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We present an efficient and reliable algorithm for solving a class of nonlinear eigenvalue 
problems arising from the modeling of particle accelerator cavities. The eigenvalue 
nonlinearity in these problems results from the use of waveguides to couple external 
power sources or to allow certain excited electromagnetic modes to exit the cavity. We 
use a rational approximation to reduce the nonlinear eigenvalue problem first to a rational 
eigenvalue problem. We then apply a special linearization procedure to turn the rational 
eigenvalue problem into a larger linear eigenvalue problem with the same eigenvalues, 
which can be solved by existing iterative methods. By using a compact scheme to represent 
both the linearized operator and the eigenvectors to be computed, we obtain a numerical 
method that only involves solving linear systems of equations of the same dimension as 
the original nonlinear eigenvalue problem. We refer to this method as a compact rational 
Krylov (CORK) method. We implemented the CORK method in the Omega3P module of 
the Advanced Computational Electromagnetic 3D Parallel (ACE3P) simulation suite and 
validated it by comparing the computed cavity resonant frequencies and damping Q
factors of a small model problem to those obtained from a fitting procedure that uses 
frequency responses computed by another ACE3P module called S3P. We also used the 
CORK method to compute trapped modes damped in an ideal eight 9-cell SRF cavity 
cryomodule. This was the first time it was possible to compute these modes directly. 
The damping Q factors of the computed modes match well with those measured in 
experiments and the difference in resonant frequencies is within the range introduced 
by cavity imperfection. Therefore, the CORK method is an extremely valuable tool for 
computational cavity design.
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1. Introduction

Particle accelerators are important experimental facilities for discoveries in physical sciences [9]. In the high energy 
frontier, particle colliders will be used to address many of the most compelling questions about dark matter, dark energy, 
and the fundamental nature of matter, energy, space and time. In basic energy sciences research, high-intensity particle 
beams or high-brightness light sources generated by particle accelerators will probe structures of matter that will benefit 
science discoveries in biology, chemistry, medical sciences, material sciences and others.

The design and optimization of accelerator cavities that are used to accelerate charged particles heavily depend on com-
putational tools for achieving optimal design at reduced costs. With the advent of high performance computing (HPC), 
virtual prototyping of complex accelerator cavities has become a reality through high-fidelity simulation using advanced 
numerical algorithms. The parallel finite-element simulation suite ACE3P (Advanced Computational Electromagnetic 3D 
Parallel) [32], developed at the SLAC National Accelerator Laboratory, exploits both the power of HPC on state-of-the-art 
supercomputers and the accuracy of high-order finite elements for discretizing the partial difference equations that model 
the physical systems. ACE3P contains multiphysics modeling capabilities for integrated electromagnetic, thermal, and me-
chanical characteristics, and has been applied to a wide range of accelerator projects [18,13].

ACE3P’s electromagnetic module Omega3P solves Maxwell’s equations in the frequency domain [22]. Assuming the elec-
tromagnetic fields oscillating at a particular frequency, Maxwell’s equations are mathematically cast into an eigenvalue 
problem, where the eigenvalue corresponds to the complex frequency of a resonant mode in an accelerator cavity, and the 
eigenvector represents the electric or magnetic fields of the resonant mode. In accelerator applications, a cavity is normally 
equipped with external waveguides either to couple power from external power sources into the cavity for acceleration 
or deflection of charged particles or to allow unwanted electromagnetic modes excited by the transit of a charged particle 
beam to exit the cavity. The eigenvalue problem is real, symmetric, and linear for a closed cavity without volumetric losses 
due to lossy materials inside the cavity, and without surface loss due to the finite electrical conductivity of the cavity walls, 
and correspondingly, the eigenvalues are real and represent the frequencies of the resonant modes.

In the presence of external coupling, the boundary conditions at the waveguide ports (or boundary surfaces) will render 
the discretized equation nonlinear with respect to the eigenvalue to be determined. Moreover, the eigenvalue λ is complex, 
with the real part related to the resonant mode frequency and the imaginary part related to the damping Q factor

Q = 1

2

Re(λ)

Im(λ)
.

Typically in accelerator cavity design, the frequency ranges from MHz to GHz and the damping Q factor from a few tens 
to 107, depending on the modes of interest and the application. The eigenvalue problem yields a quadratic or a more 
nonlinear equation in the eigenvalue depending on the modes that can propagate through the external ports. When the 
waveguide modes propagate at the same propagation wave factor, the eigenvalue problem is quadratic and can be readily 
solved by standard methods [22]. When there are waveguide modes propagating at different propagation wave factors, 
the eigenvalue problem yields a more nonlinear equation in the eigenvalue. It is the purpose of this paper to describe an 
efficient algorithm for solving this type of nonlinear eigenvalue problem and show how such a solver can be implemented 
in Omega3P to address associated cavity design problems.

The paper is organized as follows. In section 2, we state the finite dimensional nonlinear eigenvalue problem in a more 
precise manner and review existing methods. In section 3, we describe our approach to solve the nonlinear eigenvalue 
problem, which is based on combining rational approximation and linearization techniques with a compact rational Krylov 
(CORK) subspace method. Next, we demonstrate the effectiveness of our approach in Section 4 with two numerical examples 
and compare the results to S3P simulations, which probe resonant responses to electromagnetic excitations by solving 
Helmholtz equations, and experimental measurements. Finally, the main conclusions are summarized in Section 5.

