
Parallelization of the QR Decomposition

with Column Pivoting Using Column Cyclic
Distribution on Multicore and GPU Processors

Andrés Tomás1, Zhaojun Bai1, and Vicente Hernández2

1 Department of Computer Science,
University of California, Davis, CA 95616, USA

{andres,bai}@cs.ucdavis.edu
2 Dept. Sistemas Informáticos y Computaciòn,

Universitat Politècnica de València E-46022 Valencia, Spain
vhernand@dsic.upv.es

Abstract. The QR decomposition with column pivoting (QRP) of a
matrix is widely used for rank revealing. The performance of LAPACK
implementation (DGEQP3) of the Householder QRP algorithm is limited
by Level 2 BLAS operations required for updating the column norms.
In this paper, we propose an implementation of the QRP algorithm us-
ing a distribution of the matrix columns in a round-robin fashion for
better data locality and parallel memory bus utilization on multicore
architectures. Our performance results show a 60% improvement over
the routine DGEQP3 of Intel MKL (version 10.3) on a 12 core Intel Xeon
X5670 machine. In addition, we show that the same data distribution is
also suitable for general purpose GPU processors, where our implemen-
tation obtains up to 90 GFlops on a NVIDIA GeForce GTX480. This is
about 2 times faster than the QRP implementation of MAGMA (version
1.2.1).

Topics. Parallel and Distributed Computing.

1 QR Decomposition with Column Pivoting

The QR decomposition with column pivoting (QRP) is proposed for computing
a rank revealing QR factorization (RRQR) [7]. Although QRP may fail to reveal
the numerical rank correctly, it is still a popular and economical method in
many applications. The QRP is also used as the first step to more robust RRQR
methods [2,8] and for accelerating a Jacobi method for computing the singular
value decomposition [5,6].

The QRP decomposition of A ∈ R
m×n is defined by an orthonormal Q and a

upper triangular matrix R such that

AP = QR,

where P is a permutation matrix chosen so that

|r11| ≥ |r22| ≥ · · · ≥ |rnn|

M. Daydé, O. Marques, and K. Nakajima (Eds.): VECPAR 2012, LNCS 7851, pp. 50–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Parallelization of the QR Decomposition 51

and moreover, for each i,

|Rii| ≥ ‖R(k:j,j)‖2 for j = i+ 1, . . . , n.

An outline of the Householder QRP algorithm is shown in Algorithm 1. Note
that the formula for the column norm updating is simplified here. The current
LAPACK implementation uses a more robust approach [4]. The omitted detail
is not relevant to the parallelization discussed in this paper.

Algorithm 1. QR decomposition with column pivoting

1 p1:n = 1 : n
2 c1:n = ‖Ae1:n‖22
3 for j = 1 : n
4 Choose i such that ci = max(cj:n)
5 if i �= j
6 swap(pi, pj); swap(Ai, Aj); swap(ci, cj)
7 end
8 Determine a Householder matrix Hj such that
9 HjAj:m,j = ±‖Aj:m,j‖2e1
10 Aj:m,j+1:n = HjAj:m,j+1:n

11 cj+1:n = cj+1:n −Aj,j+1:n · Aj,j+1:n

12 end

The main difference among the various implementations of Algorithm 1 is
how the Householder reflectors are applied. Since a Householder reflector H is a
rank-one modification of the identity,

H = I − τvvT ,

its application requires the computation

HA = A− τvvTA,

which can be implemented using three levels of BLAS. The current LAPACK
implementation (xGEQP3) is block based. It groups several rank-one updates for
exploiting the Level 3 BLAS operations [9].

Figure 1 shows the performance of Intel MKL1 routine DGEQP3 on a 12 core
(6 cores per socket) Intel Xeon X5670 machine. Here the execution is set up to
use one thread per core. The poor performance of DGEQP3 compared to DGEQRF

is because of the extensive use of the Level 2 BLAS operation DGEMV for column
norm updates, which is limited by the memory bandwidth and do not scale with
the number of cores. Figure 2 shows the amount of time spent by DGEQP3 on calls
to DGEMV and DGEMM relative to the total execution time on the same platform.
The reported amount of time for DGEMV does not include the unblocked part of
DGEQP3 which processes the last block of the matrix.

