
Advancing Large Scale Many-Body QMC Simulations
on GPU Accelerated Multicore Systems

Andres Tomas∗, Chia-Chen Chang†, Richard Scalettar† and Zhaojun Bai∗
∗Department of Computer Science, University of California, Davis, CA 95616, USA

{andres,bai}@cs.ucdavis.edu
† Department of Physics, University of California, Davis, CA 95616, USA

cxc639@gmail.com, scalettar@physics.ucdavis.edu

Abstract—The Determinant Quantum Monte Carlo (DQMC)
method is one of the most powerful approaches for understand-
ing properties of an important class of materials with strongly
interacting electrons, including magnets and superconductors.
It treats these interactions exactly, but the solution of a system
of N electrons must be extrapolated to bulk values. Currently
N ≈ 500 is state-of-the-art. Increasing N is required before
DQMC can be used to model newly synthesized materials like
functional multilayers.

DQMC requires millions of linear algebra computations of
order N matrices and scales as N3. DQMC cannot exploit par-
allel distributed memory computers efficiently due to limited
scalability with the small matrix sizes and stringent procedures
for numerical stability. Today, the combination of multisocket
multicore processors and GPUs provides widely available
platforms with new opportunities for DQMC parallelization.

The kernel of DQMC, the calculation of the Green’s function,
involves long products of matrices. For numerical stability,
these products must be computed using graded decompositions
generated by the QR decomposition with column pivoting. The
high communication overhead of pivoting limits parallel effi-
ciency. In this paper, we propose a novel approach that exploits
the progressive graded structure to reduce the communication
costs of pivoting. We show that this method preserves the same
numerical stability and achieves 70% performance of highly
optimized DGEMM on a two-socket six-core Intel processor. We
have integrated this new method and other parallelization
techniques into QUEST, a modern DQMC simulation package.
Using 36 hours on this Intel processor, we are able to compute
accurately the magnetic properties and Fermi surface of a
system of N = 1024 electrons. This simulation is almost an
order of magnitude more difficult than N ≈ 500, owing to
the N3 scaling. This increase in system size will allow, for
the first time, the computation of the magnetic and transport
properties of layered materials with DQMC. In addition, we
show preliminary results which further accelerate DQMC
simulations by using GPU processors.

Keywords-Quantum Monte Carlo; QRP; multicore; GPU

I. INTRODUCTION

The Hubbard Hamiltonian [1] is one of the most important

models in condensed matter physics [2], [3], [4]. It provides

a theoretical framework for describing electron interactions

that are responsible for phenomena such as magnetism,

metal-insulator transitions, and high-temperature supercon-

ductivity. Quantum Monte Carlo (QMC) simulations have

contributed greatly to the understanding of the Hubbard

Hamiltonian [5], [6], [7], [8], [9], [10], [11], [12]. Advances

in algorithms as well as in hardware have allowed two

dimensional lattice sizes up to 24 × 24 to be simulated

[13]. These are large enough to quantify many of the

finite size effects which are the primary challenge to QMC,

and are of interest to a large class of materials, like the

cuprate superconductors, whose fundamental properties are

determined by single 2D planes.

An exciting frontier is the application of QMC to the

behavior at the interface between materials, that is, where

two or more 2D layers come into contact. The interest

is driven by advances in materials synthesis [14] which

have made possible increasing precision in the creation and

characterization of boundaries. These breakthroughs hold

the potential for producing new systems with novel, and

technologically important, functional properties [15], [16],

[17]. To model an interface realistically, six to eight layers

must be studied to allow for the most important effects of the

boundary to penetrate into the bulk. State-of-the-art QMC

simulations of around 500 sites are only barely sufficient

for this purpose: a system of eight 8 × 8 or six 10 × 10
layers has an aspect ratio for which the extent of each plane

is no greater, or only marginally greater, than the dimension

perpendicular to the interface.

Thus in order to address the physics of forefront materials

science, a further increase in QMC simulation capabilities

is required. The capability to simulate eight 12 × 12 or

six 14 × 14 layers, for example, would allow a very sig-

nificant enhancement of our ability to model magnetism

and conductivity at interfaces. In this paper we report on

the development of simulation software using multicore and

GPU technology to achieve this aim.

QUantum Electron Simulation Toolbox (QUEST)1 is a

Fortran 90/95 package that implements the Determinant

Quantum Monte Carlo (DQMC) method [18], [19] for the

Hubbard Hamiltonian [13]. QUEST uses a two-dimensional

periodic rectangular lattice as the default geometry. How-

ever, the lattice size and physical parameters are very

1http://www.cs.ucdavis.edu/∼bai/PETAMAT

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.37

308

2012 IEEE 26th International Parallel and Distributed Processing Symposium

1530-2075/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPS.2012.37

308

generally configurable through an input file. A great variety

of physical measurements, both static and dynamic, can be

calculated by QUEST.

Typical matrix sizes in DQMC are not sufficiently large

to achieve high parallel performance on a large number

of processors. The workload is not enough to compen-

sate the communication overhead. Therefore, DQMC has

not been efficiently parallelized on massively distributed

memory computer systems. However, current multisocket

multicore systems offer shared memory parallelism with low

communication overhead. On these systems, linear algebra

operations can be efficiently parallelized for small size ma-

trices [20]. In addition, the recent development of GPU com-

puting technology provides an additional parallel computing

paradigm which is suitable to these kinds of operations

[21], [22]. The combination of multicore processors and

GPUs provides an efficient and widely available platform for

DQMC parallelization. This paper is focused on the parallel

implementation of QUEST on such computer systems. We

use optimized BLAS/LAPACK [23] implementations, such

as Intel MKL and Nvidia CUBLAS, and develop some

OpenMP and CUDA codes for those operations that are not

available in these libraries.

