

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2010 Society for Industrial and Applied Mathematics
Vol. 31, No. 5, pp. 2700–2720

OPTIMIZING HALLEY’S ITERATION FOR COMPUTING THE
MATRIX POLAR DECOMPOSITION∗

YUJI NAKATSUKASA† , ZHAOJUN BAI‡ , AND FRANÇOIS GYGI§

Abstract. We introduce a dynamically weighted Halley (DWH) iteration for computing the
polar decomposition of a matrix, and we prove that the new method is globally and asymptotically
cubically convergent. For matrices with condition number no greater than 1016, the DWH method
needs at most six iterations for convergence with the tolerance 10−16. The Halley iteration can be
implemented via QR decompositions without explicit matrix inversions. Therefore, it is an inverse
free communication friendly algorithm for the emerging multicore and hybrid high performance
computing systems.

Key words. polar decomposition, Halley’s iteration, Newton’s iteration, inverse free iterations,
QR decomposition, numerical stability

AMS subject classifications. 15A15, 15A23, 65F30

DOI. 10.1137/090774999

1. Introduction. We consider the computation of the unitary polar factor U of
the polar decomposition of A ∈ Cm×n (m ≥ n),

(1.1) A = UH,

where U ∈ Cm×n is a unitary matrix UHU = I and H ∈ Cn×n is a unique Her-
mitian positive semidefinite matrix. The unitary polar factor U is unique if A has
full column rank [20, p. 193]. Applications of the polar decomposition include fac-
tor analysis, satellite tracking, and calculation of the nearest orthogonal matrix [18].
Our motivation is from solving a large scale orthogonal Procrustes problem arising
from the subspace alignment in the first-principles molecular dynamics simulations of
electronic structure calculations [2, 9, 13, 14].

The most popular method for computing the polar factor of a square nonsingular
matrix is the scaled Newton (SN) method [20, p. 202]. Recently, Byers and Xu [4]
presented a suboptimal scaling strategy for the Newton method. They showed that the
convergence to within a tolerance of 10−16 can be reached in at most nine iterations
for matrices with condition number no greater than 1016. Furthermore, they claim
that Newton’s method with suboptimal scaling is backward stable, provided that the
matrix inverses are computed in a mixed forward-backward stable way. We note that
there is a recent note [24] to indicate some incompleteness of rounding error analysis
presented in [4].

Successful as Newton’s method is, it requires explicit matrix inversion at each
iteration. Besides the potential numerical stability issue in finite precision arithmetic,

∗Received by the editors October 26, 2009; accepted for publication (in revised form) July 26,
2010; published electronically September 29, 2010. This work was partially supported by NSF grant
OCI-0749217 and DOE grant DE-FC02-06ER25794.

http://www.siam.org/journals/simax/31-5/77499.html
†Department of Mathematics, University of California, Davis, CA 95616 (ynakatsukasa@ucdavis.

edu).
‡Department of Computer Science and Department of Mathematics, University of California,

Davis, CA 95616 (bai@cs.ucdavis.edu).
§Department of Applied Science and Department of Computer Science, University of California,

Davis, CA 95616 (fgygi@ucdavis.edu).

2700

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2701

explicit matrix inversion is also expensive in communication costs. On the emerging
multicore and heterogeneous computing systems, communication costs have exceeded
arithmetic costs by orders of magnitude, and the gap is growing exponentially over
time [3, 12, 27]. The purpose of this paper is to investigate numerical methods for
computing the polar decomposition to minimize the communication costs by using
communication friendly matrix operations such as the QR decomposition (without
pivoting) [8].

In fact, inverse free methods for computing the polar decomposition have been
studied in [7, 5]. A QR decomposition-based implementation of a variant of the SN
method is investigated. Unfortunately, the numerical instability of such an inverse free
method has been independently discovered by both studies.

In this paper, we first propose a dynamically weighted Halley (DWH) method
for computing the polar decomposition. We prove that the DWH method converges
globally with asymptotically cubic rate. We show that in exact arithmetic, for matrices
with condition number κ2(A) ≤ 1016, no more than six iterations are needed for
convergence with the tolerance 10−16. We then discuss an implementation of the
DWH method based on the QR decomposition. Extensive numerical tests indicate
that the QR-based DWH (QDWH) method is backward stable. The arithmetic cost
of the QDWH method is about two to three times that of the SN method, depending
on the specific implementation one uses. However, the communication cost of the
QDWHmethod is significantly lower than that of the SN method. The QDWHmethod
is an attractive alternative method for the emerging multicore and heterogeneous
computing architectures.

In this paper, we focus on the study of the polar decomposition of square and
nonsingular matrices. The QDWH method is readily applicable to rectangular and
singular matrices, whereas the SN method needs to initially use a rank-revealing QR
factorization to enable its applicability to more general matrices [20, p. 196].

The rest of this paper is organized as follows. In section 2, we review Newton’s
method and its variants. In section 3, we study Halley’s iteration and derive a dynam-
ical weighting scheme. A convergence proof of the new method is given. We also show
that the cubic convergence makes acceptable a looser convergence criterion than that
for the SN iteration. Section 4 discusses implementation issues, in which we show how
the DWH method can be computed based on the matrix QR decompositions. Numer-
ical examples are shown in section 5. Concluding remarks are given in section 6. In
Appendix A, we give a detailed solution for the max-min problem that arises in the
derivation of the DWH method.

Throughout this paper, ‖ · ‖p denotes the matrix or vector p-norm (p = 1, 2,∞)
and ‖ · ‖F the Frobenius norm. ‖ · ‖ denotes a unitarily invariant norm such as ‖ · ‖2
and ‖ · ‖F . σi(X) denotes the ith singular value of X . σmin(X) and σmax(X) denote
the smallest and largest singular values of X , respectively. κ2(A) denotes the 2–norm
condition number of A: κ2(A) = ‖A‖2‖A−1‖2. α and β denote α = ‖A‖2 = σmax(A)
and β = ‖A−1‖−1

2 = σmin(A). To avoid confusion between the unitary polar factor
and the singular value decomposition (SVD) of A, U always denotes the polar factor
of A. The SVD of A is expressed by A = U∗ΣV H

∗ so that U = U∗V H
∗ .

2. Newton’s method.

2.1. Scaled Newton iteration. The most well-known method for computing
the unitary polar factor of a nonsingular matrix A is the Newton iteration

(2.1) Xk+1 =
1

2

(
Xk +X−H

k

)
, X0 = A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2702 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

It can be shown that the iterates Xk converge quadratically to the polar factor U
of A and that all singular values σi(Xk) → 1 as k → ∞ [20, p. 202]. However, the
initial phase of convergence is slow when A has a singular value that has large relative
distance from 1, that is, when a singular value σ exists such that max(|1− σ|/σ, |1−
σ|/1) � 1. In order to speed up the initial phase, we can apply the SN iteration

(2.2) Xk+1 =
1

2

(
ζkXk + (ζkXk)

−H
)
, X0 = A,

where ζk is a scaling factor. The frequently used (1,∞)–norm scaling and Frobenius
norm scaling are known to work well in practice [18, 20]. The rigorous convergence

theory is established for the so-called optimal scaling ζoptk = (σmin(Xk)σmax(Xk))
−1/2

[18]. However, it is not a practical scaling since it is too expensive to compute σmin(Xk)
and σmax(Xk) at every iteration. Recently, Byers and Xu [4] proposed the following
suboptimal scaling:
(2.3)

ζ0 = 1/
√
αβ, ζ1 =

√
2
√
αβ/(α+ β) , ζk = 1/

√
ρ(ζk−1) for k = 2, 3, . . . ,

where α = ‖A‖2, β = ‖A−1‖−1
2 and ρ(ζ) = (ζ + ζ−1)/2. It is called a suboptimal

scaling since at the kth iteration, it minimizes the width of the interval containing all
the singular values of the kth iterate Xk.

