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We report large scale determinant quantum Monte Carlo calculations of the effective bandwidth, momentum
distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The
sharp Fermi surface of the noninteracting limit is significantly broadened by the electronic correlations but
retains signatures of the approach to the edges of the first Brillouin zone as the density increases. Finite-size
scaling of simulations on large lattices allows us to extract the interaction dependence of the antiferromagnetic
order parameter, exhibiting its evolution from weak-coupling to the strong-coupling Heisenberg limit. Our
lattices provide improved resolution of the Green’s function in momentum space, allowing a more quantitative
comparison with time-of-flight optical lattice experiments.
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I. INTRODUCTION

Originally introduced to explain magnetism and metal-
insulator transitions in solids with strong electronic correla-
tions and narrow energy bands,1–5 the underlying physics of
the fermion Hubbard Hamiltonian6–9 remains a topic of con-
siderable discussion. In two dimensions, when the lattice is
doped away from half-filling, do the fermions condense into
a superconducting state? If so, what is the symmetry of the
pairing order parameter?10–14 Do charge inhomogeneities
�stripes and checkerboards� emerge and what is their inter-
play with magnetic and superconducting orders?15–18

In contrast to this uncertainty concerning the properties of
the doped lattice, the qualitative behavior at half-filling �one
fermion per site� is much more well understood. The inter-
action strength U causes both the development of long-range
antiferromagnetic order �LRAFO� and insulating behavior.
Even so, there are still some remaining open fundamental
questions, for example, in the precise way in which the
model evolves from the weak-coupling to strong-coupling
limits, especially in two dimensions.

At weak-coupling, one pictures the insulating behavior to
arise from a Fermi-surface instability which drives LRAFO
and a gap in the quasiparticle density of states. On the other
hand, at strong-coupling the insulating behavior is caused by
Mott physics and the suppression of electron mobility to
avoid double occupancy. These points of view are clearly
linked, however, since for large U / t the Hubbard Hamil-
tonian has well-defined local moments and maps onto the
antiferromagnetic Heisenberg model with exchange constant
J=4t2 /U.19

Developing an analytic theory which bridges these view-
points quantitatively is problematic. Hartree-Fock �HF�
theory provides one simple point of view but predicts
LRAFO at finite temperatures in two dimensions, in vio-
lation of the Mermin-Wagner theorem. In fact, even in
higher dimension when the Néel tempertaure TN can be
nonzero, HF theory predicts TN�U instead of the correct
TN�J=4t2 /U. Sophisticated approaches such as the self-

consistent renormalized theory,20,21 the fluctuation-exchange
approximation,22 and two-particle self-consistent theory23

obey the Mermin-Wagner theorem and provide a good de-
scription of the Hubbard Hamiltonian at weak-coupling but
fail for large U / t. A recent approach24 based on the mapping
to the nonlinear sigma model25 has made some progress in
connecting the two regimes.

The need to pin down the behavior of the two-
dimensional �2D� half-filled Hubbard model more quantita-
tively, in a way which links the weak-coupling and strong-
coupling limits, is particularly germane at present with the
achievement of cooling and quantum degeneracy in ultracold
gases of fermionic atoms.26–31 Such systems offer the pros-
pect of acting as an “optical lattice emulator” �OLE� of the
fermion Hubbard model, allowing a precise comparison of
experimental and theoretical phase diagrams which is diffi-
cult in the solid state, where the �single band� Hubbard
Hamiltonian provides only a rather approximate depiction of
the full complexity of the atomic orbitals. Obviously, the
achievement of this goal is one which requires accurate com-
putations. A particular issue in the field of OLE concerns
whether the temperature dependence of the double occu-
pancy rate changes sign during the course of the evolution
from weak to strong coupling.32

It is the intent of this paper to present considerably im-
proved results for the effective bandwidth, momentum distri-
bution, and magnetic correlations of the square lattice fer-
mion Hubbard Hamiltonian. We will employ the determinant
quantum Monte Carlo �DQMC� method, which provides an
approximation-free solution of the model, on lattices large
enough to use finite-size scaling to, for example, reliably
extract the antiferromagnetic order parameter as a function of
interaction strength. There is a considerable existing body of
QMC studies of the two-dimensional half-filled Hubbard
model, both on finite lattices and in infinite dimension. A
partial list includes Refs. 13, 18, and 33–40.