Green’s function calculation is the computational kernel

in QUEST. A Green’s function G is a matrix whose rows

and columns are labeled by the sites of the lattice. The

importance of the Green’s function is that it determines

the probability for the electron to travel between sites. The

Green’s function evaluation consists of computing a long

product of matrices and matrix inversion. Numerical stability

is a critical issue. Traditional algorithms for computing the

product of matrices are based on graded decompositions

generated by the pivoted QR (QRP) [24]. Although QRP

in LAPACK uses level 3 BLAS operations as much as

possible, it still requires level 2 BLAS operations for up-

dating the pivot criteria [25]. The performance of the QRP

decomposition is only a fraction of the performance of the

QR decomposition (without pivoting) in the state-of-the art

multicore implementations (see Figure 1).

In this paper, we propose a novel approach that exploits

the progressive graded structure in the algorithm to reduce

the communication costs of pivoting. This approach replaces

most of the pivoted QR decompositions by QR decom-

positions without pivoting to greatly improve parallel per-

formance, and meanwhile provides the required numerical

stability. In addition, we also present an implementation

of the Green’s function evaluation on a hybrid CPU+GPU

platform.

The rest of this paper is organized as follows. Section II

gives a brief introduction to DQMC. Section III explains

in detail the techniques used in QUEST for Green’s func-

tion evaluation and for reducing its computational cost.

Section IV introduces a novel technique which achieves

better parallelism than the previous method on multicore

processors for computing the Green’s functions. Section V

confirms the validity of our implementation via physical

observables that can be compared with previous results in

the literature. Section VI shows preliminary results using a

GPU to further accelerate the Green’s function calculation.

Concluding remarks are in Section VII.

II. DQMC SIMULATIONS

A. The Hubbard Model

The Hubbard model consists of three terms

H = HT +HV +Hμ,

where HT , HV , and Hμ represent kinetic energy, interaction

energy, and chemical potential, respectively,

HT = −t
∑
〈r,r′〉,σ

(
c†r,σcr′,σ + c†r′,σcr,σ

)
,

HV = U
∑
r

nr,+nr,−,

Hμ = −μ
∑
r

(nr,+ + nr,−) .

The parameter t is the electron hopping amplitude between

nearest-neighbor sites indicated by 〈·, ·〉 in the summation

of HT . U > 0 is the strength of repulsive interaction when

two electrons with opposite spins occupy the same site.

μ controls the chemical potential. The operator c†r,σ (cr,σ)

creates (destroys) an electron on lattice site r with spin

σ ∈ {+,−} (up and down). The operator nr,σ counts the

density of electrons on site r.

At a finite temperature T , the expectation value of a

physical observable O, such as the momentum distribution

or the spin-spin correlation, is given by the thermal average

〈O〉 = 1

Z Tr
(Oe−βH)

,

where “Tr” is a trace over the Hilbert space of the Hubbard

Hamiltonian H, and

Z = Tr
(
e−βH)

,

is the partition function. β = 1/(kBT) is the inverse

temperature with kB being Boltzmann’s constant.

Let the inverse temperature be discretized β = LΔτ ,

where L denotes the number of inverse temperature slices

and Δτ is the time step size. Using the Trotter approxima-

tion, the partition function is then written as

Z = Tr

(
L∏

l=1

e−ΔτH
)

= Tr

(
L∏

l=1

e−ΔτHKe−ΔτHV

)
+O(Δτ2),

where HK = HT + Hμ includes the kinetic energy and

chemical potential terms which are quadratic in electron

309309

operators. Each of L potential energy terms, which are

quartic in electron operators, is decoupled into quadratic

form by introducing Hubbard-Stratonovich (HS) fields h,

one for each of the lattice sites and inverse temperature dis-

cretization intervals where electrons interact. Consequently,

the partition function becomes

Z =
∑
h

|M+(h)| |M−(h)| , (1)

where h = (hl,i) denotes the HS fields collectively. The

matrix Mσ(h) for σ ∈ {+,−} is defined as

Mσ(h) = I +BL,σ(hL)BL−1,σ(hL−1) . . . B1,σ(h1).

I is an identity matrix and for l = 1, 2, . . . , L,

Bl,σ(hl) = eσν diag(hl,1,hl,2,...,hl,N) e−ΔτK . (2)

The matrix K describes how electrons move among lattice

sites, and its diagonal elements contain the chemical poten-

tial terms. The quantity ν = cosh−1(eUΔτ/2) with U > 0
parameterizes the strength of electron interactions. The mul-

tidimensional summation in (1) is carried out stochastically

by Monte Carlo sampling, called the DQMC algorithm,

which will be described in next subsection.

B. The DQMC Algorithm

Matrices Mσ(h) in the partition function Z are of di-

mension N and they involve the product of L matrices.

Therefore, the computational complexity of their evaluation

is of order N3L. Currently, DQMC simulations can be

done on several hundreds of sites, up to a maximum of

N = 24 × 24 = 576. This ability has made the DQMC

method suitable for simulating strongly correlated two di-

mensional materials, since long range correlations (ten or

more lattice spacings) can be computed. However, as several

layers are considered, the transverse direction has to shrink

and this essential long range information will be lost unless

algorithmic improvements can be devised.

As described in Section II-A, the DQMC method uses a

discrete auxiliary field approach to formulate a computable

form of the partition function [18]. The resulting multidi-

mensional summation is then carried out by Monte Carlo

sampling. The DQMC method (outlined in Algorithm 1)

uses the Metropolis algorithm to find feasible spin con-

figurations via local search on the HS field. Initially, a

random configuration of the HS field is given. During the

simulation, each element of the HS field is visited, and a

new configuration that flips the element’s value is proposed.

The acceptance of the new configuration is determined by

the ratio of the product of determinants before and after

flipping. A complete visiting of all LN elements of the HS

field is called a sweep.