Theorem 2.1 (see [4]). The iterates Xk generated by the SN iteration (2.2)
with the suboptimal scaling (2.3) converge quadratically to the polar factor U of A.
Moreover, convergence to within a tolerance 10−16 is reached within nine iterations if
κ2(A) ≤ 1016.

In practice, it is sufficient to use some rough estimates α̂ and β̂ of α and β. For
example, one may take α̂ = ‖A‖F and β̂ = 1/‖A−1‖F . It is shown that, for any

estimates α̂ and β̂ such that 0 < β̂ ≤ ‖A−1‖−1
2 ≤ ‖A‖2 ≤ α̂ and α̂/β̂ < 1016, the

iteration converges within nine iterations [4]. It is also known experimentally that
the SN iteration with Higham’s (1,∞)−scaling [18] needs about the same number of
iterations.

It is claimed in [23, 4] that the SN iteration is backward stable provided that the
inverse X−1

k is computed in a mixed forward-backward stable way. For example, one
can use a bidiagonal reduction-based matrix inverse algorithm as presented in [4]. In
that case, the arithmetic cost of each iteration increases to 6n3 instead of 2n3 when
the inverse is computed using the LU factorization with partial pivoting. We note
that inversion based on QR factorization without column pivoting does not guarantee
backward stability of the SN iteration (see [23]).

2.2. Newton iteration variant. The Newton variant (NV) iteration is

(2.4) Yk+1 = 2Yk

(
I + Y H

k Yk

)−1
, Y0 = A.

It can be shown that Yk = X−H
k for k ≥ 1, where Xk is generated by the Newton

iteration (2.1) [21], [20, p. 202]. Note that iteration (2.4) is applicable to singular and
rectangular matrices. To speed up the convergence, we can use a scaled version of
iteration (2.4). Substituting ηkYk into Yk in (2.4) yields the scaled Newton variant
(SNV) iteration

(2.5) Yk+1 = 2ηkYk

(
I + η2kY

H
k Yk

)−1
, Y0 = A,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2703

where ηk is the scaling factor. A proper choice of ηk is the one such that Y0 = X0 and
Yk = X−∗

k for k ≥ 1, where Xk is generated by the SN iteration (2.2). It implies that
η0 = ζ0 and ηk = 1/ζk.

Since Y −1
k is not computed in the SNV iteration (2.5), the (1,∞)–norm scaling

or Frobenius norm scaling is not applicable. How to efficiently scale the SNV iteration
(2.5) is listed as Problem 8.26 in [20, p. 219]. One solution to the problem is to use
the suboptimal scaling (2.3), which yields the following iteration for the scaling of the
SNV iteration (2.5):

(2.6) η0 = 1/
√
αβ, η1 =

√
α+ β

2
√
αβ

, ηk =
√
ρ(ηk−1) for k = 2, 3,

From the connection with the Newton iteration, it follows from Theorem 2.1 that
Yk → U−H = U as k → ∞.

The SN iteration with the suboptimal scaling (2.3) and the SNV iteration with
the scaling (2.6) are mathematically equivalent, provided that the same scalars α
and β are used. However, the practical implementation of the SN iteration involves
explicit matrix inverses. This is usually done by means of the LU factorization with
partial pivoting. Pivoting makes necessarily a large amount of data communication
and slows down the total computation time [3, 27]. As pointed out in [20, p. 219], the
SNV iteration (2.5) can be implemented using a QR decomposition (without column
pivoting). Computing a QR decomposition can be done in a communication friendly
way with great performance on modern multicore and heterogeneous systems [15].
Therefore, the QR-based SNV method is an attractive alternative. Unfortunately, as
shown in section 5, the SNV iteration (2.5) is not stable for ill-conditioned matrices,
even with the QR decomposition-based implementation. The instability had also been
independently reported in early studies [7, 5]. In the next section, we will exploit an
alternative iteration to develop an inverse free method.

3. Halley’s method. Halley’s iteration for computing the polar factor of a
nonsingular matrix A is

(3.1) Xk+1 = Xk(3I +XH
k Xk)(I + 3XH

k Xk)
−1, X0 = A.

It is a member of the Padé family of iterations [22]. It is proven that Xk converges
globally and that the convergence rate is cubic [10, 11]. However, the initial steps
of convergence can still be slow when A has a singular value that has large relative
distance from 1. For example, consider the 2× 2 matrix

(3.2) A = X0 =

[
1

x0

]
, x0 = 10−10.

The polar factor of A is the 2× 2 identity matrix. The kth iterate Xk is given by

Xk =

[
1

xk

]
, xk =

xk−1(3 + x2
k−1)

1 + 3x2
k−1

.

After one Halley’s iteration, x1 ≈ 3×10−10. It takes 24 iterations for the iterate Xk to
converge to the polar factor within IEEE double precision machine precision, namely,
‖X24 − I‖2 ≤ εM = 2.2× 10−16.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2704 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

To accelerate the convergence of Halley’s iteration (3.1), let us consider the fol-
lowing DWH iteration:

(3.3) Xk+1 = Xk(akI + bkX
H
k Xk)(I + ckX

H
k Xk)

−1, X0 = A/α,

where α = ‖A‖2 and scalars ak, bk, and ck are nonnegative weighting parameters. We
choose these weighting parameters suboptimally1 in the sense that it maximizes
k+1

such that the interval [
k+1, 1] contains all the singular values of Xk+1. Specifically,
let Xk = U∗ΣkV

H
∗ be the SVD of Xk and
k be such that2

(3.4) [σmin(Xk), σmax(Xk)] ⊆ [
k, 1] ⊂ (0, 1]

with initial σmin(X0) = β/α ≡
0 and β = 1/‖A−1‖2. Then one step of the DWH
iteration (3.3) yields

Xk+1 = U∗Σk(akI + bkΣ
2
k)(I + ckΣ

2
k)

−1V H
∗ .

Hence the singular values σi(Xk+1) of Xk+1 are given by

(3.5) σi(Xk+1) = gk(σi(Xk)),

where gk is a rational function defined as

gk(x) = x
ak + bkx

2

1 + ckx2
.

By (3.4) and (3.5), we have

(3.6) [σmin(Xk+1), σmax(Xk+1)] ⊆
[

min
�k≤x≤1

gk(x), max
�k≤x≤1

gk(x)

]
.

Since the closeness of the iterate Xk+1 to the polar factor can be measured by the
maximum distance between singular values σi(Xk+1) and 1, a suboptimal choice of
the triplet (ak, bk, ck) should make the function gk be bounded

(3.7) 0 < gk(x) ≤ 1 for
k ≤ x ≤ 1

and attain the max-min

(3.8) max
ak,bk,ck

{
min

�k≤x≤1
gk(x)

}
.

Once these parameters ak, bk, and ck are found to satisfy (3.7) and (3.8), all singular
values of Xk+1 satisfy

(3.9) [σmin(Xk+1), σmax(Xk+1)] ⊆ [
k+1, 1] ⊂ (0, 1],

where
k+1 = min�k≤x≤1 gk(x).

1The term “suboptimal” follows that of the suboptimal scaling (2.3) for the SN iteration, which
minimizes bk+1 such that [1, bk+1] contains all the singular values of Xk+1.

2In (3.4) one can assume a more general interval [̂�k, L] for any L > 0, but setting L ≡ 1 causes
no loss of generality since the simple scaling ak−1 ← ak−1/L, bk−1 ← bk−1/L maps the interval

[̂�k, L] containing [σmin(Xk), σmax(Xk)] to [̂�k/L, 1] ≡ [�k, 1].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2705

Let us now consider how to solve the optimization problem (3.7) and (3.8). To
satisfy gk(x) > 0, we can impose

(3.10) ak, bk, ck > 0

and

(3.11) gk(1) = 1.