Throughout the paper, we denote scalars by lowercase Greek letters, vectors by lowercase Roman letters, matrices by 
capital Roman letters, and fields by bold capital Roman letters. The transpose and conjugate transpose of a matrix A are 
denoted by A� and A∗ , respectively. The matrix Ii is the identity matrix of dimensions i. We use V j to denote a matrix 
with j columns, and its ith column is denoted by vi . We omit subscripts when the dimensions of the matrices are clear 
from the context. The Kronecker product of the matrices A and B is denoted by A ⊗ B .

2. Nonlinear eigenvalue problems in accelerator cavity simulations

2.1. Problem formulation

Maxwell’s equations in differential form are

∇ × E = −∂B

∂t
, ∇ × H = ∂D

∂t
+ J,

∇ · D = ρ, ∇ · B = 0,
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where E is the electric field, D the electric displacement field, B the magnetic induction field, and H the magnetic intensity 
field, respectively. The E, D, B, and H fields satisfy the constitutive relations

D = εE, B = μH,

with ε and μ denoting, respectively, the permittivity and permeability of the medium. These parameters are tensors for 
anisotropic media and scalars for isotropic media. For inhomogeneous media, they are functions of the position, whereas 
for homogeneous media they are independent of the position. Both ε and μ are treated as constants in this paper.

When the field quantities are harmonically oscillating functions at a single frequency, Maxwell’s equations can be ex-
pressed as

∇ × E = −i2π f B, ∇ × H = i2π f D + J,

where f is the frequency. By eliminating B, H, and D or E, B, and D, we obtain

∇ ×
(

1

μ
∇ × E

)
− εk2E = 0, (1)

∇ ×
(

1

ε
∇ × H

)
− μk2H = 0, (2)

where k = 2π f /c is the angular wavenumber and c the speed of light. Either equation can be used in the numerical 
simulation. Equation (1) is often known as the E-formulation and (2) as the H-formulation. Without loss of generality, we 
will use the E-formulation in this paper and solve this equation in �, which is the three-dimensional (3D) volume occupied 
by the cavity.

The boundary conditions for an electric field at a perfectly conducting surface �E and for a magnetic field at a perfectly 
insulating surface �M can be expressed as follows

n × E = 0, on �E , (3)

n × (∇ × E) = 0, on �M , (4)

where n is the surface normal. Note that in case the cavity exhibits symmetry, only a part of the geometry needs to be 
modeled. An accelerating cavity is often connected with waveguides to gain power or to damp high order modes. In order 
to terminate the propagation of the electromagnetic field, waveguides are truncated at a boundary port and an appropriate 
boundary condition is imposed at the port so that no reflection of the propagation field enters back into the computational 
domain. This is achieved by decomposing the field into waveguide eigenmodes, which should be distinguished from the 
cavity resonant eigenmodes, as [16]

n ×
(

1

μ
∇ × E

)
−iγ0eTEM

0

∫
�

eTEM
0 · E d�

−i
∑

m

γmeTE
m

∫
�m

eTE
m · E d�m

+i
∑

m

k2

γm
eTM

m

∫
�m

eTM
m · E d�m = 0,

(5)

where γ0 = √
k and γm = √

k2 − (kc
m)2, with kc

m = 2π f c
m/c being the cutoff wavenumber of the mth waveguide mode, f c

m
being the corresponding cutoff frequency, and c being the speed of light. The normalized waveguide transverse electric 
and magnetic (TEM) mode, the mth transverse electric (TE) mode, and the mth transverse magnetic (TM) mode, onto the 
waveguide boundaries �m , are given by eTEM

0 , eTE
m , and eTM

m , respectively.
We solve Maxwell’s equations by the finite element method implemented in ACE3P. A high-order curved tetrahedral 

finite element mesh that conforms to the geometry of the structure is generated by Cubit [31]. Cubit uses ACIS as the 
basic geometry engine, which is used by many CAD software packages. The surfaces at the boundary of the computational 
domain are assumed to be piecewise smooth and represented as nonuniform rational B-spline (NURBS) surfaces. Nedelec 
edge elements [26] are employed to provide tangentially continuous basis functions for discretizing the electric field. The 
use of edge elements not only leads to a convenient way of imposing boundary conditions at material interfaces as well as 
at conducting surfaces, but also treats conducting and dielectric edges and corners correctly.

By representing the electric field in terms of hierarchical higher-order Nedelec basis functions Ni [35],

E =
∑

xiNi,
i
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where xi is the ith component of the vector x, the E-formulation (1) together with the boundary conditions (3) to (5) lead 
to the following complex nonlinear eigenvalue problem

F (λ)x = 0, (6)

where λ = k2 is the eigenvalue, x the corresponding eigenvector, and

F (λ) = K − λM + i
√

λ W TEM + i
∑

m

√
λ − κm W TE

m + i
∑

m

λ√
λ − κm

W TM
m (7)

a matrix-valued function, F : C →C
n×n , with κm = (kc

m)2 and

K =
∫
�

1

μ
(∇ × Ni) · (∇ × N j

)
d�,

M =
∫
�

ε
(
Ni · N j

)
d�,

W TEM =
∫
�

(
eTEM

0 · Ni
) · (eTEM

0 · N j
)

d�,

W TE
m =

∫
�m

(
eTE

m · Ni
) · (eTE

m · N j
)

d�m,

W TM
m =

∫
�m

(
eTM

m · Ni
) · (eTM

m · N j
)

d�m.