II. MODEL AND COMPUTATIONAL METHODS

The fermion Hubbard Hamiltonian,
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describes a set of itinerant electrons, represented by cj��cj�
† �,

the annihilation �creation� operators at lattice site j and spin
�. The corresponding number operator nj�=cj�

† cj�. The first
term represents the hopping �kinetic energy� of the electrons.
We will choose the parameter t=1 to set our unit of energy.
The noninteracting bandwidth W=8t. U is the on-site repul-
sion of spin-up and spin-down electrons occupying the same
lattice site and � is the chemical potential which controls the
particle density. We will mostly be interested in the proper-
ties of the model on N=L�L square lattices at half-filling
�the number of particles is equal to the number of lattice
sites� which occurs at �=0 with our particle-hole symmetric
choice of the representation of the interaction term.

We will also focus exclusively on the case of the square
lattice. This particular geometry has several interesting fea-
tures. The half-filled square lattice Fermi surface exhibits
perfect nesting and the density of states is �logarithmically�
divergent. As a consequence, the antiferromagnetic and insu-
lating transitions occur immediately for any nonzero value of
the interaction strength U, instead of requiring a finite degree
of correlation, as is more generically the case.

Our DQMC algorithm is based on Ref. 41 and has been
refined by including “global moves” to improve ergodicity42

and “delayed updating” of the fermion Green’s function,43

which increases the efficiency of the linear algebra. Details
concerning this new code are available at Ref. 44. Some
other approaches to fermion Hubbard model simulations are
contained in Refs. 39 and 45–47.

III. SINGLE-PARTICLE PROPERTIES

We begin by showing single-particle properties. The mo-
mentum distribution n�k�= 1

2���ck�
† ck�� is obtained directly

in DQMC via Fourier transform of the equal-time Green’s
function Gji= �cj�ci�

† �

n�k� = 1 −
1

2N
�
i,j,�

eik·�j−i��cj�ci�
† � . �2�

At U=0 and at half-filling, n�k�=1�0� inside �outside� a
square with vertices �� ,0�, �0,��, �−� ,0�, and �0,−��
within the Brillouin zone �BZ�. In Fig. 1�a�, we show n�k�
around the complete BZ while Fig. 1�b� focuses on the re-
gion near the Fermi-surface point �� ,2 ,� /2�. Interactions
broaden the U=0 Fermi surface considerably. Figure 1�c�
shows that data for different lattice sizes fall on the same
curve. Smearing due to finite temperature effects is seen in
Fig. 1�d� to be small below T= t /8 ��t=8�.

Recent optical lattice experiments29 have imaged this
Fermi surface for a three-dimensional cloud of fermionic 40K
atoms prepared in a balanced mixture of two hyperfine states
which act as the Hubbard Hamiltonian spin degree of free-
dom. In Fig. 2 we show a sequence of color contour plots for
different densities at weak and intermediate couplings, U / t

=2,4. As in the experiments and in agreement with Fig. 1,
the Fermi surface may still be clearly discerned and evolves
from a circular topology at low densities into the rotated
square as the BZ boundaries are approached. Because of the
sign problem48,49 which occurs in the doped system, the tem-
peratures shown in the figure are rather higher than those
used in Fig. 1 at half-filling.