1 Intel MKL version 10.3 http://software.intel.com/en-us/intel-mkl

http://software.intel.com/en-us/intel-mkl

52 A. Tomás, Z. Bai, and V. Hernández

Fig. 1. Performance of Intel MKL routines DGEMM, DGEQRF, and DGEQP3 on a 12 core (6
cores per socket) Intel Xeon X5670 machine

Fig. 2. Execution time in percentage of Intel MKL routines DGEMV and DGEMM in DGEQP3

on a 12 core (6 cores per socket) Intel Xeon X5670 machine

Although DGEQP3 uses the Y TY T representation [10] like DGEQRF, it is not
fully blocked because of the column norm updating. The column norm updating
requires to compute the row vector vTA for each Householder reflection applied
to A. DGEQP3 updates the columns of A every k (block size) times. However, it
still has to fetch the whole trailing matrix for the matrix-vector product. As the
matrix size gets too large to fit entirely in cache memory, the performance of
DGEQP3 decreases to the level of DGEMV.

Parallelization of the QR Decomposition 53

2 Parallel QRP for Multicore Processors

The design of LAPACK DGEQP3 routine is to enclose parallelism inside BLAS
routines. In a typical multicore implementation this means that each BLAS
routine contains at least one OpenMP parallel section. Therefore, for each call
to BLAS, a whole set of threads is started and stopped. This thread manage-
ment overhead is negligible for Level 3 BLAS operations, but it could be very
significant for Level 1 and 2 BLAS operations due to the low computational in-
tensity, namely, the low average number of floating point operations per memory
access.

In contrast, we propose the following Algorithm 2 to use only one OpenMP
parallel section. The parallelism here is not inside BLAS operations, but among
the vector computations required for all columns. The critical parts of the algo-
rithm are implemented with synchronization primitives, which is more efficient
than starting and stopping threads.

Algorithm 2 is a block algorithm, where the block size is denoted as b. We
assume without loss of generality that the matrix size is an exact multiple of
b. The loop from lines 6 to 29 performs the panel factorization, that is, the
QR factorization of the first b columns. The only sequential part of this loop
is the pivot selection and computation of the Householder transform (lines 7 to
13). The rest of the loop updates the matrix F used to accumulate part of the
Householder matrices application,

H1H2 · · ·HkA = A− Y TY TA = A− Y FT .

The last loop in Algorithm 2 applies the Householder matrices to the rest of
the matrix (lines 30 to 35). Recent work on using a parallel cache assignment
approach to speed up the panel factorization can be found in [3].

Algorithm 2 processes the columns of the matrix in their natural order from
left to right. On a parallel machine, it is natural to group the processors into a
logical ring and deal columns in a round-robin fashion. This technique staggers
the computation across the processors and guarantees a load balanced compu-
tation. This distribution was first proposed in the context of the parallel imple-
mentation of a QR decomposition with local pivoting [1]. The selection of which
columns are processed by each thread is not left to the OpenMP runtime, but
explicitly controlled in lines 8, 15, and 31.

With the column cyclic distribution, each thread is ensured to work with the
same subset of matrix columns during all the processes. If the OpenMP runtime
guarantees processor affinity, this will provide good memory locality at the lower
levels of memory hierarchy. This is important in modern multicore processors
where each core has typically its own L1 cache. As each thread works only with a
subset of the columns, there is a good probability of accessing a column already
stored in the L1 cache inside the core associated with this thread.

54 A. Tomás, Z. Bai, and V. Hernández

Algorithm 2. OpenMP parallel QRP using column cyclic distribution

1 p1:n = 1 : n
2 #pragma omp parallel

3 i = omp get thread num(); t = omp get num threads()

4 c1:n = ‖Ae1:n‖22
5 for r = 1 : b : n− 1
6 for k = 1 : b
7 #pragma omp barrier

8 if r + k − 1 mod t = i
9 Choose u such that cu = max(cj:n)
10 if u �= j then swap(pu, pj); swap(Au, Aj); swap(cu, cj)
11 Apply previous transformations to Aj ← Aj + Y FT