The DQMC simulation consists of two stages: warmup

and sampling. Each stage utilizes the Metropolis algorithm

for different purposes. In the warmup stage, the Metropolis

Algorithm 1 DQMC sweep

1) For l = 1, 2, · · · , L
a) For i = 1, 2, · · · , N

i) Flip h′l,i = −hl,i

ii) Compute the Metropolis ratio

rl,i =
|M+(h

′)| |M−(h′)|
|M+(h)| |M−(h)|

iii) Acceptance condition (random number r and

r ∼ uniform[0, 1])

hl,i ← h′l,i if rl,i ≥ r

2) Compute physical measurements

algorithm is used to thermalize the field configurations;

while in the sampling stage, the physical observables are

measured as the field continues to be sampled.

The Green’s function associated with a configuration h is

defined as

Gσ(h) = Mσ(h)
−1. (3)

Using this function, the Metropolis ratio rl,i in Algorithm 1

can be easily computed thanks to the fact that Mσ(h
′) is a

rank-1 update of Mσ(h) [26]. Specifically, for l = 1, at the

spatial site i = 1:

h′1,1 = −h1,1

and the Metropolis ratio r1,1 is given by

r1,1 = d+d−,

where for σ ∈ {+,−},
dσ = 1 + α1,σ(1− eT1 Mσ(h)

−1e1)

= 1 + α1,σ(1−Gσ
1,1(h)),

and

α1,σ = e−2σνh1,1 − 1.

Therefore, the gist of computing the Metropolis ratio r1,1 is

to compute the (1, 1)-element of the Green’s function matrix

Gσ(h) as in (3). If Gσ(h) has been computed explicitly

in advance, then it is essentially free, O(1) operations, to

compute the ratio r1,1.

If the proposed h′ is accepted, then the Green’s function

is updated by a rank-1 matrix:

Gσ(h)← Gσ(h)− α1,σ

r1,1
uσw

T
σ

where uσ = (I − Gσ(h))e1, wσ = (Gσ(h))T e1, and e1 is

the first column of the identity matrix.

Next, at the spatial site i = 2:

h′1,2 = −h1,2.

310310

By a similar derivation, we have

r1,2 = d+d−,

where for σ ∈ {+,−},
dσ = 1 + α2,σ(1−Gσ

1,2(h)),

and

α2,σ = e−2σνh1,2 − 1.

If the proposed h′ is accepted, the Green’s function is

updated by the rank-1 matrix

Gσ(h)← Gσ(h)− α2,σ

r1,2
uσw

T
σ

where uσ = (I −Gσ(h))e2 and wσ = (Gσ(h))T e2.

Similarly, for i = 3, 4, . . . , N , we can use the same

procedure to compute the Metropolis ratios r1,i and updating

the Green’s functions if necessary. In QUEST, this update

of the Green’s functions is delayed to lead to a block rank

update instead of individual rank-1 updates [27].

After i = N , the Green’s function cannot be updated

and it must be recomputed from its original formulation. In

our previous sequential QUEST implementation, the cost of

evaluating these full Green’s functions takes roughly 95%

of the total simulation time.

III. GREEN’S FUNCTION EVALUATION

DQMC simulations require a large number of consecutive

Green’s function evaluations. In this section, the algorithm

required for numerical stable evaluation is discussed first.

Then, we present techniques implemented in QUEST to

reduce its computational cost by exploiting the relation

between successive evaluations.

A. Green’s Function Evaluation

1) Stratification: In a simplified formulation, the Green’s

function in (3) is of the form

G = (I +BLBL−1 · · ·B1)
−1, (4)

where Bi = Bi,σ(hi) is defined in (2) and can be recast as

Bi = ViB,

Vi = eσνdiag(hi,1,hi,2,...,hi,N) is a diagonal matrix, and

B = e−ΔτK is a matrix exponential which does not change

during the simulation.

When L or U is large (that is, low temperatures or

strong interactions), the product matrix BLBL−1 · · ·B1 in

(4) is extremely ill-conditioned. Several methods have been

proposed to stabilize the computation by stratifying the

magnitude of elements in the matrix multiplications [28],

[29], [19], [24]. All those methods inevitably require the

pivoted QR decomposition. The stratification method shown

in Algorithm 2 proposed by Loh et al [19] is currently used

in QUEST to calculate G.

Algorithm 2 Stratification method

1) Compute the pivoted QR: B1 = Q1R1P
T
1

2) Set D1 = diag(R1) and T1 = D−1
1 R1P

T
1

3) For i = 2, 3, · · · , L
a) Compute Ci = (BiQi−1)Di−1

b) Compute the pivoted QR: Ci = QiRiP
T
i

c) Set Di = diag(Ri) and

Ti = (D−1
i Ri)(P

T
i Ti−1)

4) Compute G = (T−T
L QT

LDb +Ds)
−TDbQ

T
L

In Algorithm 2, elements of different energy levels, which

correspond to different magnitudes of numbers, are stratified

by the pivoted QR decomposition. At the last step of the

algorithm, Db and Ds are computed from DL as

Db(i) =

{
1/|DL(i)| if |DL(i)| > 1

1 otherwise

and

Ds(i) =

{
DL(i) if |DL(i)| ≤ 1

sgn(DL(i)) otherwise.

The stratification process protects small numbers from

being rounded off by mixing with large ones in matrix

products. All products in the algorithm involve matrices

that have elements of similar magnitude except for the

diagonal matrices. The parenthesis in the step 3a instructs

to first multiply Bi and Qi−1 before multiplying by Di−1.

For the typical parameters in DQMC simulations, Bi does

not have very large elements and Qi−1 is an orthogonal

matrix so the product could be computed accurately. Since

Di−1 is diagonal, the second product is just a column

scaling. Therefore, the matrix Ci can be accurately com-

puted. Obviously, we assume that these products can be

represented without either overflow or underflow. In the

step 3c, the product Ti = (D−1
i Ri)(P

T
i Ti−1) has also the

same property. Here the QR decomposition with pivoting

makes the largest element of D−1
i Ri less than one, therefore

the product Ti can be stably computed. The splitting of DL

into Db and Ds in the last step of the algorithm is made

for increasing the accuracy of the computation. A numerical

stability analysis of the stratification method can be found

in [24].