(8)

Gaussian quadrature is used by ACE3P to evaluate the matrix elements of (8) numerically.
The eigenvalues to be computed depend on the resonant mode frequencies and damping Q factors of interest. Unlike 

linear or quadratic eigenvalue problems, this type of nonlinear eigenvalue problem is harder to solve. No standard software 
library is available for solving this type of problem, especially when the dimension of the problem is large.

2.2. Existing methods

The existing approaches to solve a general nonlinear eigenvalue problem can, roughly speaking, be grouped into three 
main classes [38]: Newton-based techniques, contour integration methods, and methods based on approximations of the 
nonlinear matrix-valued function.

The first approach treats the nonlinear eigenvalue problem as a system of nonlinear equations and tries to solve it by 
variants of Newton’s method. See, e.g., [20,3,29,27] for some early references that tackle the nonlinear eigenvalue problem 
by solving a sequence of linear systems of equations. All these methods are local convergent methods that need a good
initial guess. They are not guaranteed to converge. For large-scale problems, projection techniques are used to project the 
original problem into a properly constructed subspace, which is iteratively updated. Newton-like algorithms are used to 
solve the projected nonlinear eigenvalue problem. These methods include the nonlinear Jacobi–Davidson methods [7,10], 
the nonlinear Arnoldi [40] and nonlinear Rayleigh–Ritz [23] methods, and the block Newton method [19]. How to choose a 
good initial subspace remains an open question and the convergence of these methods can be very slow if no good starting 
guesses are available.

The second approach makes use of a contour integral reformulation of the nonlinear eigenvalue problem. In this ap-
proach, Keldysh’s theorem [17] is used to convert the original nonlinear eigenvalue problem into a linear eigenvalue 
problem with identical eigenvalues inside a given contour. To obtain this linear eigenvalue problem, the contour integrals 
are computed via numerical quadrature and require the solution of a linear system with multiple right hand sides for every 
quadrature point. Examples are Beyn’s method [8] and the nonlinear Sakurai–Sugiura method [4,44,25,41]. For a connection 
with rational filters, see, e.g., [37,36]. A drawback of all these methods is that the total number of matrix factorizations 
needed is the same as the number of quadrature points and, hence, these methods can become very computationally ex-
pensive.

The third approach, which we will use in this paper, is based on polynomial and rational approximation. Firstly, the 
nonlinear matrix-valued function F (λ) is approximated by an interpolating polynomial or rational function. Next, the ap-
proximate polynomial or rational eigenvalue problem is solved by standard methods. For large-scale problems, several Krylov 
subspace methods have been developed to solve the linearizations of different approximate eigenvalue problems, such as 
the Chebyshev interpolation method [11], the rational linearization method [34], the infinite Arnoldi method [15], the New-
ton rational Krylov method [38], the fully rational Krylov method [14], and the generic class of CORK methods [39]. The key 
to make these methods efficient is to exploit the structure of the matrices resulting from linearization and the structure of 
the eigenvector. The reliability of all these methods heavily depends on the quality of the approximation of the nonlinear 
functions, but leads to more globally convergent methods than Newton-type methods. Moreover, its structure exploiting 
implementation in the CORK framework yields, in general, more efficient methods than using contour integration.
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3. CORK nonlinear eigenvalue algorithm

The procedure we developed for solving the nonlinear eigenvalue problem (6)–(7) is composed of three steps: (i) ap-
proximation of the scalar nonlinear functions by interpolating rational functions, yielding a rational eigenvalue problem; 
(ii) linearization of the resulting rational eigenvalue problem, i.e., a reformulation of the rational eigenvalue problem as a 
generalized (linear) eigenvalue problem with the same eigenvalues but much larger in problem size; (iii) solving the gener-
alized eigenvalue problem by a CORK method.

3.1. Approximation of square roots

The nonlinear eigenvalue problem (6) can, in contrast to linear eigenvalue problems, have an infinite number of eigen-
values and the corresponding eigenvectors can be linearly dependent. In practice, however, only a relative small number of 
eigenpairs are of interest. They typically lie in the so called region of interest � ⊂ C. Therefore, we start by restricting the 
problem to finding only the eigenvalues λ inside this region of interest: λ ∈ �, and the corresponding eigenvectors.

Once the region of interest � is fixed, we approximate the matrix-valued function F (λ) by a rational one R(λ), so that 
the approximation error for all λ inside � is below a given tolerance εapprox,

max
λ∈�

‖F (λ) − R(λ)‖ ≤ εapprox.

It is important to select εapprox small enough since in [14] it has been illustrated that the accuracy of the approximate 
eigenvalues can be limited by the accuracy of the underlying (rational) approximation. Since F (λ) is characterized by a 
summation of scalar nonlinear functions f (λ) multiplied by matrices that do not depend on λ, we can take this specific 
structure into account when constructing a rational approximation R(λ). In the remainder of the paper, we will make use 
of the rational Newton basis to approximate the square roots in (7).

