. We have given various arguments and a numerical example
that show that recycling may significantly reduce the number of iterations in the
Lanczos method.

Further extensions of this work lie in the application to proportional damping as
in [23], and in using the Lanczos method as iterative method in the AMLS frequency
sweeping method [19].

A comparison with the block Lanczos method would be interesting. We think
that fundamental work on the reduction of the block size of the block Lanczos method
should be carried out first in this context. See [27] for related work. The danger in
block methods is larger memory consumption, but there may be a gain in computa-
tion time, especially when direct linear solvers are used to solve the linear systems
with K.

Acknowledgment. We thank the anonymous referees for the many suggestions
that improved the quality of the paper.
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