2) Matrix Clustering: In order to reduce the computa-

tional cost associated with the pivoted QR in the stratifica-

tion algorithm, we can work with only Lk = 	Lk
 matrices

by first clustering k of Bi matrices. Specifically, if we define

B̂i = BikBik−1 · · ·B(i−1)k+2B(i−1)k+1.

for i = 1, 2, . . . , Lk, then the product of L matrices in (4)

can be recast as the product of Lk matrices

BLBL−1 · · ·B2B1 = B̂Lk
B̂Lk−1

· · · B̂1.

In this way the number of iterations in the main loop of

Algorithm 2 is reduced by a factor k. Usually, a value of

311311

about k = 10 gives significant performance boost while

maintaining acceptable numerical stability [26].

B. Green’s Function Updating

1) Wrapping: As the simulation goes from the inverse

temperature slice l to the next l + 1, the Green’s functions

can be computed via wrapping. For example, consider the

Green’s functions from l = 1 to l = 2 in Algorithm 1, the

new Green’s function takes the form

Ĝ = (I +B1BLBL−1 · · ·B2)
−1.

It is easy to see that Ĝ can be computed from the previous

G defined in (4) by noting the relation

Ĝ = B1GB−1
1 .

This is referred to as wrapping. One can use the wrapping for

a number of times until the computed Green’s function loses

necessary numerical accuracy. Then the Green’s function

must be re-computed from scratch by the stratification

method (Algorithm 2). A typical value for the number of

wrappings is � = 10.

2) Recycling: When using wrapping and matrix cluster-

ing with k = � in a full DQMC simulation with thousands of

sweeps, the stratification algorithm computes the following

sequence of Green’s functions

(I + B̂Lk
B̂Lk−1 · · · B̂1)

−1

(I + B̂1B̂Lk
B̂Lk−1 · · · B̂2)

−1

(I + B̂2B̂1B̂Lk
B̂Lk−1 · · · B̂3)

−1

· · ·
(I + B̂Lk−1B̂Lk−2 · · · B̂1B̂Lk

)−1

(5)

and then starts over again a new sweep. We note that for the

new sweep, only the rightmost matrix cluster of the sequence

in (5) are changed in order, the rest of matrix clusters B̂i

are unchanged. Therefore, to reduce the computational cost,

we can store these matrix clusters instead of recomputing

them. Typical DQMC simulations require storing less than

one hundred matrices of size up to 1024×1024 (about 8MB

per matrix). This amount is not significant since we can

easily have far more than 1GB of main memory.

IV. MULTICORE IMPLEMENTATION

The performance bottleneck of the stratification algorithm

for Green’s function evaluation is the intensive use of the QR

decomposition with pivoting (QRP) (line 3b of Algorithm 2).

The LAPACK subroutine (DGEQP3) uses level 3 BLAS

operations for the trailing matrix update during the decom-

position. However, the choice of pivots still requires a level 2

operation for computing each Householder reflector [25].

Therefore, DGEQP3 is not a fully blocked algorithm like

the regular QR decomposition (DGEQRF). This imposes a

limit to the performance on multicore architectures with deep

memory hierarchies [30]. Figure 1 shows the performance

Figure 1. Performance comparison of three LAPACK routines in Intel
MKL library on a two-socket six-core Intel Westmere processor.

of three highly used routines in the stratification algorithm

on a two-socket six-core Intel Westmere processor.

We observe that the matrix-matrix multiplication (DGEMM)

has an excellent performance rate even for small matrix

sizes. In fact, the DGEMM performance rate of matrix size

1024×1024 is close to the maximum rate. The performance

rate of the regular QR decomposition (DGEQRF) is not as

good as DGEMM because of the overhead of panel updates

in the block QR algorithm for matrices of relative small

sizes [31], [32]. But even so, the performance rate of

DGEQRF is still much better than DGEQP3. Therefore, it is

highly desirable to modify the stratification algorithm such

that the most calls to DGEQP3 can be replaced by DGEQRF.

A. Stratification with Pre-pivoting

A key observation for replacing DGEQP3 by DGEQRF in

the stratification algorithm (Algorithm 2) is that as the algo-

rithm iterates, the diagonal elements in Di are in descending

order. It produces an almost column graded matrix Ci. As

a result, the QR decomposition with column pivoting of Ci

produces the permutation Pi with only very few column

interchanges from the initial ordering. Therefore, we propose

a variant of the stratification algorithm in Algorithm 3, where

a pre-pivoting permutation Pi is computed and applied, and

then a regular QR is used. The permutation Pi is computed

in the same way as in the QRP algorithm, i.e., the matrix

column norms are sorted in descending order. The new algo-

rithm preserves the essential graded structure of Ci although

not as strong as in the original stratification algorithm. In

312312

Section IV-C, we will compare the difference of computed

Green’s functions by two stratification algorithms.

