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Abstract

Given a pair of matrices and starting vectors, we present a procedure to generate the

biorthonormal basis of the second-order right and left Krylov subspaces. The application

is to solve the large-scale quadratic eigenvalue problems via oblique projection tech-

nique. This method can take full advantage of the sparseness of large-scale system as well

as the superior convergence behavior of Krylov subspace based methods by implicit lin-

earization, which makes the solution acceptable in terms of both cost and time.

� 2005 Published by Elsevier Inc.
1. Introduction

The Quadratic Eigenvalue Problem (QEP for short) [1] is one of the most

important problems that arises in many applications, such as dynamic analysis

of structure.
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For simplicity, we write the quadratic k-matrix of order N as

QN ðkÞ ¼ k2M þ kDþ K. ð1Þ
M,D,K are given real square matrices of order N. k 2 C is an eigenvalue and

nonzero vector x the corresponding right eigenvector of (1) if

QN ðkÞx ¼ ðk2M þ kDþ KÞx ¼ 0 ð2Þ
and nonzero vector y the left eigenvector if

yHQN ðkÞ ¼ yH ðk2M þ kDþ KÞ ¼ 0. ð3Þ
The triplet (k,x,y) is called the eigentriplet [2] of QN ðkÞ.
The common way to solve QEP is first to transform it into an equivalent

Generalized Eigenvalue Problem (GEP for short), then any dense methods

[3] for GEP should be adopted if all these eigenvalues are desired. For large-

scale problems, some iterative methods, for instance, the Jacobi–Davidson

method [4,5] which targets at one eigenvalue at a time, and the Krylov sub-

space based methods [1,6–8] applied to one of its linearization forms, attracted
more and more attention in past few years. These approaches suffer some dis-

advantages, such as solving the GEP of twice order of the original problem and

more importantly, the lost of original structures of M,D,K in the process of

linearization. Furthermore, essential spectral properties of QNðkÞ are not guar-
anteed to preserve.

Recently, a Rayleigh–Ritz projection technique for finding a few eigen-

values, often those with the largest magnitude, and the corresponding eigenvec-

tors of large-scale QEP (2) was proposed in [9]. The remarkable feature in
practice is that since this method is applied directly to the original problem,

the essential structures of M,D,K as well as the spectral properties are pre-

served promisingly. The main step is to generate an orthonormal basis of the

second-order Krylov subspace by the second-order Arnoldi (SOAR for short)

procedure, which can be thought of as a one-sided method. In this paper, we

extend this idea to the use of a two-sided method, which generates two se-

quences of vectors spanning both the second-order right and left Krylov sub-

spaces. We call it the second-order biorthogonalization (SOB for short)
procedure. An oblique projection technique [1,10], which based on a general-

ized version of the SOB procedure, is applied to QEP and the Ritz triplet

(h,x,y) of QN ðkÞ will be solved at the same time.

Throughout this paper, we use the traditional linear algebra notational con-

vention. By k Æ k1, k Æ k2, and k Æ kF, we denote the 1-, 2- and Frobenius-norm of

a vector or matrix. The notation span {q1,q2, . . . , qn}, and span {Q} stand for

the spaces spanned by the vector sequence {qj} and the columns of matrix Q,

respectively. Sign of x is denoted by sign(x).
The rest of this paper is organized as follows. In Section 2, we shall

introduce the main procedure to construct the biorthonormal basis of the
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second-order right and left Krylov subspaces. Then in Section 3, we cover the

idea of applying the oblique projection technique to solve the quadratic eigen-

value problems. One numerical example is given in Section 4 to identify our

method. We conclude this paper in Section 5.
2. The second-order biorthogonalization procedure

For given A, B and r�1 = 0, r0 = u, we define the vector sequence {rj} as

follows

rj ¼ Arj�1 þ Brj�2;

for j > 0. Then, a procedure to generate the orthonormal basis of subspace

GnðA;B; uÞ ¼ spanfr0; r1; . . . ; rn�1g;
is presented in [9]. We enhance this idea to generate the biorthonormal basis of

GnðA;B; uÞ and GnðAT;BT; vÞ; which we define as the second-order right and left

Krylov subspaces, i.e., to find the biorthonormal vector sequences {qj} and {pj}

such that

spanfq1; q2; . . . ; qng ¼ GnðA;B; uÞ
spanfp1; p2; . . . ; png ¼ GnðAT;BT; uÞ.