We define the rational Newton polynomial of degree d, interpolating at the nodes σ0, σ1, . . . , σd and with nonzero poles 
ξ1, . . . , ξd , as follows

f (λ) ≈ r(λ) :=
d∑

j=0

δ jb j(λ),

where δ j are the divided differences defined as

δ0 := f [σ0] = f (σ0),

δ j := f [σ0, . . . , σ j] = f [σ1, . . . , σ j] − f [σ0, . . . , σ j−1]
σ j − σ0

, j = 1, . . . ,d,

and b j(λ) the rational Newton basis functions

b0(λ) := 1,

b j(λ) :=
j∏

k=1

λ − σk−1

βk(1 − λ/ξk)
, j = 1, . . . ,d,

(9)

with β1, . . . , βd nonzero scaling parameters. Note also that they satisfy the following recurrence relation

b j(λ) = λ − σ j−1

β j(1 − λ/ξ j)
b j−1(λ), j = 1, . . . ,d.

The quality of the approximation heavily depends on the choice of the interpolation nodes and poles. In order to obtain a 
fast (low degree d) and quasi uniform approximation on the whole region of interest, we use near optimal point selection 
in Leja–Bagby fashion [6]. For more information see [14].

The rational approximation R(λ) to (7) can efficiently be obtained by only approximating the (scalar) square root func-
tions, yielding

F (λ) ≈ R(λ) :=
d∑

j=0

D jb j(λ), (10)

where b j(λ) are the rational Newton basis functions defined in (9) and D j the generalized divided difference matrices 
formed as linear combinations of the coefficient matrices of the original nonlinear matrix-valued function F (λ). Finally, we 
obtain the rational eigenvalue problem

R(λ)x = 0, (11)

which approximates the original eigenvalue problem (6) inside the whole region of interest up to the given tolerance εapprox.
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3.2. Linearization

Linearization is the classical approach for solving polynomial eigenvalue problems. Firstly, the matrix polynomial is trans-
formed into a larger linear pencil with the same eigenvalues. Next, a linear eigensolver of choice can be applied to compute 
the eigenvalues of the polynomial eigenvalue problem. For polynomial eigenvalue problems, a companion matrix type of 
linearization is used in practice.

In order to linearize the rational eigenvalue problem (11), we make use of the linearization introduced in [14, The-
orem 3.2]. Let R(λ) be an n × n rational matrix-valued function as defined in (10). Then the dn × dn linear companion 
pencil

L(λ) = A − λB,

where

A =

⎡
⎢⎢⎢⎢⎢⎣

D0 D1 · · · Dd−2 Dd−1 − σd−1 Dd/βd
σ0 I β1 I

. . .
. . .
. . . βd−2 I

σd−2 I βd−1 I

⎤
⎥⎥⎥⎥⎥⎦ , (12)

B =

⎡
⎢⎢⎢⎢⎢⎣

D0/ξd D1/ξd · · · Dd−2/ξd Dd−1/ξd − Dd/βd
I β1/ξ1 I

. . .
. . .
. . . βd−2/ξd−2 I

I βd−1/ξd−1 I

⎤
⎥⎥⎥⎥⎥⎦ , (13)

is a linearization of R(λ). Furthermore, the eigenvectors of L(λ) have a special structure: (i) if (λ, x) is an eigenpair of L(λ), 
then there exists a vector x such that x = b(λ) ⊗ x, with

b(λ) := [
1 b1(λ) · · · bd−1(λ)

]�
, (14)

and the pair (λ, x) is an eigenpair of R(λ); (ii) if (λ, x) is an eigenpair of R(λ), then the pair (λ, b(λ) ⊗ x) is an eigenpair 
of L(λ).

3.3. CORK algorithm

After linearization, the nonlinear/rational eigenvalue problem is converted into a larger generalized eigenvalue problem. 
Note that by this operation the problem dimension has increased by a factor d, however, the resulting linear pencil has a 
particular structure which can be fully exploited if we compute the eigenvalues of interest via a Krylov method.

The standard rational Krylov method, which is generalization of the shift-and-invert Arnoldi method, is outlined in 
Algorithm 1. The method allows for varying the shift at every iteration. In every iteration we have the freedom to choose 
the next shift σ j , e.g., based on the results of the previous iterations or we can cycle through some uniformly spaced shifts 
in order to obtain a faster and uniform convergence rate for all eigenvalues in the neighborhood of the chosen shifts.

Algorithm 1: Rational Krylov method [30].

Input: Matrices A and B .
Output: Approximate eigenpairs (λi , xi).

1 Choose vector v1 ∈C
dn , where ‖v1‖ = 1.

for j = 1, 2, . . . do
2 Choose shift σ j and set continuation combination: t j .
3 Shift-and-invert: v̂ := (A − σ j B)−1 B V jt j .
4 Orthogonalize: ṽ = v̂ − V jh j , where h j = V ∗

j v̂ .

5 Expand subspace: V j+1 ← [
V j ṽ/h j+1, j

]
, where h j+1, j = ‖ṽ‖.