Algorithm 3 Stratification with pre-pivoting method

1) Compute the pivoted QR: B1 = Q1R1P
T
1

2) Set D1 = diag(R1) and T1 = D−1
1 R1P

T
1

3) For i = 2, 3, · · · , L
a) Compute Ci = (BiQi−1)Di−1

b) Compute the permutation Pi such as Ĉi = CiPi

has decreasing norm columns

c) Compute a regular QR: Ĉi = QiRi

d) Set Di = diag(Ri) and

Ti = (D−1
i Ri)(P

T
i Ti−1)

4) Compute G = (T−T
L QT

LDb +Ds)
−TDbQ

T
L

B. OpenMP Parallelization

Algorithm 3 allows us to easily exploit the processing

power of multicore systems because most of numerical in-

tensive operations are carried by the QR decompositions and

the matrix-matrix products. On the other hand, for the fine-

grain operations such as the row and column scaling (lines

3a and 3d) of Algorithm 3) and column norms computation

(line 3b), we have to provide our own implementations to

benefit from the memory hierarchy parallelism inside the

multicore processors for the relatively small matrix sizes

in our DQMC simulation. Specifically, for the matrix row

and column scaling, by the definition of Bi = ViB, each

product by Bi in line 3a also includes a row scaling. These

matrix scalings are implemented using OpenMP to distribute

the work. To compute column norms for the pre-pivoting,

we observe that there is not sufficient workload to achieve

good parallel performance from the BLAS routine. Our

implementation uses OpenMP to compute several norms

simultaneously and obtains better parallel efficiency.

C. Performance Results

In this section, we first check the accuracy of the new

stratification algorithm, and then show the performance

improvements of Green’s function evaluations in QUEST.

In order to check the accuracy of the proposed stratifica-

tion variant, let us compare the Green’s functions computed

by Algorithms 2 and 3 for a set of typical values of U used in

DQMC simulations. Figure 2 shows the distribution of the

relative differences for 1000 Green’s function evaluations,

sampled from a full DQMC simulation with respect to differ-

ent value of U . The lattice size is 16×16 with L = 160 and

Δτ = 0.2 (β = 32). The relative difference is measured by

‖G− G̃‖F /‖G‖F , where G and G̃ are the Green’s functions

computed by Algorithms 2 and 3, respectively. We use a

box-and-whisker diagram for the distribution to show the

minimum, lower quartile (Q1), median (Q2), upper quartile

(Q3), and maximum differences. These results indicate that

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

U=2 U=3 U=4 U=5 U=6 U=7 U=8

Figure 2. Distribution of the relative differences between the original
and proposed algorithms for evaluating 1000 Green’s functions in DQMC
simulations.

Figure 3. Average time required for a Green’s function evaluation on a
two-socket six-core Intel Westmere processor.

most differences are below 10−12. Furthermore, the value

of U does not have a significant impact on the accuracy

of the Green’s functions evaluated by the new stratification

algorithm.

Next let us show the performance improvements of the

Green’s function evaluation in QUEST. Figures 3 and 4

shows the CPU elapsed time and the GFlops rate for eval-

uating G with different matrix dimensions (number of sites

N) and L = 160. These tests were run using a two-socket

six-core Intel Westmere processor. The performance reported

is the average in a full DQMC simulation that takes 1000

warming and 2000 measurements sweeps (Algorithm 1).

313313

Figure 4. Green’s function evaluation performance in GFlops on a two-
socket six-core Intel Westmere processor.

From Figure 3, we see that the execution time is up to

three times faster due to the performance enhancement

techniques presented in this paper, namely, stratification with

pre-pivoting and reuse of matrix clustering with k = � = 10.

The cost of Algorithm 3 is O(N3L). There are several

operations like matrix scaling by a diagonal and norm

computations (level 2 BLAS operations) with total cost

O(N2L). As N is relatively small, the impact of these

operations is not negligible. Taking into account this effect,

the performance of the improved Green’s function evaluation

is quite good, roughly 70% of the DGEMM GFlops rate and

even better than the QR decomposition (DGEQRF) as shown

in Figure 4.

V. PHYSICAL MEASUREMENTS

To demonstrate the new capability of multicore-based

QUEST, we show the results of two physical measurements

from full DQMC simulations with 1000 warming and 2000

measurement sweeps.

A. Physical Measurements

Two important physical observables of the Hubbard model

are the momentum distribution

〈nk,σ〉
and the z-component spin-spin correlation function

Czz(r) =
1

N

∑
r′
〈(nr+r′,+ − nr+r′,−) (nr′,+ − nr′,−)〉.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

(0,0) (π,π) (π,0) (0,0)

32x32
28x28
24x24
20x20
16x16

Figure 5. Mean momentum distribution 〈nk〉 of the two-dimensional
Hubbard model at average density ρ = 1, interaction strength U = 2, and
inverse temperature β = 32. 〈nk〉 is plotted along the momentum space
symmetry line (0, 0) → (π, π) → (π, 0) → (0, 0).

In these equations, nk,σ and nr,σ are electron density

operators in momentum and real space respectively, and

σ ∈ {+,−}. Expectation value of the real space density

operator nr,σ can be extracted from the diagonal terms of

the N ×N Green’s function matrix

〈nr,σ〉 = Gσ(r, r).

Its momentum space counterpart 〈nk,σ〉 is obtained from the

Fourier transformation of the full Green’s function matrix

〈nk,σ〉 = 1

N

∑
r,r′

eik·(r−r′) Gσ(r, r′).

The momentum distribution 〈nk,σ〉 is an important quantity

because it provides the information of the Fermi surface

(FS) and the renormalization factor (discontinuity at the

FS). Both properties are fundamental quantities in the so-

called Fermi liquid theory – one of the most important

theoretical paradigms in condensed matter physics and mate-

rials science. In Figure 5, the mean momentum distribution

(averaged over two spin components) is plotted along the

symmetry line in the momentum space for several lattice

sizes. At the interaction strength U = 2, a sharp FS can be

identified near the middle of the segment (0, 0) → (π, π).
Results for N ≤ 576 are in agreement with published

results [13]. Most importantly, 〈nk〉 obtained on the 32×32
lattice provides a much better estimation of the renormal-

ization factor due to its excellent spatial resolution in the

momentum space.

To further illustrate the benefit gained from the large-

scale 32 × 32 lattice simulation, the color contour plot of

the mean momentum distribution is shown in Figure 6 for

two different lattice sizes. It is clear that result obtained on

the 32×32 lattice reveals much more detail than the 12×12
data.