These conditions ensure that the function gk(x) is positive and continuously differen-
tiable for x > 0 and has a fixed point at 1. Note that (3.11) implies ck = ak + bk − 1.
By the assumptions (3.10) and (3.11), the optimization problem (3.7) and (3.8) can
be stated as follows.

The bounded max-min problem: find ak, bk > 0 such that ck = ak +
bk − 1 > 0,

(3.12) 0 < gk(x) ≤ 1 for
k ≤ x ≤ 1,

and

(3.13) max
ak,bk>0

{
min

�k≤x≤1
gk(x)

}
is attained.

In Appendix A, we show that the solution of the optimization problem (3.12) and
(3.13) is given by

(3.14) ak = h(
k), bk = (ak − 1)2/4,

where

(3.15) h(
) =
√
1 + d+

1

2

√
8− 4d+

8(2−
2)

2
√
1 + d

, d =
3

√
4(1−
2)

4
.

Similar to the SN iteration (2.2) with the suboptimal scaling (2.3), we see that the
weighting parameters ak, bk and ck = ak + bk − 1 of the DWH iteration (3.3) can
be generated by simple scalar iterations in which the initial value
0 depends on the
extreme singular values of the original matrix A.

In summary, we derive the DWH iteration (3.3) for computing the polar factor of
A, where the weighting parameters ak and bk are generated by the scalar iterations
(3.14), ck is defined by ck = ak + bk − 1, and

(3.16)
0 =
β

α
,
k =

k−1(ak−1 + bk−1

2
k−1)

1 + ck−1
2k−1

for k = 1, 2, . . . ,

where α = ‖A‖2 and β = 1/‖A−1‖2.
Before we prove the global convergence of the DWH iteration (3.3), let us recall

the 2× 2 matrix A defined as (3.2). The kth DWH iterate Xk is given by

Xk =

[
1

xk

]
, xk =

xk−1(ak + bkx
2
k−1)

1 + ckx2
k−1

.

Since α = 1 and
0 = 10−10, by (3.14), we have a0 � 1.17× 107, b0 � 3.42× 1013, and
c0 � 3.42×1013. After one iteration, x0 is mapped to x1 � 1.17×10−3, which is much

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2706 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

k +1

Fig. 3.1. The mapping functions gk(σ) = σ(3 + σ2)/(1 + 3σ2) of the Halley iteration (left) and
gk(σ) = σ(ak + bkσ

2)/(1 + ckσ
2) of the DWH iteration (right).

closer to the target value 1 than the first iterate computed by Halley’s iteration (3.1).
In fact, it takes only five DWH iterations to approximate the polar factor within
the machine precision ‖X5 − I‖2 ≤ εM. It is a factor of five times faster than the
Halley iteration. To explain the fast convergence of the DWH iteration, the plots of
Figure 3.1 show the typical mapping functions gk from the singular values of Xk to
that of Xk+1 by the Halley iteration (3.1) and the DWH iteration (3.3). We can see
that the singular values of Xk are mapped much closer to 1 by the DWH iteration
than the Halley iteration.

Theorem 3.1. For a nonsingular A, the iterates Xk generated by the DWH
iteration (3.3) converge to the polar factor U of A. The asymptotic convergence factor
is cubic.

Proof. We first prove the convergence of the iterates Xk. This is equivalent to
showing that the singular values σi(Xk) → 1 as k → ∞ for all 1 ≤ i ≤ n. By (3.9),
we have [σmin(Xk), σmax(Xk)] ⊆ [
k, 1]. Hence it suffices to prove
k → 1 as k → ∞.

Using (3.14), (3.16), and ck = ak + bk − 1, we derive

1

k+1
− 1 = F (ak,
k)

(
1

k
− 1

)
,

where

F (a,
) =
((a− 1)
− 2)2

4a+ (a− 1)2
2
.

Note that F (ak,
k) ≥ 0 since ak > 0. All we need to show is that there is a positive
constant δ < 1 such that F (ak,
k) ≤ δ for all k. In fact, we have 3 ≤ a ≤ 2+�

� (see
(A.9) in Appendix A), and on this interval F (a,
) is a decreasing function of a:

∂F

∂a
=

4(1 +
)(
2(a− 1)2 − 4)

(
2 + a2
2 + 2a(2−
2))2
≤ 0 on 3 ≤ a ≤ 2 +

.

Therefore, we have

F (ak,
k) ≤ F (3,
k) =
(3− 1)2
2k − 4(3− 1)
k + 4

(3− 1)2
2k + 4 · 3 =
(1−
k)

2

2k + 3
≤ 1

3
= δ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2707

This completes the proof of the global convergence of the DWH iteration.
Now we consider the asymptotic rate of convergence. By the above argument,

|1−
k+1| =
∣∣∣∣F (ak,
k)

(
1

k
− 1

)

k+1

∣∣∣∣ ≤ ∣∣∣∣
k+1(1 −
k)
2

2k + 3

(
1

k
− 1

)∣∣∣∣ =
k+1 |1−
k|3

k(
2k + 3)

.

By the fact that
k → 1, we conclude that the DWH is asymptotically cubically
convergent.

Remark 1. It is shown in Appendix A that ak satisfies

3 ≤ ak ≤ 2 +
k

k

for k ≥ 0,

where 0 <
k ≤ 1. Note that as
k → 1, (ak, bk, ck) → (3, 1, 3). These are the weighting
parameters of the Halley iteration (3.1). It is an open problem how large ak influences
the accuracy of the computed unitary polar factor U .

Remark 2. For simplicity of exposition, we used the exact extreme singular values
of the original matrix A in the analysis, namely, α = σmax(A), β = σmin(A), and

0 = β/α = 1/κ2(A). In fact, estimates α̂ and β̂ of α and β are sufficient as long as

the inclusion property [σmin(A/α̂), σmax(A/α̂)] ⊆ [
̂0, 1] holds, where
̂0 = β̂/α̂.
Remark 3. In [11], Gander has observed the slow convergence with respect to small

singular values in Halley’s iteration. As a remedy and generalization to rectangle and
rank-deficient matrices, he proposed the following weighting parameters:

(3.17) ak =
2τ − 3

τ − 2
, bk =

1

τ − 2
, ck =

τ

τ − 2
,

where τ is a prescribed parameter. When τ = 3, it is the Halley iteration. It is proved
that, for any τ > 2, the resulting method converges globally and quadratically [25].
In practice, Gander [11] suggests taking τ = 2 + εM/δ for δ > 10εM and τ = 2.1 for
εM < δ ≤ 10εM, where εM is the machine epsilon and δ is the convergence tolerance.
This stems from the observation that taking τ close to 2 results in both speed-up and
instability. We here set the tolerance δ small enough, in which case τ = 2.1. Note that
Gander’s iteration switches from iteration (3.3) with static weighting parameter (3.17)
to the standard Halley iteration (3.1) after a certain number of iterations. To find the
appropriate switching strategy, it is noticed that about s = − log(
0) steps are needed
for the smallest singular value to increase to the size of 1, where
0 = β/α = σmin(X0).
Therefore, the switching is done after s iterations using τ = 2.1. Unfortunately, the
convergence of Gander’s iteration can still be slow. For the 2 × 2 matrix in (3.2),
Gander’s iteration needs 14 iterations to converge. In section 5, we see that as many
as 20 iterations are needed for some cases.

To derive a stopping criterion for the DWH iteration (3.3), we note that, once
convergence sets in,
k � 1 so that (ak, bk, ck) � (3, 1, 3). Therefore, we will just
need to consider a proper stopping criterion for Halley’s iteration (3.1). We note that
in the SN iteration with Higham’s (1,∞)–norm scaling, switching to the unscaled
Newton iteration is recommended [20, 23]. As for the DWH iteration, this switching
is not necessary because we have (ak, bk, ck) → (3, 1, 3). This is also true for the SN
iteration with suboptimal scaling, which guarantees the scaling factor ζk → 1.