ð4Þ
Algorithm 1. The second-order biorthogonalization (SOB) procedure

1. x = vTu

2. q1 ¼ u=
ffiffiffiffiffiffiffi
jxj

p
; q01 ¼ 0

3. p1 ¼ signðxÞv=
ffiffiffiffiffiffiffi
jxj

p
; p01 ¼ 0

4. for j = 1,2, . . . , n do
5. r ¼ Aqj þ Bq0j, r

0 = qj
6. s ¼ ATpj þ BTp0j, s

0 = pj
7. for i = 1,2, . . . , j do
8. uij ¼ pTi r, vij = sTqi
9. r ¼ r � qiuij; r0 ¼ r0 � q0iuij

10. s ¼ s� pivij; s0 ¼ s0 � p0ivij
11. end for

12. x = sTr
13. if x = 0 then breakdown

14. ujþ1;j ¼
ffiffiffiffiffiffiffi
jxj

p
, vj+1,j = sign(x)uj+1,j

15. qj+1 = r/uj+1,j, q0jþ1 ¼ r0=ujþ1;j

16. pj+1 = s/vj+1,j, p0jþ1 ¼ s0=vjþ1;j

17. end for
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In matrix notation, the above algorithm generates two N · n matrices Qn

and Pn whose columns are the vector sequences {qj} and {pj}, respectively,

which satisfy relation (4) and the biorthonormality. The proof is similar to that

in [9].

It will be seen above all that the SOB procedure only refer the matrices A

and B through the matrix–vector products Ax, ATx and Bx, BTx. Therefore,

A, B do not have to be represented in the usual way as two-dimension arrays
of numbers, but as rules to compute the matrix–vector products for any given

vector, which is ideal for large-scale and sparse system. This enjoys the same

feature as in the standard nonsymmetric Lanczos procedure [11] for generating

the biorthonormal basis of KnðA; uÞ and KnðAT; vuÞ. Secondly, the vector se-

quences fq0jg and fp0jg are auxiliary that must be kept in Algorithm 1, while the

memory saving technique in [9] can be adopted to deduce a revision, which re-

moves the requirement of explicit reference of fq0jg and fp0jg, as we do in Algo-

rithm 2. Limited by length, we do not explore the details here. Thirdly, if A, B
are symmetric matrices, then the above procedure with the same starting vec-

tors yields Qn = Pn and Un = Vn. It is necessary to compute only one of these

two recurrences provided that a symmetric scaling scheme is used at lines

12–16 of Algorithm 1 and the SOB procedure degrades to the SOAR proce-

dure. Fourthly, there are infinitely many ways of choosing the scalars uj+1,j
and vj+1,j [12,3] at line 14 of Algorithm 1, as long as they satisfy x = uj+i,j vj+i,j.

There are certain tradeoffs among different choices. Fifthly, this procedure will

break down at line 13 when the norm of r or s, or even the inner product of r
and s vanishes at a certain step of outer loop. The breakdown of the standard

nonsymmetric Lanczos procedure has been discussed extensively; see, for

example, [13–15]. But for the second-order case, it is a little difficult to cure

such breakdown. This subject is of further study. In this paper, we will always

presume that the SOB procedure will not stop prematurely.
3. Oblique projection method for QEP

Before presenting the oblique projection method for QEP, we will first intro-

duce one of the generalized versions of the SOB procedure, which generates the

M-biorthonormal basis of subspaces Gnð�M�1D;�M�1K; uÞ and Gnð�M�TDT;
�M�TKT; vÞ.

Algorithm 2. The generalized SOB procedure

1. x = vTMu

2. q1 ¼ u=
ffiffiffiffiffiffiffi
jxj

p
; p1 ¼ signðxÞv=

ffiffiffiffiffiffiffi
jxj

p
,

3. f = 0, g = 0

4. for j = 1,2, . . . , n do
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5. r = �M�1(Dqj+Kf), s = �M�T(DTpj+K
Tg)

6. for i = 1,2, . . . , j do
7. uij ¼ pTi Mr; r ¼ r � qiuij
8. vij ¼ sTMqi; s ¼ s� pivij
9. end for

10. x = sTMr
11. if x = 0 then breakdown

12. ujþ1;j ¼
ffiffiffiffiffiffiffi
jxj

p
, vj+1,j = sign(x)uj+1,j

13. qj+1 = r/uj+1,j, pj+1 = s/vj+1,j,

14. f ¼ Qj
bU �1

j ej; g ¼ Pj
bV �1

j ej
15. end for

Matrices bU j and bV j are nonsingular if no breakdown occurs and are defined

as

bU j ¼

u21 � � � u2j

. .
. ..

.

ujþ1;j

2
664

3
775 and bV j ¼

v21 � � � v2j

. .
. ..

.

vjþ1;j

2
664

3
775.

Given Qn and Pn, which satisfy PT
nMQn ¼ In, by Algorithm 2, we can reduce

the original quadratic k-matrix of order N to a small n · n system by oblique

projection technique. Then, the associated QEP is to solve scalar h and nonzero

vectors f and g satisfying

QnðhÞf ¼ ðh2In þ hDn þ KnÞf ¼ 0; ð5Þ

gHQnðhÞ ¼ gHðh2In þ hDn þ KnÞ ¼ 0; ð6Þ

where Dn ¼ PT
n DQn and Kn ¼ PT

n KQn are matrices of order n.

The eigentriplet (h, f,g,) of QnðhÞ defines the Ritz triplet (h,x,y), which is the

approximating eigentriplet of QN ðkÞ, as

ðh; x; yÞ ¼ ðh;Qnf ; PngÞ. ð7Þ

The accuracy can be assessed by the norms of the residual vectors

r ¼ ðh2M þ hDþ KÞx and sH ¼ yH ðh2M þ hDþ KÞ.