314314

-π 0 π

kx

-π

0

π
k y

0.0

0.2

0.4

0.6

0.8

1.0

-π 0 π

kx

-π

0

π

k y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Color contour plot of the mean momentum distribution 〈nk〉 of the two-dimensional Hubbard model on 12 × 12 (left) and 32 × 32 (right)
lattices. Simulation parameters are the same as Figure 5.

-6 0 6

x

-6

 0

 6

y

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

-16 -8 0 8 16

x

-16

-8

 0

 8

 16
y

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

Figure 7. z-component spin-spin correlation Czz(r) on 12× 12 (left) and 32× 32 lattices with average density ρ = 1, interaction strength U = 2, and
inverse temperature β = 32.

Next we examine the z-component spin-spin correlation

function Czz(r) which is often used to measure the magnetic

structure in the Hubbard model. In the simulated case,

namely average density ρ = 1, interaction strength U = 2,

and inverse temperature β = 32, the Hubbard model exhibits

an antiferromagnetic (AF) order where electron spin-spin

correlation shows a chessboard pattern. This is demonstrated

in Figure 7. However, in order to determine whether there

is a true magnetic order in the bulk limit N → ∞, the

correlation function at the longest distance Czz(Lx/2, Ly/2)
will need to be measured on different lattice sizes. The

results are then extrapolated to the N → ∞ limit to

determine the existence of the magnetic structure in the bulk

limit. While both panels in Figure 7 show AF order, it is

clear that results obtained on large lattices provide a better

estimation of the asymptotic behavior of Czz(Lx/2, Ly/2).

B. CPU Elapsed Time and Profile

Figure 8 shows the CPU elapsed time for the full DQMC

simulation with 1000 warming and 2000 measurement

sweeps. The line in the plot is the nominal execution time

predicted by the cost O(N3L) of DQMC using the 256 sites

315315

Figure 8. Actual time and nominal prediction (based on N3 scaling) for
a whole DQMC simulation with different number of sites.

Number of sites
256 400 576 784 1024

Delayed rank-1 update 14.2% 16.5% 16.7% 14.9% 13.9%
Stratification 48.5% 45.5% 44.1% 44.5% 44.2%
Clustering 8.4% 9.1% 9.7% 11.3% 12.0%
Wrapping 8.8% 9.4% 10.2% 11.5% 11.9%
Physical meas. 20.0% 19.4% 19.2% 17.9% 18.0%

Table I
EXECUTION TIME IN PERCENTAGE OF THE DIFFERENT STEPS IN A

QUEST SIMULATION.

simulation as a reference. The actual CPU elapsed time for

256 sites is 1.25 hours but for 1024 site it is only 28 times

as much (35.3 hours). This is better than predicted by the

asymptotical cost, where a simulation with 4N sites should

be 43 = 64 times slower than a simulation with N sites.

Note that the simple complexity O(N3L) does not take

into account that the parallel efficiency of linear algebra

operation improves as the matrix size grows as long as it

still fits in cache memory. For the number of sites (matrix

sizes) reported here, this parallel performance improvement

is sufficiently significant to partially compensate for the

O(N3L) asymptotical cost of DQMC simulations.

Table I shows the relative computation time for the

major steps in a full DQMC simulation. As we can see

that the computational time of Green’s function evaluations

(i.e., stratification, clustering and wrapping) is about 65%

of overall simulation time on the multicore system, and

is reduced reduced from 95% in the previous sequential

QUEST implementation.

VI. GPU ACCELERATION

General-Purpose Graphics Processing Units currently of-

fer more computational power than multicore processors

at a lower cost. Development environment for GPUs is

evolving towards greater simplicity of programming on

each new hardware generation, although it is still hard to

program and more difficult to achieve high efficiency than

multicore CPUs. An easy way of using GPUs for numerical

applications is to use optimized libraries, such as Nvidia

CUBLAS [33]. These libraries follow the standard BLAS

notion and provide standard interfaces for essential linear

algebra operations while hiding details of implementations

from users. These details include non-trivial aspects like

work distribution among processors and memory access

patterns. In this section we present some preliminary results

on using a GPU to accelerate the matrix clustering operation

(Section III-A2) and Green’s function wrapping operation

(Section III-B1).

A. Matrix Clustering

Algorithm 4 shows an implementation of the chain prod-

uct of several Bi = ViB matrices for the matrix clustering

discussed in Section III-B1. A common bottleneck of using

GPU is on data transfer between CPU and GPU memories.

In DQMC, the matrix B is fixed and it is computed and

stored at the start of simulation. The diagonal matrices Vi

change and needed to be copied to the graphics memory

each time. The resulting matrix A must be copied back to the

main memory. The transactions of NL+N2 floating point

values are relatively small and are not relevant compared to

the whole execution time.

Algorithm 4 Compute A = Bi+1 · · ·Bi+k using CUBLAS

Send Vi:i+k to GPU cublasSetMatrix
T ← B cublasDcopy
for j = 1, 2, . . . , n

Aj,1:n ← Vi,j × Tj,1:n cublasDscal
end
for l = 2, 3, . . . , k

T ← B ×A cublasDgemm
for j = 1, 2, . . . , n

Tj,1:n ← Vi+l,j × Tj,1:n cublasDscal
end
A← T cublasDcopy

end
Send A to CPU cublasGetMatrix

The computation of each Bi = ViB in Algorithm 4 is

made by a copy of the B matrix and repeated calls to

the vector scaling routine for each row. This trivial imple-

mentation is not quite efficient because each level 1 BLAS

routine is not able to achieve the full performance of the

316316

GPU. The latest version of CUBLAS provides a method to

simultaneously execute several kernels, allowing to scale all

rows of a matrix in parallel. However, the parallel speedup

obtained in this case does not compensate the overhead of

kernel management. More important is that the memory

access pattern is row by row which does not exploit the

coalescing memory access features of the graphics memory.