We first have the following lemma.
Lemma 3.2. For Halley’s iteration (3.1), if ‖Xk−1−U‖2 = ‖I−Σk−1‖2 = ε � 1,

then up to the first order in ε,

‖Xk−1 − U‖ = (1 +O(ε2))‖Xk −Xk−1‖.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2708 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

Proof. Writing Xk−1 = U∗Σk−1V∗ we have

Xk −Xk−1 = Xk−1(3I +XH
k−1Xk−1)(I + 3XH

k−1Xk−1)
−1 −Xk−1

= 2Xk−1(I −XH
k−1Xk−1)(I + 3XH

k−1Xk−1)
−1

= 2U∗(I − Σ2
k−1)Σk−1(I + 3Σ2

k−1)
−1V H

∗ .(3.18)

Taking an unitarily invariant norm and using the inequality ‖AB‖ ≤ ‖A‖ · ‖B‖2, we
get

‖Xk −Xk−1‖ ≤ 2‖U∗(I − Σk−1)V
H
∗ ‖ · ‖Σk−1(I +Σk−1)(I + 3Σ2

k−1)
−1‖2

= 2‖Xk−1 − U‖ · ‖Σk−1(I +Σk−1)(I + 3Σ2
k−1)

−1‖2
≡ 2‖Xk−1 − U‖ · ‖f(Σk−1)‖2,(3.19)

where f(x) = x(1 + x)/(1 + 3x2) is a continuouse and differentiable function. It is
easy to see that f(x) is increasing on (0, 1) and decreasing on (1,∞). It attains the
maximum 1/2 at x = 1. Hence we can write f(1 − ε) = 1/2 − O(ε2) for ε � 1.
Consequently, we have ‖f(Σk−1)‖2 = maxi |f(σi)| = 1/2−O(ε2). By (3.19), it follows
that ‖Xk −Xk−1‖ ≤ (1 −O(ε2))‖Xk−1 − U‖.

We can prove ‖Xk −Xk−1‖ ≥ (1−O(ε2))‖Xk−1 − U‖ similarly by noticing from
(3.18) that Xk−1 − U = 1

2 (Xk −Xk−1)(V∗(I + Σk−1)Σk−1(I + 3Σ2
k−1)

−1V H
∗)−1 and

using 1/f(1 + ε) = 2 +O(ε2).
Now, by the identity U∗(Σk−1 − I)V H∗ = Xk−1 − U , we have

‖Xk − U‖ = ‖U∗(Σk−1(3I +Σ2
k−1)(I + 3Σ2

k−1)
−1 − I)V H

∗ ‖
= ‖U∗(Σk−1 − I)3(I + 3Σ2

k−1)
−1V H

∗ ‖
≤ ‖Xk−1 − U‖3 · ‖(I + 3XH

k−1Xk−1)
−1‖2,

where we used the inequality ‖AB‖ ≤ ‖A‖ · ‖B‖2 again. When close to convergence,
‖Xk−1 − U‖2 � 1. Hence, by Lemma 3.2, we have

‖Xk − U‖ � ‖Xk −Xk−1‖3 · ‖(I + 3XH
k−1Xk−1)

−1‖2.

This suggests that we accept Xk when

(3.20) ‖Xk −Xk−1‖F ≤
(

εM
‖(I + 3XH

k−1Xk−1)−1‖2

)1/3

.

Close to convergence XH
k−1Xk−1 � I, the test (3.20) is effectively

(3.21) ‖Xk −Xk−1‖F ≤ (4εM)
1/3

.

We recall that for quadratically convergent methods such as the SN method (2.2)
and its variant (2.5), the following stopping criterion is suggested [20, p. 208]:

(3.22) ‖Xk −Xk−1‖F ≤ (2εM)
1/2

.

In [4], it is noted that theoretically the SN iteration with the suboptimal scaling
converges in at most nine steps for any matrix of condition number less than 1016. It
is based on the bound ‖Xk − U‖2 ≤ bk − 1, where bk can be obtained by a simple

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2709

scalar iteration. Consequently, the first k satisfying |1−bk| < 10−16 provides an upper
bound on the number of iteration counts.

We can derive a similar result for the DWH iteration (3.3). By the interval (3.9)
that bounds the singular values of the iterate Xk, we have

‖Xk − U‖2 = |1− σmin(Xk)| ≤ |1−
k|.

Hence, by finding the first k such that |1 −
k| < 10−16, we obtain the number of
iterations needed for the DWH iteration to convergence. Specifically, by using the
scalar recursion (3.16) with
0 = 1/κ2(A), we have the following upper bounds for the
number of DWH iterations:

κ2(A) 101 102 105 108 1010 1012 1016

SN, SNV 5 6 7 8 8 9 9
DWH 3 4 5 5 5 5 6

The result suggests that the DWH iteration converges within at most six steps for
any matrix with condition number κ2(A) ≤ 1016. The number of DWH iterations is
about one-third fewer than the number of SN iterations (2.2) with the suboptimal
scaling (2.3).

4. QR-based implementations. In this section, we discuss an implementation
of the DWH iteration (3.3) using the QR decomposition. The QR-based implementa-
tion is more desirable than those involving explicit inverses for enhancing paralleliz-
ability. Numerical examples in section 5 suggest that it also improves the numerical
stability.

First we have the following basic result, given in [20, p. 219] and based on the
results in [29].

Theorem 4.1. Let [ηX
I] = [Q1

Q2
]R be a QR decomposition of [ηX

I], where

X,Q1 ∈ Cm×n and Q2, R ∈ Cn×n. Then

(4.1) Q1Q
H
2 = ηX(I + η2XHX)−1.

Proof. By the polar decomposition

(4.2)

[
ηX
I

]
= ŨH̃,

we have H̃2 = I + η2XHX and H̃ = (I + η2XHX)1/2. Note that [Q1

Q2
] and Ũ span

the column space of [ηX
I] and that they are orthogonal matrices. Hence it follows

that

(4.3)

[
Q1

Q2

]
= ŨW

for some orthogonal matrix W . By (4.2) and (4.3), we have[
Q1

Q2

]
=

[
ηX
I

]
(I + η2XHX)−1/2W.

The identity (4.1) can now be verified by a straightforward calculation.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2710 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

By Theorem 4.1, we immediately derive that the SNV iteration (2.5) is mathemat-
ically equivalent to the following iteration, referred to as a QR-based scaled Newton
variant (QSNV):

(4.4)

⎧⎪⎪⎨⎪⎪⎩
[

ηkXk

I

]
=

[
Q1

Q2

]
R,

Xk+1 = 2Q1Q
H
2 ,

with the initial X0 = A, where the scaling factor ηk is defined as (2.6). The following
is a pseudocode of the QSNV iteration:

QSNV algorithm:

1: X0 = A
2: η0 = 1/

√
αβ and k = 0

3: repeat

4: compute QR decomposition

[
ηkXk

I

]
=

[
Q1

Q2

]
R

5: Xk+1 = 2Q1Q
H
2

6: if k = 0 then
7: η1 =

√
(α + β)/(2

√
αβ)

8: else
9: ηk+1 =

√
(ηk + 1/ηk)/2

10: end if
11: k = k + 1
12: until convergence
13: U = Xk

Now we consider the DWH iteration (3.3). Iteration (3.3) can be equivalently
written as

(4.5) Xk+1 =
bk
ck

Xk +

(
ak − bk

ck

)
Xk(I + ckX

H
k Xk)

−1, X0 = A/α,

where the weighting triplet (ak, bk, ck) is defined as (3.14). By Theorem 4.1, iteration
(4.5) can be written using the QR decomposition as follows, referred to as the QR-
based dynamically weighted Halley (QDWH) iteration:

(4.6)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[√
ckXk

I

]
=

[
Q1

Q2

]
R,

Xk+1 =
bk
ck

Xk +
1√
ck

(
ak − bk

ck

)
Q1Q

H
2 .