12 Determine Householder matrix Hj

13 end
14 #pragma omp barrier

15 for j = r : r + k − 1
16 if j mod t = i then Tj−r+1,k = −τr+kYr+k−1Yj

17 end
18 #pragma omp barrier

19 for j = r : n
20 if j mod t = i
21 Fk,j = F:,jT:,k

22 if j > r + k − 1
23 Fk,j ← Fk,j − τr+kYr+k−1Aj

24 Ar+k−1,j ← Yr+k−1,:F
T
:,j

25 cr = cr −A2
j,r

26 end
27 end
28 end
29 end
30 #pragma omp barrier

31 for j = r + b : n
32 if j mod t = i
33 Aj:m,j ← Aj:m,j + FT

:,jYj,:

34 end
35 end
36 end

As the number of cores increases on modern multicore processors, the archi-
tecture is gearing towards a non-uniform memory access (NUMA) model. On
these architectures, each core has direct access to a part of the memory, but the
rest of the memory must be accessed via some communication network to other
core. This network is implemented by the cache hardware and is transparent to
the user. Therefore, these processors can be still programmed using the same
shared memory model as previous multicore processors. However, the memory

Parallelization of the QR Decomposition 55

Fig. 3. Performance comparison of the proposed algorithm and Intel MKL routine
DGEQP3 on a 12 core (6 cores per socket) Intel Xeon X5670 machine

access latency could have large variations depending on which part of the mem-
ory is accessed. In order to get good performance on these processors, techniques
from the distributed memory programming paradigm can be used to reduce the
communication among cores.

By the column distribution of Algorithm 2, a straightforward memory distri-
bution can be easily derived. The memory physically close to each core should
contain the columns updated by the thread associated to this core. This can be
implemented in current operating systems by allocating and filling this memory
from the thread itself. This technique is known in the literature as first touch
policy. As Algorithm 2 creates all threads at the start, this initialization can be
efficiently performed at the start of the process.

To guarantee that each consecutive column is stored in a different physical
memory page, the matrix must padded so the column length is a multiple of the
page size. This memory overhead could be important for small matrices, because
the typical page size on current platforms is 4096 bytes.

3 Performance Results

Figure 3 shows the results from an OpenMP implementation of Algorithm 2 on
a 12 core (6 cores per socket) Intel Xeon X5670 machine. Here the execution of
the proposed algorithm is set up to use one thread for each available core. The
block size for the proposed algorithm is set to 48, which it has been determined
empirically as the optimal for the platform. Moreover, the performance of the
proposed algorithm includes the cost of initializing the data distribution from
the standard Fortran matrix storage.

The proposed algorithm shows about 60% improvement over the optimized
DGEQP3 in Intel MKL for the matrix sizes tested. This improvement comes from
the data distribution, which allows faster memory access as a result of better data
locality and parallel memory bus utilization. Moreover, the proposed algorithm

56 A. Tomás, Z. Bai, and V. Hernández

Fig. 4. Performance of the proposed GPU implementation and MAGMA implementa-
tion of xGEQP3 on NVIDIA Tesla C2050

has less thread management overhead than the implementation which keeps
parallelism inside BLAS operations.

4 Parallel QRP for GPU Processors

In order to achieve good performance on a general purpose GPU processor, the
computation must be divided into independent parallel subtasks. Moreover, each
subtask must be also suitable to efficient parallelization by a certain number of
processors (typically a multiple of 32). The parallel distribution of Algorithm 2
can be easily adapted to the GPU parallel model, assigning each column to a
block of threads. If the matrix is sufficiently large, there is enough work to keep
all processors in a block busy, and enough blocks to keep the whole GPU busy.
The main difference with the multicore version is that the memory distribution is
not required, because the memory access on current GPU processors is uniform.

Figures 4 and 5 compare the GPU performance of Algorithm 2 and MAGMA’s
xGEQP3 routines2 on two NVIDIA Fermi platforms. In single precision, the GPU
implementation of Algorithm 2 obtains about 60 GFlops on Tesla C2050 and 90
GFlops on GeForce GTX480. This is about two times faster than the MAGMA
implementation using the same hardware. The improvement is because our im-
plementation runs entirely on the GPU, with no memory transfers from the
CPU. In contrast, the panel factorization of xGEQP3 in MAGMA is performed
on the CPU and the trailing matrix update on the GPU. This approach works
quite well for the LU decomposition with partial pivoting and the QR without

2 MAGMA version 1.2.1 released on June 29, 2012. http://icl.cs.utk.edu/magma/

http://icl.cs.utk.edu/magma/

Parallelization of the QR Decomposition 57

Fig. 5. Performance of the proposed GPU implementation and MAGMA implementa-
tion of xGEQP3 on NVIDIA GeForce GTX480

pivoting, because the panel factorization can be computed in parallel while the
GPU is still updating the trailing matrix with the previous block. However, the
overlap of computation and communication is not possible for the QR decom-
position with pivoting. The pivoting criteria requires that the trailing matrix
update must be completed before starting the panel factorization.