Algorithm 5 is an alternative CUDA kernel for computing

the product Bi = ViB. Here each thread of the GPU

computes the scaling of one matrix row. This guarantees that

there are sufficient threads to keep the multiple computing

elements occupied and all threads do exactly the same oper-

ations in the same order. Both conditions are critical to get

good performance. Also, consecutive threads read and write

in consecutive memory positions. This technique supports so

called coalesced accesses to improve memory bandwidth.

Moreover, the number of memory reads is minimized by

storing the Vi value in local memory for each thread. Like

level 1 BLAS routines, this procedure does not exploit

the full computational speed of the processor because is

it limited by memory access, but it is optimal in terms of

memory bandwidth. Last but not least, this procedure allows

us to avoid the matrix copy as in Algorithm 4.

Algorithm 5 CUDA kernel for Bi = diag(V)×B

k = blockIdx.x× blockDim.x+ threadIdx.x
if k < n

t← Vk

for j = 1, 2, . . . , n
Bik,j ← t×Bk,j

end
end

B. Wrapping

The GPU can also be used for accelerating the wrapping

operation (Section III-B1). Algorithm 6 is an implementation

of Ĝ = BiGB−1
i = ViBGB−1V −1

i . As before, B and

B−1 can be computed and stored in the memory of GPU

at the start of computation. The scaling by the diagonal

Vi is difficult to compute efficiently. Algorithm 7 is the

CUDA kernel for a more efficient way of computing the

scaling. This implementation is based on Algorithm 5 with

the addition of the column scaling factor u. This value is

different for each element inside the loop, giving a non-

coalesced memory access for each iteration. However, as

all threads read simultaneously the same position a texture

cache can be used to increase memory bandwidth.

C. Preliminary Performance Results

In this subsection, we report preliminary performance

results of the Green’s function evaluations (Algorithm 3)

on a hybrid CPU+GPU system. The tests were run on one

Algorithm 6 Compute G← BiGB−1
i using CUBLAS

Send G to GPU cublasSetMatrix
Send Vi to GPU cublasSetVector
T ← B ×G cublasDgemm
G← T ×B−1 cublasDgemm
for i = 1, 2, . . . , n

Gi,1:n ← Vi ×Gi,1:n cublasDscal
end
for j = 1, 2, . . . , n

G1:n,j ← A1:n,j/Gi cublasDscal
end
Send G to CPU cublasGetMatrix

Algorithm 7 CUDA kernel for computing G← diag(V)×
G× diag(V)−1

k = blockIdx.x× blockDim.x+ threadIdx.x
if i < n

t← Vk

for j = 1, 2, . . . , n
u← Vj (via texture)

Ai,j ← t×Ai,j/u
end

end

node of Carver at NERSC, which has a two-socket four-core

Intel Nehalem processor and a Nvidia Tesla C2050 GPU

processor with 448 computing elements. Both Intel MKL

and Nvidia CUBLAS libraries are available on Carver.

Figure 9 shows Gflops rates of GPU implementations for

matrix clustering and wrapping, including memory transfer

times. As we can see, the CUDA implementation of matrix

clustering is close to GPU DGEMM performance. This is

partially due to the fact that k matrix-matrix products are

performed on GPU with only one memory transfer. On

the other hand, the GPU implementation of wrapping only

computes two matrix-matrix products for each data transfer

and does not achieve the same level of performance as

the matrix clustering. However, the performance is much

better than the CPU DGEMM and improves with the matrix

dimension.

Figure 10 shows the performance of a hybrid CPU+GPU

implementation for computing the whole Green’s functions

(L = 160). The hybrid implementation combines all per-

formance enhancement strategies discussed in this paper,

namely stratification with pre-pivoting, matrix clustering,

wrapping and reuse of matrix clusters with k = � = 10.

The reported performance is the average of several runs

during a simulation. The performance results illustrate great

promises of QUEST on the multicore CPU system with GPU

317317

Figure 9. Performance of matrix clustering (Algorithm 4) and wrapping
(Algorithm 6) on GPU.

Figure 10. Performance of the Green’s function evaluation on the hybrid
CPU+GPU system.

acceleration. Our future research direction is to implement

most of the stratification procedure (Algorithm 3) on the

GPU using the recent advances for the QR decomposition

on these systems [34], [35].

VII. CONCLUDING REMARKS

We anticipate that the combination of multicore proces-

sors and GPU accelerators will allow to increase the lattice

sizes to a level never being tried before for DQMC simula-

tions. These larger systems will allow Quantum Monte Carlo

simulations, which have been essential to the understanding

of two dimensional systems, to be applied to a new and very

important set of multi-layer materials.

Acknowledgments. This work was supported in part by the

U.S. DOE SciDAC grant DOE-DE-FC0206ER25793 and

NSF grant PHY1005502. This research used resources of

the National Energy Research Scientific Computing Center,

which is supported by the Office of Science of the U.S. DOE

under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] J. Hubbard, “Electron correlations in narrow energy bands,”
Proc. R. Soc. London, Ser A, vol. 276, p. 283, 1963.

[2] D. J. Scalapino and S. R. White, “Numerical results for
the Hubbard model: Implications for the high Tc pairing
mechanism,” Found. Phys., vol. 31, p. 27, 2001.

[3] D. J. Scalapino, “Numerical studies of the 2D Hubbard
model,” in Handbook of High Temperature Superconductivity,
J. R. Schrieffer and J. S. Brooks, Eds. Springer, 2007, ch. 13.

[4] P. W. Anderson, “The resonating valence bond state in
la2cuo4 and superconductivity,” Science, vol. 235, p. 1196,
1987.

[5] J. E. Hirsch and S. Tang, “Antiferromagnetism in the two-
dimensional Hubbard model,” Phys. Rev. Lett., vol. 62, pp.
591–594, Jan 1989.