The following is a pseudocode of the QDWH iteration:
QDWH algorithm:

1: X0 = A/α,
0 = β/α
2: k = 0
3: repeat
4: ak = h(
k), bk = (ak − 1)2/4, ck = ak + bk − 1

5: compute QR decomposition

[√
ckXk

I

]
=

[
Q1

Q2

]
R

6: Xk+1 = (bk/ck)Xk + (1/
√
ck) (ak − bk/ck)Q1Q

H
2

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2711

7:
k+1 =
k(ak + bk

2
k)/(1 + ck

2
k)

8: k = k + 1
9: until convergence

10: U = Xk

For the practical implementations of the QSNV and QDWH methods, we only
need estimates α̂ and β̂ of α and β satisfying 0 < β̂ ≤ σmin(A) ≤ σmax(A) ≤ α̂. We
can simply use α̂ = ‖A‖F . An estimate of β = σmin(A) is a nontrivial task [6, 16, 17].

For the SN method, the estimate β̂ = 1/‖A−1‖F is suggested in [4]. However, it is not
practical for the QSNV and QDWH methods since A−1 is not calculated explicitly.
By the inequality ‖A‖1/√n ≤ ‖A‖2 ≤ √

n‖A‖1, we have β = σmin(A) = ‖A−1‖−1
2 ≥

(
√
n‖A−1‖1)−1. Therefore, we may use the lower bound of β as an estimate, i.e.,

(4.7) β̂ = (γ
√
n)−1,

where γ is the LAPACK 1-norm estimate of A−1 [19, Chap. 15]. In section 5, we will

examine the effect of the estimate β̂ on the convergence of the QDWH iteration. The
numerical examples suggest that it is harmless to use a rough estimate β̂ as far as

̂0 = β̂/α̂ is a lower bound of σmin(X0). We note that QDWH and Gander’s algorithm
use the normalized initial matrix X0 = A/α, whereas SN and QSNV use X0 = A.
However, the scalars α and β need to be provided in all these methods.

To end this section, let us consider the arithmetic cost of the QDWH method.
Note that the QSNV and QDWH iterations share the same computational kernel,
namely,

(a) compute [ηX
I] = [Q1

Q2
]R, and

(b) form X̂ = Q1Q
H
2 .

A straightforward implementation is to first compute the QR decomposition of the
2n× n matrix by a dense QR decomposition using the LAPACK routine DGEQRF [1].
The cost is 10

3 n
3 flops. Then we form Q1 and Q2 explicitly by using DORGQR. Its cost is

10
3 n

3 flops. Finally, we compute the product Q1Q
H
2 by the matrix-matrix multiplica-

tion routine DGEMM in BLAS with the cost 2n3 flops. In summary, the arithmetic cost
of each QDHW iteration is 26

3 n
3 flops. Since it generally takes at most six iterations

to converge, the total cost of the QDWH method is at most 52n3 flops.

In contrast, the cost of each SN iteration is 2n3 flops if the matrix inversion
is computed by LU factorization-based routines DGETRF and DGETRI in LAPACK.
Together with the fact that it generally needs at most nine steps to converge, the total
cost of the SN method is at most 18n3 flops. Therefore, the cost of the QDWH method
is about three times more than that of the SN method. If the matrix inversion in the
SN iteration is calculated using a bidiagonal reduction-based algorithm for backward
stability [4], then it increases the cost to 6n3 flops per iteration. This makes the total
cost up to 54n3 flops. In this case, the costs of the SN and QDWH methods are about
the same.

We note that it is possible to reduce the cost of the QDWH method by exploiting
the diagonal block in the QR decomposition step. We can first compute the QR
decomposition of ηX and then carefully reduce the augmented matrix into a triangular
form by using Givens rotations. The cost per QDWH iteration is reduced to (16/3)n3

flops. Thus the cost of six iterations of QDWH iterations is thereby bounded by 32n3

flops. We plan to report the detail of this algorithm and its parallel implementation
in future work.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2712 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

5. Numerical examples. This section shows several numerical experiments to
demonstrate the numerical behaviors of the QDWH method. All numerical experi-
ments were performed in MATLAB 7.4.0 and run on a PC with Intel� CoreTM 2 Duo
processor. The machine epsilon is εM � 2.2 × 10−16. The stopping criterion (3.21)
is used for the cubically convergent methods, namely, Halley, Gander, DWH, and
QDWH iterations. For the quadratically convergent Newton-type methods, namely,
SN, NV, SNV, and QSNV iterations, the stopping criterion (3.22) is applied. Since
A−1 is computed explicitly in the SN iteration, the estimates of extreme singular val-
ues are α̂ = ‖A‖F and β̂ = 1/‖A−1‖F . Otherwise, we use the estimates α̂ = ‖A‖F
and β̂ as in (4.7).

The accuracy of the computed polar decomposition is tested by the residual norm
res = ‖A − ÛĤ‖F /‖A‖F , where Û is the computed polar factor of A and Ĥ is the

computed Hermitian factor given by Ĥ = 1
2 (Û

HA + (ÛHA)H). A method is said to
have behaved in a numerically backward stable manner when the residual norm is
smaller than cεM for a moderate constant c [20, p. 209].

Example 1. This example shows the effectiveness of the dynamical weighting in
terms of the number of iterations. Let A be 20 × 20 diagonal matrices such that the
diagonal elements form a geometric series with a11 = 1/κ and ann = 1. The condition
numbers of the matrices A are κ = 10, 102, 105, . . . , 1020. The reason for picking a
diagonal matrix is to minimize the effects of rounding errors. The following data show
the iteration counts and residual norms of three variants of Halley’s method.

κ 10 102 105 1010 1015 1020

Halley (3.1) 5 7 14 24 35 45
iter Gander (3.17) 6 7 9 14 18 24

DWH (3.3) 4 4 5 5 6 6

Halley (3.1) 4.7e-16 5.4e-16 2.4e-16 1.1e-16 1.0e-16 1.1e-16
res Gander (3.17) 7.6e-16 7.5e-16 8.0e-16 7.4e-16 8.0e-16 6.4e-16

DWH (3.3) 4.9e-16 3.8e-16 3.1e-16 5.7e-16 6.6e-16 5.4e-16

From the above table, we see that Gander’s iteration is faster than Halley’s iteration
but still increases substantially with the increase of the condition numbers. The DWH
iteration converges the fastest, all within six steps as predicted in section 3.

Example 2. The purpose of this example is to show that three variants of the
Newton iteration are numerically unstable. Consider the simple 3 × 3 matrix A =
U∗ΣV T∗ , where Σ = diag{108, 1, 10−8},

U∗ =

⎡⎣ sin θ 0 cos θ
0 1 0

− cos θ 0 sin θ

⎤⎦ and V∗ =

⎡⎣ sin θ cos θ 0
− cos θ sin θ 0

0 0 1

⎤⎦ , θ = π/3.

The following table shows that three variants of Newton’s iteration, namely, the NV
iteration (2.4), SNV iteration (2.5), and QSNV iteration (4.4), are numerically un-
stable. The QR-based implementation in the QSNV iteration improves the backward
stability, but it is still not numerically backward stable to machine precision.

SN NV SNV QSNV DWH QDWH
iter 9 31 9 9 6 6
res 1.1e-16 4.9e-3 5.1e-3 1.1e-9 3.1e-11 3.3e-16

The instability of the SNV method, including QSNV, has been observed in previous
studies [7, 5]. This numerical observation led us to give up QSNV and turn to the study

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2713

of a Halley-type iteration. We note that, from the last column of the previous table,
the QDWH method performed in a backward stable manner to machine precision.