Another single-particle quantity of interest is the effective
hopping,

teff

t
=

�cj+x̂�
† cj� + cj�

† cj+x̂��U

�cj+x̂�
† cj� + cj�

† cj+x̂��U=0

, �3�

which measures the ratio of the kinetic energy at finite U to
its noninteracting value. As the electron correlations grow
larger, hopping is increasingly inhibited and teff is dimin-
ished. In Fig. 3, we show a plot of this ratio as a function of
U for a 10�10 lattice. Note that despite the insulating nature
of the system, the effective hopping is nonzero and does not
serve as an order parameter for the metal-insulator transition.
Indeed, teff is responsible for the superexchange interaction
which drives antiferromagnetic order. The effective hopping
can be evaluated analytically at small and large U.10 The
DQMC data interpolates between these two limits.
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FIG. 1. �Color online� ��a� and �b�	 The momentum distribution,
Eq. �2�, is shown for interaction strengths U ranging from U=2t
�one quarter the bandwidth� to U=W=8t. A sharp Fermi surface is
seen at weak-coupling as the momentum cuts across the Fermi sur-
face at k= �� /2,� /2�. Larger U broadens n�k� considerably. The
occupation becomes substantial outside the nominal Fermi surface.
Panel �a� shows the full BZ while panel �b� provides higher reso-
lution for the portion of the cut perpendicular to the Fermi surface
at �� /2,� /2�. �c� At U=2t and �t=32, n�k� has only a weak lattice
size dependence, apart from the better resolution as L increases. �d�
For U=2t on a 20�20 lattice, n�k� is converged to its low-
temperature value once T� t /8. �By contrast, the spin correlations
reach their ground-state values only at considerably lower T.�
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IV. MAGNETIC CORRELATIONS

We turn now to two-particle properties, focusing on the
magnetic behavior. The real-space spin-spin correlation func-
tion is defined as

C�l� = ��nj+l↑ − nj+l↓��nj↑ − nj↓�� �4�

and measures the extent to which the z component of spin on
site j aligns with that on a site a distance l away. Although
defined in Eq. �4� using the z direction, C�l� is rotationally
invariant and in fact, we measure all three components to
monitor ergodicity in our simulations and average over all
directions to provide an improved estimator for the magnetic
properties.

The local moment �m2�=C�0,0�= ��nj↑−nj↓�2� is the zero
separation value of the spin-spin correlation function. The
singly occupied states 
↑ � and 
↓ � have �m2�=1 while the
empty and doubly occupied ones 
0� and 
↑↓� have �m2�=0.
In the noninteracting limit, at half-filling, each of the four
possible site configurations is equally likely. Hence the aver-
age moment �m2�= 1

2 .
The on-site repulsion U suppresses the doubly occupied

configuration and hence also the empty one, if the total oc-
cupation is fixed at one fermion per site. Ultimately, charge
fluctuations are completely eliminated, �m2�→1 and the
Hubbard model maps onto the spin-1

2 Heisenberg Hamil-
tonian. This is illustrated in Fig. 4 for a 10�10 lattice. By
the time U=W=8t, the local moment has attained 90% of its
full value. Thermal fluctuations also inhibit local moment
formation but the data shown for different temperatures in
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FIG. 2. �Color online� Color contour plot depiction of the momentum distribution n�k� and its gradient �n�k�. �a� Left to right, n�k� at
weak-coupling U=2t and fillings 	=0.23, 0.41, 0.61, 0.79, and 1.0. �b� �n�k� for the same parameters. ��c� and �d�	 Intermediate coupling
U=4t and fillings 	=0.21, 0.41, 0.59, 0.79, and 1.0. The increased breadth of the Fermi surface with interaction strength is evident. The
lattice size=24�24 and inverse temperature �t=8 except at U=4t and fillings 	=0.59 and 0.79, where the sign problem restricts the
simulation to inverse temperatures �t=6 and 4, respectively.
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expectation value of �cj+x̂�

† cj�� at U with its value at U=0 for a
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Fig. 4 indicate they are mostly eliminated by the time T
decreases below t /12=W /96.

Local moments provide an intuitive picture of the onset of
long-range correlation in the strong-coupling regime. They
first form on the temperature scale U, which acts to eliminate
double occupancy and then, at yet lower T, they order via
antiferromagnetic exchange interaction with J=4t2 /U. In
contrast with this situation, weak-coupling correlations are
better described as arising from the instability of the Fermi
gas against formation of a spin-density wave, a peculiarity of
the square lattice, suggesting an ordering temperature pro-
portional to U.

Figure 5 shows the spin-spin correlation function in the
latter regime �U=2� for a 20�20 lattice at �t=12, 20, and
32. The correlations extend over the entire lattice even at
�t=12, i.e., the correlation length has become comparable to
the system size already at this temperature. The values of

C�l� continue to grow as T is increased further, saturating at
�t�32. This observation disproves the commonly held idea
that on finite clusters, the order parameter stop growing after
the correlation length exceeds the linear size of the system.
Such saturation happens at a much lower temperature, only
after thermal fluctuations have been largely eliminated.