The performance results confirm that the QRP decomposition is limited by
memory speed. Therefore a GPU platform is more adequate for computing the
QRP than a traditional CPU because of raw memory bandwidth. Another inter-
esting observation is that the low-end GeForce GTX480 obtains better perfor-
mance than the high-end Tesla C2050 even in double precision. This is because
the C2050 has less memory bandwidth (in part due to ECC checking, which
could not be disabled in our experiments).

5 Conclusions

We proposed a parallel algorithm for computing the QRP decomposition on mul-
ticores. This algorithm uses a column cyclic memory distribution and only one
parallel OpenMP section. With the column cyclic distribution each processor
works with a subset of the columns, improving memory access bandwidth and
data locality. Moreover, it has lower thread management overhead than the im-
plementations which only use parallelism inside BLAS operations. The proposed
algorithm is about 60% faster than Intel MKL routine DGEQP3 on a 12 core Intel
Xeon X5670 machine.

Although the column cyclic data distribution is not required on a GPU, the
same strategy is employed to allocate work among the processors. Our CUDA

58 A. Tomás, Z. Bai, and V. Hernández

implementation of the QRP is about 2 times faster than the MAGMA version
of xGEQP3 on NVIDIA Fermi GPUs. Our implementation runs entirely on the
GPU, while MAGMA’s implementation splits the work between CPU and GPU,
which requires expensive data transfers. In other decompositions, such as LU or
QR, these transfers can be overlapped with computations, but this optimization
cannot be applied to QRP because of the pivoting selection criteria.

Acknowledgment. Tomás and Bai were supported in part by the U.S. DOE
SciDAC grant DOE-DE-FC0206ER25793 and NSF grant PHY1005502. This re-
search used resources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the U.S. DOE under
Contract No. DE-AC02-05CH11231.

References

1. Bischof, C.H.: A parallel QR factorization algorithm with controlled local pivoting.
SIAM J. Sci. Stat. Comput. 12, 36–57 (1991)

2. Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorisations. SIAM J. Ma-
trix Anal. Appl. 15, 592–622 (1994)

3. Castaldo, A.M., Whaley, R.C.: Scaling LAPACK panel operations using parallel
cache assignment. In: 15th ACM SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, pp. 223–231 (2010)

4. Drmač, Z., Bujanović, Z.: On the failure of rank-revealing QR factorization software
– a case study. ACM Trans. Math. Softw. 35, 12:1–12:28 (2008)

5. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm I. SIAM J.
Matrix Anal. Appl. 29, 1322–1342 (2008)

6. Drmač, Z., Veselić, K.: New fast and accurate Jacobi SVD algorithm II. SIAM J.
Matrix Anal. Appl. 29, 1343–1362 (2008)

7. Golub, G.H.: Numerical methods for solving linear least squares problems. Numer.
Math. 7, 206–216 (1965)

8. Gu, M., Eisenstat, S.: Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM J. Sci. Comput. 17, 848–869 (1996)

9. Quintana-Orti, G., Sun, X., Bischof, C.H.: A BLAS-3 version of the QR factoriza-
tion with column pivoting. SIAM J. Sci. Comput. 19, 1486–1494 (1998)

10. Schreiber, R., van Loan, C.: A storage-efficient WY representation for products of
Householder transformations. SIAM J. Sci. Stat. Comput. 10, 53–57 (1989)

	Parallelization of the QR Decomposition with Column Pivoting Using Column Cyclic
Distribution on Multicore and GPU Processors

	1 QR Decomposition with Column Pivoting
	2 Parallel QRP for Multicore Processors
	3 PerformanceResults
	4 Parallel QRP for GPU Processors
	5 Conclusions
	References