Example 3. This example is to compare the SN and QDWH methods on
numerical stability and convergence rate. The bidiagonal reduction-based matrix
inversion method is used in the SN method to guarantee the numerical backward
stability. We construct three groups of 20×20 test matrices using the MATLAB func-
tion gallery(′randsvd′, 20, kappa), where the condition number kappa is set to be
102, 108, and 1015, respectively. The following table shows the minimum and maxi-
mum numbers of iterations and residual norms from 100 test runs.

κ2(A) 102 108 1015

min max min max min max
iter QDWH 4 5 5 5 6 6

SN 6 6 8 8 9 9

res QDWH 4.2e-16 7.8e-16 4.7e-16 8.1e-16 2.8e-16 7.1e-16
SN 4.3e-16 6.5e-16 5.8e-16 9.5e-16 3.4e-16 1.2e-15

We observe that both SN and QDWH methods exhibit excellent numerical stability.
The QDWH method needs about two-thirds as many iterations as the SN method
does, as discussed in section 3. We have also tested many other types of matrices such
as extremely ill-conditioned Hilbert matrices. In all our experiments, the QDWH
method converged within six iterations and performed in a backward stable manner.

Example 4. In this example, we examine the sufficiency of the QDWH stopping
criterion (3.21), which is looser than the one used for SN and QSNV. We generated
100 test matrices as in Example 3, where the condition number kappa is set to be
108. The following table shows the values ‖Xk −Xk−1‖F , the corresponding residual

norms ‖A− ÛĤ‖F /‖A‖F , and the distance from orthogonality ‖XH
k Xk − I‖F at the

iterations k = 4, 5, 6.

k 4 5 6
min max min max min max

‖Xk −Xk−1‖F 4.2e-2 6.1e-2 1.7e-7 5.1e-7 1.5e-15 2.4e-15
res 6.6e-8 2.2e-7 4.7e-16 8.1e-16 4.8e-16 7.8e-16

‖XH
k Xk − I‖F 3.6e-7 1.0e-6 1.9e-15 3.0e-15 2.0e-15 3.2e-15

As we can see, when the QDWH stops at k = 5 after satisfying the stopping criterion
(3.21), the residual norms and the distance from orthogonality are at the order of
10−15 or smaller. Therefore, the stopping criterion (3.21) is a reliable and realistic
stopping criterion.

Example 5. In this example, we investigate the impact of estimates α̂ and β̂ of
α = σmax(A) and β = σmin(A) on the convergence of the QDWH method. Since
‖A‖F/√n ≤ ‖A‖2 ≤ ‖A‖F , α̂ = ‖A‖F is a safe and reliable choice (see Remark 2).

Let us focus on the effect of the estimate β̂. Let A ∈ R20×20 be generated by using
randsvd as in Example 3 with κ2(A) = 108. The following table shows the number of

QDWH iterations and residual errors for different estimates β̂.

̂β/β 10−9 10−6 10−3 1 103 106 109

iter 6 6 6 5 12 18 24
res 5.8e-16 6.2e-16 7.3e-16 5.8e-16 6.1e-16 8.2e-16 9.3e-16

These results suggest that a severely overestimated β̂ slows down the convergence
substantially but that an underestimated β̂ is essentially harmless on the convergence

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2714 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

rate and numerical stability. We further performed many tests for other types of
matrices and drew the same conclusion. Hence, in practice, it is important to make
sure that β̂ ≤ σmin(A) if possible. This observation has led us to use the estimate in
(4.7). Why such crude estimates of σmax(A) and σmin(A) work so well is a topic of
future study.

6. Conclusion. A dynamical weighting scheme for the Halley iteration is intro-
duced in this paper. It is proven that the DWH method is globally and asymptotically
cubically convergent. The DWH method can be implemented using QR decomposi-
tions without explicit matrix inversions, which is desirable for the emerging multicore
and heterogeneous computing systems. Extensive numerical results indicate that the
QDWH method performs in the same backward stable way as the SN method. The
QDWH method is more expensive in arithmetic cost than the SN iteration with LU-
based inversions, and it is about the same if the SN iteration is implemented using
the bidiagonal reduction-based matrix inversions. Theoretical proof of the numerical
backward stability of the QDWH method is a subject of future study.

Appendix A: Solving the max-min problem. In this appendix, we consider
an analytic solution of the optimization problem (3.12) and (3.13). In [26], Nie de-
scribes a scheme to reformulate the problem as a standard semidefinite programming
(SDP) problem so that we can solve it by using an SDP software such as SeDuMi [28].

Let us restate the optimization problem (3.12) and (3.13) as follows:
Let

g(x; a, b) =
x(a+ bx2)

1 + (a+ b− 1)x2
,

where (a, b) ∈ D = {(a, b) | a > 0, b > 0 and a + b > 1}. Let
 be a
prescribed constant and 0 <
 ≤ 1. Find (a∗, b∗) ∈ D such that

(A.1) 0 < g(x; a∗, b∗) ≤ 1 for
 ≤ x ≤ 1,

and (a∗, b∗) attains the max-min

(A.2) max
(a,b)∈D

{
min

�≤x≤1
g(x; a, b)

}
.

We first consider the case 0 <
 < 1 and treat the case
 = 1 at the end.

A.1 Partition of D. First we note that g(x; a, b) is a continuously differentiable
odd function of x. The first and second partial derivatives of g(x; a, b) with respect to
x are

(A.3) ∂xg(x; a, b) =
b(a+ b− 1)x4 − (a(a+ b− 1)− 3b)x2 + a

(1 + (a+ b− 1)x2)2

and

(A.4) ∂xxg(x; a, b) =
2(a− 1)(a+ b)x((a + b− 1)x2 − 3)

(1 + (a+ b− 1)x2)3
.

The derivative of g(x; a, b) with respect to a is given by

(A.5) ∂ag(x; a, b) =
x(1− x2)(1 + bx2)

(1 + (a+ b− 1)x2)2
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2715

0 1 2 3 4
0

1

2

3

I

a
IV

a = 1
2 (1 − b +

√
1 + 34b + b2)

II

III

b

a = 1 − b

a = b + 2

Fig. A.1. Partition of domain D.

It is easy to see that g(x; a, b) is a strictly increasing function of a on 0 < x < 1.

By some basic algebra manipulation, we derive the following lemma.

Lemma A.1. Consider the domain (a, b) ∈ D. If a > Γ ≡ 1
2 (1−b+

√
1 + 34b+ b2),

then g(x; a, b) has two real positive critical points 0 < xm(a, b) < xM (a, b). If a = Γ,
then g(x; a, b) has one critical point 0 < xm(a, b). If a < Γ, then g(x; a, b) has no real
critical points. Furthermore, xm(a, b) > 1 if and only if 1 < a < 3 and a < b+ 2, and
xM (a, b) > 1 if and only if 1 < a < 3 or a > b+ 2.

In view of Lemma A.1, we partition D into the following four domains:

• DI = {(a, b) | a > b+ 2}.
• DII = {(a, b) | Γ ≤ a ≤ b + 2, b ≥ 1}.
• DIII = {(a, b) | 1− b < a < Γ}.
• DIV = {(a, b) | Γ ≤ a ≤ b+ 2, b < 1}.

These four domains are illustrated by Figure A.1.

A.2 Exclusion of DI, DIII, and DIV. We show that domains DI, DIII, and
DIV can be immediately excluded for further considerations since, when (a, b) are in
these domains, either the condition (A.1) is violated or there is no maximum value
satisfying (A.2).

When (a, b) ∈ DI, g(x; a, b) has the critical points xm(a, b) < 1 and xM (a, b) > 1.
By (A.3), we have ∂xg(1; a, b) < 0. Noting that g(1; a, b) = 1, there must be an x such
that
 < x ≤ 1 and g(x; a, b) > 1. This violates the constraint (A.1). Hence, domain
DI is excluded from further consideration.

