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ABSTRACT 
The recently-introduced susceptance element exhibits many 
prominent features in modeling the on-chip magnetic couplings. 
For an RCS circuit, it is better to be formulated as a second-order 
system. Therefore, corresponding MOR (model-order reduction) 
techniques for second-order systems are desired to efficiently deal 
with the ever-increasing circuit scale and to preserve essential 
model properties. In this paper, we first review the existing MOR 
methods for RCS circuits, such as ENOR and SMOR, and discuss 
several key issues related to numerical stability and accuracy of 
the methods. Then, a novel technique, SAPOR (Second-order 
Arnoldi method for Passive Order Reduction), is proposed to 
effectively address these issues. Based on an implementation of a 
generalized second-order Arnoldi method, SAPOR is numerically 
stable and efficient. Meanwhile, the reduced-order system also 
guarantees passivity.* 

1. INTRODUCTION 
As the IC design and fabrication technology advances, 
interconnect delay becomes a dominant factor for determining the 
performance of the whole chip. This makes the accurate extraction 
and evaluation tools for on-chip interconnects an indispensable 
part of current VLSI EDA software. However, the ever-increasing 
signal frequency and circuit complexity together pose great 
challenges to interconnect modeling and simulation techniques. 

As the operating frequency of the state-of-the-art IC chips 
continues to increase, it becomes a necessary practice to model 
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the magnetic coupling effects of interconnects. The traditional 3-
D inductance extraction methods are based on partial inductance 
concept, and the resulted inductance matrix is usually very large 
and dense [4], which may cause great difficulties to the 
subsequent simulation process. Recently, as an alterative approach, 
a new susceptance element has been introduced to model the on-
chip magnetic couplings [2, 8]. The inherent characteristic of 
susceptance provides the advantage that as the distance increases, 
the mutual susceptance drops much faster than the mutual 
inductance does. As a result, the susceptance matrix is diagonally 
dominant, and can be sparsified by a simple truncation method 
without disrupting the positive definiteness. This enables the 
development of fast simulation methods. 

Model-order reduction (MOR) techniques have been widely used 
to reduce the scale of the extracted interconnect circuits as well as 
to expedite the simulation. Usually, a linear circuit can be 
equivalently formulated in the form of a first-order system or a 
second-order system [7, 9]. Thus, MOR techniques can be 
classified into two categories accordingly.  

For MOR of the first-order formulation, the pioneering work is 
AWE [6], which uses a reduced-order system to match the 
explicitly-calculated moments of the original system.  However, 
AWE suffers from numerical instability and cannot generate high-
order models. Therefore, some other MOR methods based on 
Krylov subspace techniques [3] were proposed. They often lead to 
a numerically stable order reduction process, which is highly 
desired for practical applications. Furthermore, special attention 
has been paid to maintain the passivity of the reduced-order 
model because common circuit simulation methods require 
provably passive models to ensure the stability of the simulation 
process. In [5], PRIMA was developed based on Arnoldi process, 
which may provide guaranteed passivity. However, PRIMA is not 
numerically efficient for large-scale circuits. More importantly, 
when directly applied to RCS circuits, PRIMA cannot guarantee 
passivity [9]. 

The techniques for MOR of the second-order formulation are 
developed in a similar manner. In [7], ENOR method was 
proposed for the second-order systems, which can generate a 
passive reduced-order model by utilizing the symmetry positive 
definite (s.p.d.) property of the system matrices. However, like 
AWE, ENOR uses a recursive formula to calculate the moments 
of the original system explicitly. ENOR is therefore not 
numerically stable. To address this issue, SMOR method was 
proposed in [9] trying to employ the Krylov subspace techniques. 
Based on a recursive relation similar to the one in ENOR, SMOR 
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eliminates the auxiliary variables that are not orthonormalized in 
ENOR method, thus improves the numerical stability and 
accuracy. However, as demonstrated later in this paper, the 
projection subspace formed by SMOR method is only an 
approximation of the space spanned by the moments of the 
original system. As a result, the reduced-order system by SMOR 
cannot match the moments of the original system exactly. 
Therefore, the accuracy of the reduced-order model cannot be 
guaranteed.  