[6] S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.
Gubernatis, and R. T. Scalettar, “Numerical study of the two-
dimensional Hubbard model,” Phys. Rev. B, vol. 40, pp. 506–
516, Jul 1989.

[7] L. Chen, C. Bourbonnais, T. Li, and A.-M. S. Trem-
blay, “Magnetic properties of the two-dimensional Hubbard
model,” Phys. Rev. Lett., vol. 66, pp. 369–372, Jan 1991.

[8] M. Jarrell, “Hubbard model in infinite dimensions: A quantum
Monte Carlo study,” Phys. Rev. Lett., vol. 69, pp. 168–171,
Jul 1992.

[9] R. Preuss, F. Assaad, A. Muramatsu, and W. Hanke, The
Hubbard Model: its Physics and Mathematical Physics,
D. Baeriswyl, D. K. Campbell, J. M. Carmelo, F. Guinea,
and E. Louis, Eds. Springer, New York, 1995.

[10] S. Zhang and H. Krakauer, “Quantum Monte Carlo method
using phase-free random walks with slater determinants,”
Phys. Rev. Lett., vol. 90, p. 136401, Apr 2003.

[11] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
“Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions,” Rev. Mod. Phys.,
vol. 68, pp. 13–125, Jan 1996.

[12] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, “Quan-
tum cluster theories,” Rev. Mod. Phys., vol. 77, pp. 1027–
1080, Oct 2005.

318318

[13] C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell,
and R. T. Scalettar, “Quantum Monte Carlo study of the two-
dimensional fermion Hubbard model,” Phys. Rev. B, vol. 80,
no. 7, p. 075116, Aug 2009.

[14] S. B. Ogale and J. Mannhart, “Interfaces in materials with cor-
related electron systems,” in Thin Films and Heterostructures
for Oxide Electronics, ser. Multifunctional Thin Film Series,
O. Auciello and R. Ramesh, Eds. Springer US, 2005, pp.
251–278.

[15] J. Mannhart and D. G. Schlom, “Oxide interfaces – an
opportunity for electronics,” Science, vol. 327, no. 5973, pp.
1607–1611, 2010.

[16] J. K. Freericks, Transport in Multilayered Nanostructures:
The Dynamical Mean Field Theory Approach. Imperial
College Press, London, 2006.

[17] S. B. Ogale and A. Millis, “Electronic reconstruction at
surfaces and interfaces of correlated electron materials,” in
Thin Films and Heterostructures for Oxide Electronics, ser.
Multifunctional Thin Film Series, O. Auciello and R. Ramesh,
Eds. Springer US, 2005, pp. 279–297.

[18] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, “Monte
Carlo calculations of coupled boson-fermion systems. i,”
Phys. Rev. D, vol. 24, pp. 2278–2286, Oct 1981.

[19] E. Y. Loh, Jr. and J. E. Gubernatis, Stable Numerical Simula-
tions of Models of Interacting Electrons in Condensed Matter
Physics. Elsevier Sicence Publishers, 1992, ch. 4.

[20] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore ar-
chitectures,” Parallel Computing, vol. 35, no. 1, pp. 38–53,
2009.

[21] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense
linear algebra for hybrid GPU accelerated manycore systems,”
Parallel Computing, vol. 36, no. 5-6, pp. 232–240, 2010.

[22] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense
linear algebra solvers for multicore with GPU accelerators,”
in International Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), Apr 2010, pp. 1–8.

[23] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide,
3rd ed. SIAM, Philadelphia, 1999.

[24] Z. Bai, C.-R. Lee, R.-C. Li, and S. Xu, “Stable solutions of
linear systems involving long chain of matrix multiplications,”
Linear Algebra and its Applications, vol. 435, no. 3, pp. 659–
673, 2010.

[25] G. Quintana-Ortı́, X. Sun, and C. H. Bischof, “A BLAS-3
version of the QR factorization with column pivoting,” SIAM
Journal on Scientific Computing, vol. 19, no. 5, pp. 1486–
1494, 1998.

[26] Z. Bai, W. Chen, R. Scalettar, and I. Yamazaki, “Numerical
methods for quantum Monte Carlo simulations of the Hub-
bard model,” in Multi-Scale Phenomena in Complex Fluids,
T. Y. H. et al, Ed. Higher Education Press, 2009, pp. 1–110.

[27] M. Jarrell, private comunication.
[28] G. Sugiyama and S. Koonin, “Auxiliary field Monte-Carlo for

quantum many-body ground states,” Annals of Physics, vol.
168, no. 1, pp. 1 – 26, 1986.

[29] S. Sorella, S. Baroni, R. Car, and M. Parrinello, “A novel
technique for the simulation of interacting fermion systems,”
EPL (Europhysics Letters), vol. 8, no. 7, p. 663, 1989.

[30] Z. Drmač and K. Veselić, “New fast and accurate Jacobi SVD
algorithm. i,” SIAM J. Matrix Anal. Appl., vol. 29, pp. 1322–
1342, January 2008.

[31] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra, “Enhancing
parallelism of tile QR factorization for multicore architec-
tures,” Submitted to Transaction on Parallel and Distributed
Systems.

[32] E. Agullo, J. Dongarra, R. Nath, and S. Tomov, “A fully
empirical autotuned dense QR factorization for multicore
architectures,” in Proceedings of the 17th international con-
ference on Parallel processing - Volume Part II, ser. Euro-
Par’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 194–
205.

[33] “CUBLAS Library”, NVIDIA Corporation, avaliable at
http://developer.nvidia.com/cublas

[34] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief,
S. Thibault, and S. Tomov, “QR factorization on a multicore
node enhanced with multiple GPU accelerators,” in Interna-
tional Parallel Distributed Processing Symposium (IPDPS),
May 2011, pp. 932–943.

[35] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer,
“Communication-avoiding QR decomposition for GPUs,”
International Parallel Distributed Processing Symposium
(IPDPS), pp. 48–58, 2011.

319319