When (a, b) ∈ DIII, g(x; a, b) has no critical point. By (A.3), we have ∂xg(x; a, b) >
0 for x ∈ [0, 1], so g(x; a, b) is strictly increasing on [0, 1]. In addition, g(0; a, b) = 0,
and g(1; a, b) = 1. The condition (A.1) is satisfied. However, it follows from (A.5)
that h(a, b) = min�≤x≤1 g(x; a, b) is a strictly increasing function of a. Since DIII is
right-end open with respect to a, i.e., the boundary curve a = Γ is not included,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2716 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

h(a, b) will not have a maximum on DIII.
3 Hence the domain DIII can be removed

from consideration.

Finally, when (a, b) ∈ DIV, the critical points xm(a, b), xM (a, b) > 1. Similar to
the discussion of domain DIII, we can show that ∂xg(x; a, b) > 0 on x ∈ [0, 1] and
that g(0; a, b) = 0 and g(1; a, b) = 1. Hence, the condition (A.1) is satisfied. By (A.5),
h(a, b) = minl≤x≤1 g(x; a, b) is a strictly increasing function of a. Since DIV includes
the boundary line a = b+2, h(a, b) has the maximum (with respect to a) only on the
boundary line a = b+2. On the boundary line, g(x; b+2, b) is an increasing function of
b since ∂bg(x; b+2, b) > 0. Hence, H(b) = min�≤x≤1 g(x; b+2, b) is a strictly increasing
function of b. However, DIV does not include the point (a, b) = (3, 1); therefore, H(b)
has no maximum. Consequently, domain DIV can be removed from consideration.

A.3 Searching on domain DII. Let us focus on domain DII. When (a, b) ∈
DII, the critical points satisfy xm(a, b), xM (a, b) ≤ 1. (We define xM (a, b) = xm(a, b)
when a = Γ.) By (A.4), we have ∂xxg(x; a, b) ≤ 0 at x = xm(a, b) and ∂xxg(x; a, b) ≥ 0
at x = xM (a, b), where both equalities hold only when a = Γ. Therefore, we have the
following lemma.

Lemma A.2. When (a, b) ∈ DII and a > Γ, g(x; a, b) has the local maximum at
xm(a, b) and the local minimum at xM (a, b). When (a, b) ∈ DII and a = Γ, g(x; a, b)
is monotonically increasing on [0, 1].

A.3.1 Further partition of DII. To find the subregion D0
II of DII in which

(A.1) is satisfied, let us further divide domain DII into two subdomains:

• Da
II = {(a, b) | (a, b) ∈ DII and xm(a, b) <
}.

• Db
II = {(a, b) | (a, b) ∈ DII and xm(a, b) ≥
}.

When (a, b) ∈ Da
II, by Lemma A.2, we know that g(x; a, b) does not have a local

maximum on [
, 1]. Since a differentiable function on a closed interval takes its max-
imum at either the endpoints or the local maximum, we have max�≤x≤1 g(x; a, b) =
max{g(
; a, b), g(1; a, b)}. Noting that g(1; a, b) = 1, we have the following lemma.

Lemma A.3. For (a, b) ∈ Da
II, g(
; a, b) ≤ 1 is the necessary and sufficient condi-

tion to meet (A.1).

We now show that the condition g(
; a, b) ≤ 1 is violated for (a, b) in a subset of
Da

II. Consider the case g(
; a, b) = 1. It implies that a = b
+ 1 + 1/
 ≡ a1(b). Let us
further partition Da

II into two subdomains:

• Da,1
II = {(a, b) | (a, b) ∈ Da

II and a ≤ a1(b)}.
• Da,2

II = {(a, b) | (a, b) ∈ Da
II and a > a1(b)}.

When (a, b) ∈ Da,1
II , by (A.5), g(
; a, b) is a strictly increasing function of a. Since

g(
; a1(b), b) = 1, it follows that, for any Δa ≥ 0, we have g(
; a1(b) − Δa, b) ≤ 1.
Using Lemma A.3 and noting that any point in Da,1

II can be written as (a1(b)−Δa, b)

for some Δa ≥ 0, it follows that, for (a, b) ∈ Da,1
II , the condition (A.1) is met.

When (a, b) ∈ Da,2
II , we have g(
; a, b) > 1, and so (A.1) is violated since g(
; a1(b)+

Δa, b) > 1 for any Δa > 0. Therefore, Da,2
II is excluded from further consideration.

Next consider (a, b) ∈ Db
II. By Lemma A.2, g(x; a, b) is increasing on [
, xm(a, b)],

decreasing on [xm(a, b), xM (a, b)], and increasing on [xM (a, b), 1]. Therefore, it fol-
lows that max�≤x≤1 g(x(a, b); a, b) = max{g(xm(a, b); a, b), g(1; a, b)}. Noting that
g(1; a, b) = 1, we have the following result.

3Here we are using a basic result from calculus that says a strictly increasing function f(x) has
no maximum value on a right-open interval.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2717

Lemma A.4. For (a, b) ∈ Db
II, g(xm(a, b); a, b) ≤ 1 is the necessary and sufficient

condition to meet (A.1).

We show that the condition g(xm(a, b); a, b) ≤ 1 is violated for (a, b) in a subset
of Db

II. Consider the case g(xm(a, b); a, b) = 1, which implies a = 2
√
b + 1 ≡ a2(b),

which we get by solving g(xm(a, b); a, b) = 1 and ∂xg(xm(a, b); a, b) = 0 for a. Let us
first partition Db

II into two subdomains:

• Db,1
II = {(a, b) | (a, b) ∈ Db

II and a ≤ a2(b)}.
• Db,2

II = {(a, b) | (a, b) ∈ Db
II and a > a2(b)}.

By the same argument as the one we used to exclude domain Da,2
II , we can show

that (A.1) is satisfied when (a, b) ∈ Db,1
II and is violated when (a, b) ∈ Db,2

II . Therefore,

Db,2
II is excluded.

A.3.2 Characterization of D0
II. By the above arguments we conclude that,

only when (a, b) ∈ D0
II = Da,1

II

⋃Db,1
II , the condition (A.1) is satisfied. We next identify

the boundary of D0
II. We first note that the line a = b + 2 cannot be the boundary

of D0
II since on the line, ∂xg(1; b + 2, b) = 0 and ∂xxg(1; b + 2, b) > 0, there exists

x such that
 < x ≤ 1 and g(x; a, b) > 1, which violates the the condition (A.1).
Consequently, the boundary of D0

II consists of the following:

• a = Γ and
• a = a1(b) and xm(a, b) <
 or
• a = a2(b) and xm(a, b) ≥
.

Basic algebra shows that a1(b) > Γ and a2(b) > Γ on b ≥ 1, so a = Γ is the left-
side boundary of D0

II. To determine the right-side boundary, we note that a1(b) is the

tangent line of the curve a2(b) at (â, b̂) ≡ (2+�
� , 1

�2). This also means that xm(â, b̂) =
.
Furthermore, through basic algebra manipulation, we can verify that

(i) d
dbxm(a1(b), b) < 0 on b > 1/
2,

(ii) d
dbxm(a2(b), b) < 0 on b ≥ 1.

From the above facts, we conclude that the right-side boundary with respect to a of
D0

II is a = a2(b) for 1 ≤ b ≤ b̂ and a = a1(b) for b̂ > b. Using (A.5), we see that any
point on the left of this boundary satisfies (A.1), so we conclude that

(A.6) D0
II = {(a, b) | (Γ ≤ a ≤ a2(b) and 1 ≤ b ≤ b̂) and (Γ ≤ a ≤ a1(b) and b > b̂)}.

The shaded region in Figure A.2 illustrates the region D0
II for the case
 = 0.4.

A.3.3 Optimal solution on boundary of D0
II. Now we need to consider

only the region D0
II, defined in (A.6). Recall that h(a, b) = min�≤x≤1 g(x; a, b) is a

strictly increasing function of a. Hence, for a fixed b, h(a, b) can be maximized at only
the right-side boundary. Therefore, the optimal solution will occur on the right-side
boundary of D0

II, i.e., on the curve a = a2(b) for b ∈ [1, b̂] or the line a = a1(b) for

b ∈ (̂b,∞).