It is better to formulate an RCS circuit as a second-order system 
since many good properties of the susceptance matrix can be 
preserved in this form [9]. However, up to now, existing MOR 
techniques for the second-order formulation still leave many key 
issues to be resolved, such as numerical stability and accurate 
moment matching. A Krylov subspace based MOR technique is 
much more attractive for the second-order formulation, just like 
PRIMA for the first-order systems.  

Recently, Bai and Su proposed a second-order Arnoldi method 
(SOAR) [1] for solving the quadratic eigenvalue problem. In this 
paper, we present a modified version of this method for the 
model-order reduction of second-order formulation of RCS 
circuits. By fully utilizing the symmetric positive definiteness of 
the system matrices, the proposed novel method, SAPOR 
(Second-order Arnoldi method for Passive Order Reduction), 
generates guaranteed passive models. Furthermore, since SAPOR 
is a numerical procedure similar to the well-known Arnoldi 
procedure, it is numerically more stable and efficient than ENOR. 
Also, the reduced-order model can accurately match the moments 
of the original system, which outperforms SMOR. 

The rest of the paper is organized as follows. In Section 2, we 
review the formulation of RCS circuits and outline ENOR and 
SMOR methods. Our new SAPOR approach, a modified second-
order Arnoldi-based order reduction process, is described in 
Section 3. Several numerical examples are reported in Section 4 to 
demonstrate the effectiveness of our proposed method. 
Concluding remarks are given in Section 5. 

2. BACKGROUND REVIEW 
2.1 MOR of RCS Circuit 
Since the susceptance matrix can be regarded as the inverse of the 
inductance matrix, the nodal equations for an RCS circuit may be 
formulated as 
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where V(t) and IS(t) are the unknown vectors of node voltage and 
susceptance current; J(t) is the current source vector; G, C and S 
are matrices of conductance, capacitance and susceptance, 
respectively; ES and B are incidence matrices for susceptances and 
current sources. Performing the Laplace transform on (1), we have 
the nodal equation in frequency domain as 
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where V(s), IS(s) and J(s) are Laplace transforms of V(t), IS(t) and 
J(t), respectively. Obviously, this is a first-order system in terms 
of s. 

In most applications, only nodal voltages are of interests, and the 
susceptance currents in vector IS are intermediate variables. 
Therefore, we may eliminate IS from (2). From the lower part of 
the above frequency domain equation (2), it can be obtained that 
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s
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Substituting (3) into the upper part of (2), we have 

 )()(1 sBJsV
s

GsC =Γ++  (4) 

where T
SS SEE=Γ . This second-order formulation is equivalent 

to (2), except for the eliminated susceptance currents. 

For a circuit with N nodes (excluding the ground node), the order 
of equation (4) is also N. If it is desired to reduce the circuit to a 
lower order n, a MOR technique can be employed to construct an 
orthonormal basis Q for the moment vectors of nodal voltage up 
to order n. Then by performing an orthogonal projection on the 
original system using Q, we obtain a reduced-order system of the 
same form 

 )(~)(~~1~~ sJBsV
s

GCs =Γ++  (5) 

where CQQC T=~ , GQQG T=~ , QQT Γ=Γ~ , VQV T=~ , and 

BQB T=~ . 

For an RCS circuit in form of (4), the matrices C, G and  are all 
symmetry positive semi-definite. In [7], it is proved that the 
orthogonal projection preserves the passivity of the original 
system. This means the reduced-order system (5) has guaranteed 
passivity. 

2.2 ENOR Method 
In ENOR method [7], the moments of the original system are 
explicitly generated and orthonormalized via a recursive formula. 
By substituting variable s with ( )zss −= 10 , where s0 is a 
selected frequency expansion point, and introducing an auxiliary 

quantity 
z

zVzY
−
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)()( , we have the following recursive relation 

(for 0≥k ): 
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where Vk, Yk and Jk are actually the k-th moments of V, Y and J, 
expanded about frequency s0; and Γ++=

0
0

1
s

GCsP . Then, the 

moments of V can be generated by this recursive scheme and be 
orthonormalized by a Gram-Schmidt process, up to any desired 
order. 