A comparison of 
C�l�
 for U=2 and different lattice sizes
is given in Fig. 6, where data for L=8 up to L=24 are plotted
and we have taken the absolute value to make the conver-
gence with L clearer. We have fixed �t=32 so the spin cor-
relations have reached their asymptotic low-temperature val-
ues. As expected, the smallest lattice sizes �8�8�
overestimate the tendency to order, with 
C�l�
 significantly
larger than values for larger L. However, by the time L=20
the finite-size effects are small.

We next compare the spin-spin correlation function for
various U at low temperatures on a 24�24 lattice in Fig. 7.
Long-range order is present at all interaction strengths. For
each U, we have chosen temperatures such that the ground
state has been reached for this lattice size. Since statistical

0.5

0.6

0.7

0.8

0.9

1.0

0 4 8 12 16

β = 24
β = 12
β = 4

C
(0

,0
)

U

FIG. 4. �Color online� The local moment �m2� is the zero spatial
separation value of the spin-spin correlation function C�0,0�. In the
noninteracting limit �m2�= 1

2 . As the interaction energy U increases,
�m2� approaches 1, indicating the complete absence of double oc-
cupancy and a well-formed moment on each site.
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FIG. 5. �Color online� Comparison of the equal-time spin-spin
correlation function C�l� on a 20�20 lattice with �n�=1 and U
=2t for inverse temperatures �t=12, 20, and 32. The horizontal axis
follows the triangular path on the lattice shown in the inset. Anti-
ferromagnetic correlations are present for all temperatures and satu-
ration is visible at �t=32.
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fluctuations increase significantly with U and with � in
DQMC, it is advantageous not to simulate unnecessarily cold
systems. As discussed above, such temperature should in-
crease with U in the weak-coupling regime and scale propor-
tionally to 1 /U in the strong-coupling one. We indeed find
the highest saturation temperatures in the intermediate re-
gime, at U / t�4.

The magnetic structure factor S�k� is the Fourier trans-
form of the real-space spin-spin correlation function C�l�,

S�k� = �
l

eik·lC�l� , �5�

where S�k� is plotted in Fig. 8 as a function of k for several
lattice sizes with U=2t and �t=32. S�k� is small and lattice
size independent away from the ordering vector k=Q
��� ,��. The sharp peak at Q emphasizes the antiferromag-
netic nature of the correlations on a half-filled lattice.

In order to understand the implications of the lattice size
dependence at the ordering vector in Fig. 8, we show in Fig.
9 the antiferromagnetic structure factor for U=2t as a func-
tion of inverse temperature for various L. As expected, as L
increases, a larger value of � is required to eliminate the
low-lying spin-wave excitations and to saturate the structure
factor to its ground-state value.

It is seen from Eq. �5� that S�Q� will grow linearly with
the number of sites N=L2 if there is long-range antiferro-
magnetic order. Huse50 has used spin-wave theory to work
out the first correction to this scaling,

S�Q�
L2 =

maf
2

3
+

a

L
. �6�

Here maf is the antiferromagnetic order parameter. maf can
also be extracted from the spin-spin correlation function be-
tween the two most distant points on a lattice, C�L /2,L /2�,
with a similar spin-wave theory correction,

C�L/2,L/2� =
maf

2

3
+

b

L
. �7�

We expect that the correction b�a since the structure factor
includes spin correlations at short distances which markedly
exceed maf

2 , in addition to the finite lattice effects at larger
length scales. For similar reasons S is expected to show
larger corrections to the asymptotic 1 /L scaling behavior
than C. Part of the origin of these corrections is trivial and
evident from Fig. 6: S is the average of quantities as different
as C�0,0� and C�L /2,L /2�. In the large L limit, S and its
1 /L finite-size error are dominated by the contribution of the
large distance correlations but for small L a bias roughly
proportional to

C�0,0� − C�L/2,L/2�
L2 �8�

is clearly present. This bias is larger for small U since the
numerator in Eq. �8� gets smaller with increasing U and satu-
rates to the value of the Heisenberg model at U / t�8. On the
other hand, the error bars on S are often significantly smaller
than on C, a fact that is certainly advantageous in the final
finite-size scaling analysis.