In fact, the line a = a1(b) for b ∈ (̂b,∞) is removed from consideration. This
is because ∂bg(x; a1(b), b) < 0 on
 < x < 1 and min�≤x≤1 g (x; a1(b), b) is a strictly
decreasing function of b and does not reach its maximum on the left-open interval
b ∈ (̂b,∞).

Now let us consider the curve a = a2(b) for b ∈ [1, b̂]. Rewriting a = a2(b) =
2
√
b+ 1 as a function of a, we have

(A.7) b2(a) = (a− 1)2/4, 3 ≤ a ≤ â.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2718 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

3 6 10
1

10

20

b

a = b + 2
a

a = Γ

(â, b̂)

a = a1(b)

a = a2(b)

Fig. A.2. Shaded region is D0
II for � = 0.4.

By Lemma A.2 and the fact that xm(a, b) ≥
 on the curve a = a2(b), we know that
g(x; a, b2(a)) is increasing on x ∈ [
, xm(a, b)], decreasing on x ∈ [xm(a, b), xM (a, b)],
and increasing again on x ∈ [xM (a, b), 1]. It follows that

(A.8) min
�≤x≤1

g(x; a, b2(a)) = min{s1(a), s2(a)},

where

s1(a) ≡ g(
; a, b2(a)) =

(4a+ (a− 1)2
2)

4 + (a+ 3)(a− 1)
2
,

s2(a) ≡ g(xM (a, b); a, b2(a)) =
4a3/2

(a+ 3)
√
(a+ 3)(a− 1)

.

The following lemma is readily verified.
Lemma A.5. s1(a) is increasing and s2(a) is decreasing on a ∈ [3, â]. Further-

more, s1(3) ≤ s2(3), and s1(â) ≥ s2(â).
Lemma A.5 implies that there exists a∗ ∈ [3, â] such that

(A.9) s1(a∗) = s2(a∗).

Solving (A.9) for a∗ yields a∗ = h(
), where h(
) is as defined in (3.15). Note that
Lemma A.5 also implies that min�≤x≤1 g(x; a, b2(a)) is increasing on a ∈ [3, a∗] and
decreasing on a ∈ [a∗, â] with respect to a. Therefore, min�≤x≤1 g(x; a, b2(a)) is max-
imized at a = a∗.

By (A.7), the optimal value of b is given by b∗ = 1
4 (a∗ − 1)2. (a∗, b∗) attains the

max-min in (A.2), and the value is given by

g(
; a∗, b∗) = max
a,b∈D

{ min
�≤x≤1

g(x; a, b)} =

(a∗ + b∗
2)

1 + (a∗ + b∗ − 1)
2
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

HALLEY’S ITERATION FOR POLAR DECOMPOSITION 2719

The max-min value g(
; a∗, b∗) is used to update
 in (3.16). Finally, we note that if

 = 1, the solution gives a∗ = 3 and b∗ = 1. In this case, the DWH iteration (3.3) and
the Halley iteration (3.1) coincide.

Acknowledgments. We are grateful to Professor Hongguo Xu for sending us the
unpublished work [5]. We thank Professor Nick Higham for his numerous comments
and detailed suggestions on an early version of the manuscript and for sending us
reference [7]. We thank the referees for their helpful suggestions and comments.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, 1999.

[2] T. A. Arias, M. C. Payne, and J. D. Joannopoulos, Ab initio molecular-dynamics techniques
extended to large-length-scale systems, Phys. Rev. B, 45 (1992), pp. 1538–1549.

[3] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing Communication in Lin-
ear Algebra, Technical report UCB/EECS-2009-62, Electrical Engineering and Computer
Science, University of California, Berkeley, CA, 2009; also available as LAPACK Working
Note 218.

[4] R. Byers and H. Xu, A new scaling for Newton’s iteration for the polar decomposition and
its backward stability, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 822–843.

[5] R. Byers and H. Xu, unpublished, 2001.
[6] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, An estimate for the

condition number of a matrix, SIAM J. Numer. Anal., 16 (1979), pp. 368–375.
[7] S. Crudge, The QR factorization and its applications, Master’s thesis, University of Manch-

ester, 1998.
[8] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, Communication-avoiding parallel and

sequential QR factorization, Technical report UCB/EECS-2008-74, Electrical Engineering
and Computer Science, University of California, Berkeley, CA, 2008.

[9] J.-L. Fattebert and F. Gygi, Linear scaling first-principles molecular dynamics with con-
trolled accuracy, Comput. Phys. Comm., 162 (2004), pp. 24–36.

[10] W. Gander, On Halley’s iteration method, Amer. Math. Monthly, 92 (1985), pp. 131–134.
[11] W. Gander, Algorithms for the polar decomposition, SIAM J. Sci. Comput., 11 (1990),

pp. 1102–1115.
[12] S. L. Graham, M. Snir, and C. A. Patterson, eds., Getting up to Speed, The Future of

Supercomputing, The National Academies Press, Washington, DC, 2005.
[13] F. Gygi, Architecture of Qbox: A scalable first-principles molecular dynamics code, IBM J.

Res. Dev., 52 (2008), pp. 137–144.
[14] F Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski, J. A. Gunnels, V. Austel, J. C.

Sexton, F. Franchetti, S. Kral, C. W. Ueberhuber, and J. Lorenz, Large-scale elec-
tronic structure calculations of high-Z metals on the Bluegene/L platform, in Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, ACM, 2006.

[15] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, Tall and Skinny QR Matrix Factoriza-
tion Using Tile Algorithms on Multicore Architectures, Technical report UT-CS-09-645,
University of Tennessee, Knoxville, TN, 2009; also available as LAPACK Working Note
222.

[16] W. W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311–316.
[17] D. J. Higham, Condition numbers and their condition numbers, Linear Algebra Appl., 214

(1995), pp. 193–213.
[18] N. J. Higham, Computing the polar decomposition — with applications, SIAM J. Matrix Anal.

Appl., 7 (1986), pp. 1160–1174.
[19] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia,

2002.
[20] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, 2008.
[21] N. J. Higham and P. Papadimitriou, A parallel algorithm for computing the polar decompo-

sition, Parallel Comput., 20 (1994), pp. 1161–1173.
[22] C. Kenney and A. J. Laub, On scaling Newton’s method for polar decomposition and the

matrix sign function, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 688–706.
[23] A. Kie�lbasiński and K. Ziȩtak, Numerical behaviour of Higham’s scaled method for polar

decomposition, Numer. Algorithms, 32 (2003), pp. 105–140.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

2720 YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANÇOIS GYGI

[24] A. Kie�lbasiński and K. Ziȩtak, Note on “A new scaling for Newton’s iteration for the polar
decomposition and its backward stability” by R. Byers and H. Xu, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 1538–1539.

[25] B. Laszkiewicz and K. Ziȩtak, Approximation of matrices and a family of Gander methods
for polar decomposition, BIT, 46 (2006), pp. 345–366.

[26] J. Nie, private communication, 2009.
[27] F. Song, A. YarKhan, and J. Dongarra, Dynamic Task Scheduling for Linear Algebra

Algorithms on Distributed-Memory Multicore Systems, in Proceedings of the Conference
on High Performance Computing, Networking, Storage and Analysis, ACM, 2009; also
available as LAPACK Working Note 221.

[28] J. F. Sturm, Using SeDuMi 1.02, A MATLAB toolbox for optimization over symmetric cones,
Optim. Methods Softw., 11–12 (1999), pp. 625–653.

[29] Z. Zhang, H. Zha, and W. Ying, Fast parallelizable methods for the Hermitian eigenvalue
problem, J. Comput. Math., 25 (2007), pp. 583–594.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