However, the moments computed explicitly by the above 
recursive relation are prone to numerical instability. Moreover, 
only the V vectors are orthonormalized in the Gram-Schmidt 
process, and Y vectors are calculated accordingly without 
orthonormalization. As noted in [9], when the iteration goes up, 
the magnitude of Y vectors could grow rapidly, which may also 
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cause numerical instability. For these reasons, ENOR method is 
not numerically stable. 

2.3 SMOR Method 
To address the numerical stability issue, SMOR [9] uses a method 
based on Krylov subspace to construct an orthonormal basis for 
model-order reduction. 

From (7), it can be derived that 
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Since impulse responses are normally required for moment 
matching, in the rest of the paper, we assume that 0=kJ  
for 1≥k . Substituting (8) into (6), we may have a new recurrence 
relation 
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Thus the Y vectors are eliminated. 

Next, the SMOR method constructs the generalized Krylov 
subspace according to the above formula. To speed up the model-
order reduction process and to avoid error accumulation, SMOR 
only preserves the first three terms on the RHS of (9) and uses the 
following recurrence 
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where kV ′  is an approximation of kV , as claimed in [8]. Then 
using the simplified recursive relation (10) and (11), kV ′  is 
generated and orthonormalized. 

By eliminating Y vectors in the recursive formula, SMOR method 
improves the numerical stability of the MOR process. However, 
because of the simplification made in (11), the subspace formed 
by SMOR method is only an approximation of the space spanned 
by the moments of the original system. Therefore, the reduced-
order system by SMOR cannot match the moments of the original 
system exactly. As a result, the accuracy of the reduced-order 
model cannot be guaranteed. 

3. SAPOR METHOD 
As mentioned in Section 2.1, in order to construct a stable and 
passive order reduction process for RCS circuits, we should 
construct an orthonormal basis of the space spanned by the 
moments of V and use it as the projection matrix Qn. Then, by 
performing an orthogonal projection on the original system (4), 
we can obtain the reduced-order system as in (5). 

Under the assumption that impulse response is required, i.e. 
0=kJ  for 1≥k , the nodal equation (4) of an RCS circuit can be 

rewritten as  

 ( ) 0
2 )( sBJsVsGCs =Γ++ . (12) 

Shifting it with σ+= 0ss , we have 
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where GCsD += 02 , Γ++= GsCsK 0
2
0 , 000 BJsb = , and 

01 BJb = .  

Applying Taylor expansion to V around expansion point s0, we 
have 
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2
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where V0, V1, V2, … are the moments of V. By comparing two 
sides of the above equation, we may have the following 
recurrence relation 
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However, it would be numerically unstable if one used the above 
recurrence to explicitly calculate the moments of V. Instead, a 
Krylov subspace based technique is more desirable. Equation (13) 
is in the form of a quadratic parameterized matrix equation (QPE). 
And in [1], a second-order Arnoldi method (SOAR) was proposed 
for the quadratic eigenvalue problem, which can be simply 
regarded as a QPE with zero RHS.  In this section, we will 
generalize the SOAR method and apply it for the MOR of RCS 
circuits. 

3.1 System Linearization 
Introduce a new variable )(σZ  satisfying 

 1)()( bZCV =+ σσσ . (18) 

Substituting (18) into (13), we have 

 0bKVDVZ =++− σσ . (19) 

Combining (18) and (19), we get 
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By moving  ( )AI σ−  to the RHS of (20) and performing a 
Maclaurin series expansion, we have  
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Ai  is the i-th moment of 
Z
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actually the first moments of V and Z, respectively.  

Equation (20) is a linearized form of (13) with RHS independent 

of σ . If 
Z
V  is the solution of (20), V must be the solution of 

(13), which means that the upper part of the i-th moment of    

Z
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3.2 Orthonormalization Process 
In this subsection, we will use a generalized version of the 
second-order Arnoldi method (SOAR) [1] to construct an 
orthonormal basis of the space spanned by the moments of V. 