6 Compute eigenpairs: (λi , si) and test for convergence.
end

7 Compute eigenvectors: xi = V j+1 H j si .

The rational Krylov algorithm builds a subspace V j ∈C
dn× j spanned by

v1, v2 := (A − σ1 B)−1 B v1, v3 := (A − σ2 B)−1 B v2, · · · .
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Eliminating v̂ and ṽ in the jth iteration of Algorithm 1 and combining all the previous iterations yields the rational Krylov 
recurrence relation

AV j+1 H j = B V j+1 K j,

where H j and K j are two extended ( j + 1) × j upper Hessenberg matrices. Note that H j and K j denote the extended ma-
trices formed by appending the extra row at the bottom of the Hessenberg matrices. The matrix H j contains the coefficients 
of the Gram–Schmidt orthogonalization process and

K j = H j diag(σ1, . . . , σ j) + T j,

where the upper triangular matrix T j ∈ C
( j+1)× j is built up from the continuation combinations t1, . . . , t j , selected in the 

way described in [30].
Approximations for the desired eigenvalues and corresponding eigenvectors of the matrix pencil (A, B) can, in each 

iteration j of Algorithm 1, be obtained from the j × j upper parts of the two Hessenberg matrices H j and K j

K j si = λi H j si, si �= 0.

Then, we call (λi, xi := V j+1 H j si) a Ritz pair of (A, B).
The companion linearization matrices A and B , given in (12), (13), respectively, can be expressed in the following com-

pact form

A =
[

A0 A1 · · · Ad−1

M ⊗ In

]
, B =

[
B0 B1 · · · Bd−1

N ⊗ In

]
, (15)

where A j, B j ∈C
n×n are related to the generalized divided difference matrices and M, N ∈ C

(d−1)×d correspond to the linear 
relations between the rational Newton basis functions, i.e., (M − λN) b(λ) = 0, for all λ, with b(λ) defined in (14). Note that 
this compact structure of the linearization matrices (15) can be exploited by the CORK framework [39], which is a generic 
class of numerical methods for solving nonlinear eigenvalue problems.

The CORK method [39], which generalizes the two-level orthogonal Arnoldi procedure [24], is a special variant of the 
standard rational Krylov method and computes the eigenvalues and corresponding eigenvectors of the structured lineariza-
tion pencil (15) by fully exploiting the Kronecker structure below the first block row, and by representing its subspace V j

in the following compact form

V j =

⎡
⎢⎢⎢⎣

V 1
V 2
...

Vd

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Q

Q
. . .

Q

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

U1
U2
...

Ud

⎤
⎥⎥⎥⎦ = (Id ⊗Q)U ,

where the matrix Q ∈ C
n×r is defined so that its columns form an orthonormal basis for the column space of the matrix [

V 1 V 2 · · · Vd
]
. In [39] it has been proven that the rank of Q is always bounded by d + j. Furthermore, this matrix Q

will form an approximation to the corresponding eigenspace of the original nonlinear eigenvalue problem.
The particular structure of the linearization matrices (15) together with the compact representation of V j in Algorithm 1

allows us to carry out steps 3–5 of Algorithm 1 very efficiently. This leads to the CORK algorithm, outlined in Algorithm 2, 
which only deals with matrices and vectors of the original nonlinear dimension n, instead of the linearization dimension dn
in Algorithm 1.

Algorithm 2: Compact Rational Krylov (CORK) method [39].

Input: Matrices Ai , Bi , M , and N , defined in (15).
Output: Approximate eigenpairs (λi , xi).

1 Choose vector q1 ∈ C
n , where ‖q1‖ = 1.

for j = 1, 2, . . . do
2 Choose shift σ j and continuation combination t j .
3 Solve linear system: F (σ j)q̂ = y.
4 Orthogonalize q̂ against Q.
5 Expand subspace: Q ← [

Q q̂/‖q̂‖ ]
and update U .

6 Compute eigenpairs: (λi , si) and test for convergence.
end

7 Compute eigenvectors: xi = QU1 H j si .
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First, the shift-and-invert step in Algorithm 1, which involves a linear system solve of dimension dn, has been replaced 
by a linear system solve with the original nonlinear matrix-valued function (7) evaluated at the shift. The right hand side y
in step 3 of Algorithm 2 can easily be computed as a sum of products of the nonlinear coefficient matrices (8) and linear 
combinations of the vectors in Q. Second, the orthogonalization step in Algorithm 2 only deals with vectors of length n to 
update Q instead of vectors of length dn in Algorithm 1. Note also that the cost for updating U in step 5 of Algorithm 2 is 
negligible for large-scale problems. For more details on the implementation, we refer to [39].

Both the memory and computational costs in the CORK algorithm are significantly lower than the ones in the standard 
rational Krylov algorithm, so that for large-scale nonlinear eigenvalue problems the cost of the CORK algorithm is of the 
same order of magnitude as for just solving a generalized eigenvalue problem of the same dimension. Hence, the CORK 
algorithm allows us to efficiently and reliably compute the eigenvalues of interest of the nonlinear eigenvalue problem 
(6)–(8).

3.4. Implementation in Omega3P

Omega3P is the eigensolver module of ACE3P, which was originally designed for solving linear, generalized, and quadratic 
eigenvalue problems. We have implemented the CORK algorithm in Omega3P to solve nonlinear eigenvalue problems of the 
form (6)–(8) in order to also enable computing resonant modes of accelerator cavities equipped with waveguides.