A measure of magnetic order that incorporates the ex-
tended linearity of C and the better statistical property of S is
given by

Sn�Q� =
L2

L2 − n
�

l,l
lc

eiQ·lC�l� , �9�

where n is the number of distances shorter than lc. Equation
�9� is nothing but the interpolation between S, corresponding
to n=0, and C the case of n=L2−1. Figure 10�a� shows how
the L→� extrapolation evolves by increasing lc. When lc is
small the linear extrapolation is significantly biased by the
small-L results. As lc increases one reaches statistical conver-
gence already for lc=1 �corresponding to n=5, the cluster
formed by the origin and the nearest neighbors� with mini-
mal loss of statistical precision. That lc=1 is all is needed to
reach statistical convergence is also manifest in Fig. 6 where
C�l� drops to almost a constant beyond this value.
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In Fig. 10�b� we show Sn�Q� /L2 versus inverse linear lat-
tice size 1 /L for U=5t and n=0, 1, and 5 since as shown in
Fig. 10�a�, there is no real gain in accuracy by excluding
larger subclusters. The inverse temperature is �t=20 so that
S has reached its zero-temperature value regardless of L. We
have repeated this finite-size scaling analysis for couplings
U / t=2, 3, 4, 6, 7, and 8 and extrapolated to infinite L using
a linear least-square fit in 1 /L. In Fig. 11, we show the re-
sulting antiferromagnetic order parameter maf as a function
of U / t employing the same normalization convention of the
other Hubbard model studies reported in this figure. The
early DQMC values obtained by Hirsch and Tang,51 which
are consistent with the ones obtained here, are shown.

Figure 11 also summarizes a number of the available ana-
lytic treatments. The line with long dashes is the result of
Hartree-Fock theory scaled by the Heisenberg result at strong
coupling.48 The solid line is the random-phase-
approximation �RPA� treatment in which the single-particle
propagators in the usual RPA sum are also dressed by the
one-loop paramagnon correction to their self-energy.54 Also
shown �line with dots and dashes� are the results of a spin-

only low-energy theory53 which includes not only the usual
Heisenberg J=4t2 /U but also all higher order �e.g., ring ex-
change� terms up to t4 /U3. Finally, the line with short dashes
is the Heisenberg value determined by Sandvik.52

V. SUMMARY

In this paper we have presented the results of determinant
quantum Monte Carlo calculations for the magnetic proper-
ties of the half-filled square lattice Hubbard Hamiltonian.
DQMC allows us to bridge the weak-coupling and strong-
coupling regimes with a single methodology and a particular
outcome of our work has been the calculation of the antifer-
romagnetic order parameter in the ground state as a function
of U / t. We expect these values will be useful in validating
OLE experiments on the fermion Hubbard model.

By using an improved DQMC code, we have been also
able to provide results on larger lattices than those originally
explored.10 This not only has allowed us to do more accurate
finite-size scaling for the order parameter but we also obtain
considerably better momentum resolution and hence a de-
scription of the Green’s function G�k� which also offers the
prospect of improved contact with time-of-flight images
from optical lattice emulators.28–31

This study demonstrates a significantly improved capabil-
ity to simulate interacting fermion systems, driven by more
powerful hardware as well as algorithmic advances. Systems
of 500 sites �fermions� can now be handled on a modest
cluster of desktop computers. Larger system simulations can
easily be contemplated using more powerful hardware and
would scale as the cube of the number of particles in the
absence of the sign problem. This remaining sign problem
bottleneck prevents the study of the densities of most interest
to high-temperature superconductivity, i.e., dopings of
5–15 % away from half-filling and motivates the interest in
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analog computation for the Hubbard Hamiltonian.55 It should
be noted, however, that the sign problem can be rather mod-
est for other densities, e.g., quarter-filling, where we now
have the capability to undertake large scale studies.
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