The generalized version of SOAR is described in Figure 1. This 
variant of SOAR is similar as the original algorithm in [1] except 
that in the original algorithm, the initial vector p0 is always set to 
an all-zero vector. 

To ensure the integrity and concision, we have the following 
theorems: 

Theorem 1: If the generalized SOAR algorithm does not stop in 
step 10, vectors  q1, q2, …, qn form an orthonormal basis of the 
moment space of V.  

Theorem 2: If we use the matrix Qn obtained by the generalized 
SOAR algorithm to perform a projection on the system (4) and 
obtain the projected system (5), the moments of the reduced-order 
system (5) will match the first n moments of the original system 
(4).  

The proof of Theorem 1 is similar to the one for the original 
SOAR algorithm [1]. Theorem 2 can be proved subsequently. The 
proofs for these theorems are omitted here due to the limitation of 
space. Theorem 1 ensures that Qn is an orthonormal matrix. 
Therefore, after a congruent transformation using Qn, the obtained 
system (5) may preserve the passivity of the original system (4). 

Theorem 2 guarantees that the reduced-order system can 
accurately match the moments of the original system. 

Similar technology as described in [1] can be employed when the 
algorithm stops at step 10. The techniques for tackling with this 
breakdown case can also help to improve the stability of the 
orthonormalization process [1]. 

In the orthonormalization process, the only matrix inversion 
required is 1−K . Since K is both symmetric positive definite 
(s.p.d.) and sparse, there are many efficient methods to compute a 
sparse Cholesky factorization of K, and then efficiently apply it to 
the matrix-vector multiplication involving 1−K . Moreover, the 
generalized SOAR can be modified to a memory-saving variant, 
where the vectors p1, p2, …, pn are not explicitly saved. 
Unfortunately, due the limited length of the paper, it cannot be 
expanded here. 

3.3 Summary of SAPOR 
Finally, our novel technique SAPOR (Second-order Arnoldi 
method for Passive Order Reduction), can be outlined as follows: 

1) Formulating the RCS circuit as the second-order system in (4); 
2) Shifting (4) with σ+= 0ss  to obtain (13); 
3) Introducing a variable )(σZ  satisfying (18), and linearizing 

the system to the form of (20); 
4) Using the generalized SOAR algorithm in Figure 1 to 

construct the orthonormal matrix Qn; 
5) Performing an orthogonal projection on the original system, 

and obtaining the reduced-order system as in (5). 

SAPOR provides the following advantages over the previous RCS 
circuit MOR techniques, such as ENOR and SMOR.  

First, in ENOR method, the moments of the voltage vector are 
explicitly calculated and orthonormalized, whereas SAPOR 
utilizes the Krylov subspace technique to achieve a numerically 
more stable orthonormalization process. For the MOR of second-
order formulation, the relationship between SAPOR and ENOR is 
just like that between Arnoldi-based method and AWE for the 
first-order system. Our experiments show that SAPOR is 
numerically far more stable than ENOR, and is quite preferable 
for practical applications. 

Second, as demonstrated in Theorem 1, SAPOR can correctly 
generate the subspace spanned by the moments of nodal voltage 
vector. Theorem 2 further guarantees that the reduced-order 
system can accurately match the moments of the original system 
so that SAPOR outperforms SMOR.  

Last but not least, by comparing the processes of SAPOR, ENOR 
and SMOR, we can find that the three algorithms employ similar 
operations in the MOR process up to the same order. This means 
the three methods have similar time complexity. 

4. NUMERICAL EXPERIMENTS 
In this section, we present several numerical experiments to 
demonstrate the efficiency of the proposed SAPOR method, and 
compare SAPOR with ENOR and SMOR methods. All three 
methods are implemented in MATLAB. Experiments are run on a 
PC with Intel Pentium IV 1.7G CPU and 1G RAM. 