After specifying the target region in which we want to compute eigenvalues, the square root functions in (7) are ac-
curately approximated by rational Newton functions. We compute the corresponding generalized divided differences in a 
numerical stable way by using matrix functions [14]. This yields the actual rational eigenvalue problem to solve, where its 
coefficient matrices are formed as linear combinations of the original matrices K , M , and W ’s in (7).

The dominant cost of every CORK iteration is the linear system solve with F (σ ) in step 3 of Algorithm 2. For this 
operation, we make use of the sparse matrix computation infrastructure, such as sparse triangular factorizations, which was 
already in place in Omega3P.

4. Numerical results

In this section, we demonstrate the effectiveness of the CORK algorithm using two examples. In the first example, we 
compare the resonant frequencies and damping Q factors of a simple cavity model obtained from the numerical solution of 
the nonlinear eigenvalue problem (6)–(7) produced by the CORK algorithm to those obtained from ACE3P frequency-domain 
harmonic module S3P, which solves the Helmholtz representation of Maxwell’s equations to determine the response to 
electromagnetic excitations at boundary ports of a cavity. In the second example, we use the CORK algorithm to validate 
for the first time ever the solution of a large-scale nonlinear eigenvalue problem against measurements obtained from a 
cryomodule consisting of eight superconducting cavities.

All numerical experiments were performed on the NERSC computers [21] Edison (Intel Xeon “Ivy Bridge” compute nodes 
@2.4 GHz, 2 × 12 cores, 64 GB DDR3 RAM) and Cori (Intel Xeon “Haswell” compute nodes @2.3 GHz, 2 × 16 cores, 128 GB 
DDR4 RAM). For solving the linear systems inside the nonlinear eigensolver, we used the software MUMPS, which is a 
multifrontal massively parallel sparse direct solver [1,2].

4.1. Pillbox cavity

We consider a simplified model of the RF gun cavity [43] used for the electron injector in the LCLS accelerator project 
to investigate the solution of the nonlinear eigenvalue problem obtained by the CORK algorithm. This simplified model is 
constructed by removing the cathode plate of the original LCLS RF gun cavity resulting in a pillbox cavity coupled with two 
rectangular waveguides and a circular beampipe of different radius at each end of the cavity. A number of TE and TM modes 
with different cutoff frequencies can propagate in the rectangular and circular waveguides at a particular frequency of the 
cavity resonant mode. Thus, the termination of the waveguide ports need to be loaded with the corresponding waveguide 
modes to ensure that the cavity mode couples to these waveguide modes without reflection at the ports. This results in a 
nonlinear eigenvalue problem as different nonlinear terms appear in the eigenvalue equation from these TE and TM modes 
loaded at the ports.

A quarter of the geometry of the pillbox cavity, as shown in Fig. 1, is used for the simulation by taking advantage of the 
two symmetry planes on which magnetic boundary conditions are set to reflect the model’s symmetry. In this simulation, 
the targeted cavity resonant mode frequencies are below the lowest cutoff frequency (∼2.2 GHz) of the smaller upstream 
circular beampipe. As a result, an electric boundary condition can be set on this beampipe end plane without affecting the 
eigenmode calculation as the fields of the resonant modes will be negligibly small there. Below the target frequency, there 
are three propagating modes in the rectangular waveguide and two in the bigger circular beampipe.

In both the Omega3P and S3P simulations, the rectangular ports are loaded with rectangular waveguide TE10, TE11, and 
TM11 modes with the corresponding cutoff frequencies f c

1 = 0.908 GHz and twice f c
4 = 1.897 GHz, respectively. The down-

stream circular ports are loaded with circular waveguide TM01 and TE21 modes with the corresponding cutoff frequencies 
f c
2 = 1.043 GHz and f c

3 = 1.325 GHz, respectively. These modes are required for the range of cavity mode frequency calcu-
lation as shown in Table 1. The first cavity mode can only couple to the rectangular TE10 and circular TM01 modes as its 
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Fig. 1. A quarter model of a pillbox cavity coupled with rectangular waveguides and circular beampipes. The two symmetry planes are set to be magnetic 
boundary conditions. Three rectangular and two circular modes are loaded at the rectangular and downstream circular waveguides, respectively.

Table 1
Comparison of the cavity resonant mode RF parameters obtained by Omega3P (CORK algorithm) and indirect S3P 
calculations.

Mode Omega3P (CORK) S3P

f [GHz] Q E(λ, x) f [GHz] Q

1 1.1762 271 1.2827e−14 1.1762 270
2 2.0567 739 2.1098e−14 2.0567 760
3 2.1960 693 4.5892e−15 2.1965 780

frequency is above the cutoff frequencies of these two waveguide modes. The second and third cavity mode frequencies are 
above the cutoff frequencies of all the rectangular and circular waveguide modes mentioned above.

This configuration yields the nonlinear eigenvalue problem F (λ)x = 0, where

F (λ) = K − λM + i
√

λ − κ1 W TE
10 + i

λ√
λ − κ2

W TM
01

+ i
√

λ − κ3 W TE
21 + i

√
λ − κ4 W TE

11 + i
λ√

λ − κ4
W TM

11 ,

(16)

and K , M, W TE
10, W TM

01 , W TE
21, W TE

11, W TM
11 are symmetric matrices of dimension n = 170, 562 (degrees of freedom) obtained by 

using an adaptive unstructured mesh with 27,384 quadratic tetrahedral elements and second order basis functions. Note 
that the nonlinearity in this nonlinear eigenvalue problem is due to the TE and TM waveguide mode propagation in the 
rectangular waveguides and the bigger downstream circular beampipe.