Algorithm: Generalized SOAR 
Input: A, q0, p0 and an integer order n 
Output: the orthonormal matrix Qn  
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Figure 1.    Generalized SOAR algorithm 
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An interconnect circuit from industry serves as the example. The 
circuit, as shown in Figure 2, consists of an 8-bit bus and two 
shielding lines (grey ones in the figure). It should be noted that 
there are capacitive and magnetic couplings between any two of 
these 10 lines, which are not shown in the figure for simplicity 
and clarity reasons. The near end of the first line is driven by a 
current source as the excitation. The voltage of node A, which is 
at the far end of the same line, is of our interests. We use a 
susceptance-based extraction tool to acquire the circuit topology 
and element parameters. The nodal equation of the obtained RCS 
circuit, in the form of (1), has 330 nodal voltages and 160 
susceptance currents; hence there are total 490 unknown variables. 
This means the original system has an order of 490. 

We may use the frequency response at node A as a criterion for 
judging the accuracy of the reduced-order system. We begin by 
using SAPOR to reduce the original system to different orders and 
compare the accuracy of the reduced-order systems. In Figure 3, 
the frequency responses are plotted for the original system and the 
reduced-order systems with orders 40, 60 and 80. Errors of the 
reduced-order systems are given in Figure 4. At the low frequency 
region, i.e., the region up to 2 GHz, all three systems can match 
the exact response perfectly with the error magnitude around 

1210− , which is mainly caused by the finite word length of the 
computer. As the order goes up, the reduced system can match the 
exact response in a wider frequency range due to more matched-
moments. This is important in the simulation of high-speed 
circuits because wider matched frequency range means the 
reduced system can accommodate signals with faster transition 
time. 

For the sake of comparison, we perform ENOR and SMOR to the 
same circuit. The errors of the reduced-order systems obtained by 
ENOR and SMOR methods are plotted in Figure 5 and Figure 6, 
respectively. For the ENOR method, we can find that as the 
reduced-order increases, the error almost stays at the same 
magnitude. This may well exhibit the numerical instability of 
ENOR for high-order models. As to the SMOR method, it has a 
higher accuracy compared with ENOR. However, as 
aforementioned, SMOR cannot exactly match the moments of the 
reduced-order system with the moments of the original system. 
Due to this systematical error, SMOR never reaches the accuracy 
as high as SAPOR does for this example.  

Finally, we give one figure to depict the errors of these three 
MOR techniques with the same reduced order. We set the order of 
the reduced system to be 80 for all three methods and we obtain 
the frequency responses of node A for the three reduced-order 
systems. Plot in Figure 7 is the error comparison for these 
responses.  As we can see, ENOR is most inaccurate among the 
three methods; this is due to the numerical instability of the 
recursive reduction process in explicit moment computation. With 
improved orthonormalization algorithm, SMOR is more accurate 
than ENOR. SAPOR performs the best, with the response almost 
indistinguishable from the exact one at more than 15 GHz. This is 
because that SAPOR can accurately generate the subspace 
spanned by the moments of the original system. As to other 
reduction orders, the comparison results are similar, thus are 
neglected here due to the space limitation. 

For more complicated circuits, which require the reduced-order 
systems to have higher orders, more significant accuracy 

improvements by SAPOR can be expected. This means that the 
advantages of SAPOR will be more prominent as the circuit scale 
continuously increases. 

Figure 2.    8-bit bus with two shielding lines 

 
Figure 3.    Comparison of frequency responses 

by SAPOR with three different orders 

 
Figure 4.    Errors of SAPOR with three different orders
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5. CONCLUSIONS 
In this paper, a novel technique, SAPOR (Second-order Arnoldi 
method for Passive Order Reduction), is proposed for the model-
order reduction of RCS circuits. By exploiting the symmetric 
positive definiteness of the system matrices, SAPOR can generate 
guaranteed passive models for RCS circuits, which is highly 
desired in the simulation with nonlinear elements. Based on the 
generalized second-order Arnoldi method (SOAR), the new 
model-order reduction process is both numerically stable and 
efficient. The resulted reduced-order model can accurately match 
the moments of the original system. For larger and more complex 
circuits, more significant improvements by SAPOR are expected. 
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Figure 5.    Errors of ENOR with three different orders 

 
Figure 6.    Errors of SMOR with three different orders 

 
Figure 7.    Errors of ENOR, SMOR and SAPOR 

with the same reduced-order 
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