In the first calculation, we used the CORK nonlinear eigensolver to compute 3 cavity resonant modes inside the target 
frequency window [1.0 GHz, 2.2 GHz]. Note that this frequency window contains the cutoff frequencies f c

2 , f c
3 , and f c

4 . 
We have therefore subdivided it into 3 subwindows, which only contain 1 cutoff frequency at the time. We also applied in 
every subwindow a transformation of variables ρi = √

λ − κi , for i = 2, 3, 4, to get rid of the branch point κi in the respective 
subwindow. Next, the transformed nonlinear functions were approximated by rational Newton functions of degree d at most 
29, resulting in a relative approximation error smaller than 10−12 in every subwindow. For measuring the convergence of 
an approximate eigenpair (λ, x), we used the relative residual norm [23]

E(λ, x) = ‖F (λ)x‖2/‖x‖2

α(λ)
,

where F (λ) is given by (16) and

α(λ) = ‖K‖1 + |λ|‖M‖1 + √|λ − κ1| ‖W TE
10‖1

+ |λ|√|λ − κ2| ‖W TM
01 ‖1 + √|λ − κ3| ‖W TE

21‖1

+ √|λ − κ4| ‖W TE
11‖1 + |λ|√|λ − κ4| ‖W TM

11 ‖1.

The problem was solved within 3 minutes on the NERSC Cori computer [21] using 64 processors. The computed RF 
parameters (frequency f and damping Q factor) and relative residual norms are listed in Table 1. Note that all computed 
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Fig. 2. Electric field amplitude profiles on the vertical symmetry plane for cavity modes at 1.176 GHz (left), 2.057 GHz (middle), and 2.196 GHz (right).

Fig. 3. Normalized transmission curves and the Lorentzian fit for the cavity modes at 1.176 GHz (left), 2.057 GHz (middle), and 2.196 GHz (right).

eigenvalues and corresponding eigenmodes are highly accurate since their relative residual norms are small. The corre-
sponding electrical field patterns at a symmetry plane are shown in Fig. 2.

In the second calculation, we used the S3P approach by exciting waveguide modes at the waveguide ports at a certain 
frequency and determine the responses of the waveguide modes from the cavity. In particular, we can determine the scat-
tering (S-) parameters (reflection and transmission coefficients) of each waveguide mode as a function of the frequency 
through a frequency scan around the resonant mode frequency to determine the damping Q factor from the width of an S-
parameter curve. The resonant mode frequency f and damping Q can be obtained by fitting, for example, the transmission 
coefficient T with the Lorentzian as a function of frequency f ′ [28]

T 2 = 1

1 + Q 2(
f ′
f − f

f ′ )2
.

The corresponding results are given in the last 2 columns of Table 1. As illustrated in Fig. 3, the Lorentzian fits the normal-
ized transmission curves from the S3P calculation for the three cavity modes with less than 1% fitting error within a 3 dB 
bandwidth.

In general, the cavity resonant mode results from the Omega3P–CORK eigensolver and S3P S-parameter solver agree well 
as shown in Table 1. The third cavity mode Q has more than 10% difference between the Omega3P and S3P results due to 
the contamination from nearby high order modes that causes the transmission curve asymmetry and thus a larger fitting 
error. In view of this, the CORK nonlinear eigensolver provides a direct way to compute the frequency and external damping 
factor of a cavity resonant mode without the need to perform a post processing fitting procedure from time-harmonic 
S-parameter calculations, which may be smeared by the overlap from other cavity modes in the spectrum.

4.2. TESLA SRF cavity cryomodule

It is also important to validate the CORK simulation results against experimental data to provide confidence for ac-
celerator practitioners to use the method to design accelerator cavities through computation. Therefore, we now consider 
the cryomodule consisting of eight TESLA superconducting RF (SRF) cavities for which measurement data is available. The 
9-cell TESLA SRF cavity, as shown in Fig. 4, has been adopted in many expensive accelerator projects, such as the pro-
posed International Linear Collider (ILC) and the current Linac Coherent Light Source (LCLS-II) at SLAC. For example, 33 
8-cavity cryomodules will be installed in the 4-GeV LCLS-II linear accelerator [33]. Hence, the accurate determination of the 
higher-order-mode (HOM) properties in the SRF cavities is very important for reliable operation of the machine.

The two HOM couplers on each side of the cavity, shown in Fig. 4, are designed to damp the dipole modes with two 
polarizations, while the fundamental coupler at the downstream is used to couple power into the cavity for the accelerating 
mode. In the simulation, the input coupler and the two HOM couplers are terminated by coaxial ports, where they can be 
modeled as absorbing boundary conditions in Omega3P. The frequencies of the lowest two dipole passband HOM modes 
are below the beampipe cutoff frequency at 2.253 GHz, and thus the two upstream and downstream beampipe ends can be 
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Fig. 4. TESLA cavity with one fundamental power coupler (FPC) and two higher-order-mode (HOM) couplers. The FPC and HOM couplers are loaded with a 
coax TEM mode and the two beampipe ends are loaded with two polarizations of the circular TE11 modes.

Fig. 5. Comparison of trapped mode damping calculations in an ideal LCLS-II 8-cavity cryomodule using the CORK nonlinear eigensolver in Omega3P and 
experimental measurements. The simulated frequencies are shifted for about 10 MHz to lower values due to cavity imperfection.

modeled as electric boundary conditions. In this case, the solution of the eigenmodes can be readily obtained by solving a 
quadratic eigenvalue problem. These two passband modes have been well studied through both numerical simulations and 
measurements [42].

The frequencies of the third dipole passband modes and beyond are above the beampipe cutoff frequency, and they can 
propagate through the cavities to the ends of each cryomodule, where absorbers are installed on the beampipe walls to 
damp these cavity modes. The last pair of the 3rd dipole band modes around 2.58 GHz has high transverse impedance 
R/Q , which may provide an unwanted transverse kick to the charged particle beam passing through the cavities. Therefore, 
adequate damping is required to suppress their potentially adverse effects to the beam. It was found from measurements 
that the dipole band modes were badly damped in one or two cavities in three TESLA cryomodules [5].

It is desirable to perform large-scale simulations of the cryomodule to corroborate with the experimental results. Since 
the 3rd dipole band mode frequencies are above the beampipe cutoff frequency at 2.253 GHz, the beampipe ends cannot be 
modeled as electric boundary conditions as for the two lowest dipole passbands, but rather, are terminated with waveguide 
boundary conditions, in which two polarizations of the circular TE11 waveguide modes need to be loaded. Together with 
the termination at the coupler ports as absorbing boundary conditions, simulating the 3rd dipole band trapped modes in 
the LCLS-II cryomodule yields a nonlinear eigenvalue problem.

Investigating the trapped modes in a full chain of accelerator cavities is computationally challenging. A qualitative eigen-
mode compendium method is developed to study the trapped modes in a 3.9 GHz European XFEL accelerator cryomodule, 
which is scaled down by a factor of 3 with respect to the TESLA cavity [12]. Prior to the implementation of the CORK 
algorithm, it was not possible to use existing tools in Omega3P to perform such a simulation. The addition of the CORK 
algorithm in Omega3P has enabled us to obtain the solution to the large-scale nonlinear eigenvalue problem resulting from 
a more realistic accelerator model directly.

In our simulation, a finite element mesh with 3 million quadratic tetrahedral elements is generated for the LCLS-II cry-
omodule consisting of 8 TESLA cavities. Using second order basis functions, we obtained a discretized problem with 20 
million degrees of freedom. We used the CORK nonlinear eigensolver implemented in Omega3P to compute 16 trapped 
modes representing the two polarizations of the 8 coupled dipole modes inside the 8 cavities. The computation was com-
pleted within 10 wall clock minutes on the NERSC Edison computer [21] employing 960 processors. Fig. 5 shows the 
comparison of Omega3P calculations and experimental observations [5]. It can be seen that the calculated external Q val-
ues ranging from 104 to 106 of the 16 dipole modes covers very well the 3 measured values. It should be pointed out 
that the frequencies of the calculated modes deviate from the measured values. This is due to cavity imperfection arising 
from the deformation during the cavity fabrication process and the subsequent mechanical procedure to tune the cavity 
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Fig. 6. Electric field amplitude profile for the highest external Q mode in the 3rd dipole passband in an ideal LCLS-II 8-cavity cryomodule. The amplitude 
[a.u.] is represented by a linear rainbow color scheme. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

accelerating mode frequency to the design value. In doing this, the HOM dipole modes’ frequencies will be shifted [42]. 
However, the damping of the HOM’s will not be affected much as the mode’s field patterns remain essentially the same, 
and the reliable determination of the Q values is crucial for assessing HOM effects on beam stability. To see this, we plot 
the electric field distribution of the highest external Q mode in Fig. 6. This plot shows that the intensity of the field at the 
beampipe ends becomes insignificant due to the high damping factor, which is consistent with experimental measurements.

5. Conclusions

We described the recently introduced CORK algorithm for solving a class of nonlinear eigenvalue problems arising from 
the modeling of particle accelerator cavities with waveguide couplings. The method relies on using a rational approximation 
to the nonlinear terms in the nonlinear eigenvalue problem to reduce the problem to a rational eigenvalue problem. A 
special linearization procedure turns the rational eigenvalue problem into a larger linear eigenvalue problem that can be 
solved by existing iterative methods. The efficiency of the method is achieved by using a compact scheme to represent both 
the linearized operator and the eigenvectors to be computed. This approach is more general and robust than algorithms 
that are based on using a fixed point iteration. We demonstrated the effectiveness of this method for both a model test 
problem and a more realistic TESLA SRF cavity cryomodule by implementing and using the CORK algorithm in Omega3P. 
The availability of this nonlinear eigensolver has enabled us to directly simulate high order modes of realistic cavity models 
with multiple waveguide coupling boundary conditions. The ability to perform such simulations efficiently and reliably will 
allow us to provide an accurate tool to design, optimize, and test sophisticated cavities ensuring the operational reliability 
of particle accelerators.
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