The oblique projection method enforces r ? span{Pn} and s ? span{Qn}.

Moreover, by (7), it is of interest to note that yHr = 0 and sHx = 0. Therefore,

we have the following equalities, which measure the backward error for the

Ritz triplet (h,x,y),

ðh2M þ hDþ K � EÞx ¼ 0 and yH ðh2M þ hDþ K � EÞ ¼ 0; ð8Þ
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with the backward error matrix E ¼ rxH=kxk22 þ ysH=kyk22. If norm of E, i.e.,

kEk2F ¼ krk22
kxk22

þ ksk22
kyk22

; ð9Þ

is small enough, then by (8) we conclude that the Ritz triplet, (h,x,y) is the

exact eigentriplet of a slightly perturbed k-matrix of QN ðkÞ [16].
A high level description of the oblique projection method based on the gen-

eralized SOB procedure for solving QEP are given as follows.

Algorithm 3. Oblique projection method for QEP

1. Run the generalized SOB procedure with matrices M,D,K and starting vec-

tors u,v to construct the N · n M-biorthonormal matrices Qn and Pn.

2. Reduce the system by computing Dn ¼ PT
n DQn and Kn ¼ PT

n KQn.
3. Solve the reduced QEP (5) and (6) for eigentriplet (h, f,g) and obtain the Ritz

triplet (h,x,y) with x = Qnf/kQnfk2 and y = Png/kPngk2.
4. Assess the accuracy of the Ritz triplet by the relative norms of residual vec-

tors as

kðh2M þ hDþ KÞxk2
jhj2kMk1 þ jhjkDk1 þ kKk1

and
kyH ðh2M þ hDþ KÞk2

jhj2kMk1 þ jhjkDk1 þ kKk1
. ð10Þ

Since in line 5 of the generalized SOB procedure, we would solve Mx = b or

MTx = b for any right hand side b, it is ideal to provide a factorization form of
M, for example LU factorization before entering the outer loop of Algorithm 2

for computational efficiency. Secondly, we should note that if M,D,K are sym-

metric matrices, then the generalized SOB procedure with the same starting

vectors yields Qn = Pn. Therefore, the reduced matrices Dn and Kn are also sym-

metric, too. Thus, the essential structures of the original system are explicitly

preserved and the spectral properties may also be preserved in the reduced

one. Thirdly, for solving the reduced QEP in step 3 of Algorithm 3, we use

the dense approach mentioned in Section 1. In practice, the reduced order n

is considerably smaller than the order N of the original problem, hence a sub-

stantial computational effort can be eliminated by solving the reduced QEP

instead of the original one.
4. Numerical experiment

In this section, we give a numerical experiment to verify that our oblique
projection method Algorithm 3 (GSOB) can solve QEP promisingly. The re-

sults reported are compared with the exact eigenvalues (Exact) computed by
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MATLAB function polyeig, and the approximating eigenpairs by the SOAR

method (SOAR). In this example,M,D,K are 200 · 200 random nonsymmetric

matrices. The starting vectors are chosen to be vectors with all components

equal to 1 and the breakdown threshold to be 10�10.

The left plot of Fig. 1 shows the approximate eigenvalues computed with re-

duced order n = 20. The right plot of Fig. 1 shows the relative norms of the
right (GSOB right) and left (GSOB left) residual vectors computed by Eq.

(10) as well as the norms of the backward error matrices (Error Matrix) by

(9). We can conclude that the convergence behaviors of both the right and left

Ritz vectors are essentially the same, and the Ritz triplets are the exact eigen-

triplets of QN ðkÞ plus error matrices in small norm.

To show that Ritz values converge to the exact eigenvalues, often those with

the largest magnitude, we plot the relative error of the eigenvalue with the larg-

est magnitude (k = �32.2 ± 15.5i) in the left plot of Fig. 2, and that of the
Fig. 1. Approximate eigenvalues and relative norms.

Fig. 2. Relative error of eigenvalues.
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second largest eigenvalue (k = 0.307 ± 9.43i) in the right plot of Fig. 2 with re-

spect to the reduced order n from 1 to 50. The convergence behavior of SOAR

are also plotted in Fig. 2. It is easy to see that GSOB converges to the exact

eigenvalues faster than SOAR for this example.

Other numerical experiments, not presented here, also verify that some Ritz

values and the corresponding Ritz vectors of the reduced QEP are very good
approximations to the exact ones with the largest magnitude of the original

problem.
5. Conclusion

This article introduces a SOB procedure, which generates the biorthonormal

basis of the second-order right and left Krylov subspaces. A generalized ver-
sion of this procedure is applied to solve QEP via oblique projection technique.

Therefore, the original large-scale system is reduced to a small one, which can

be solved with dense methods. In practice, the order of the reduced problem is

considerably smaller than that of the original problem, hence a substantial

computational efforts can be eliminated by solving the reduced QEP instead

of the original one. Because of implicit linearization, the superior convergence

behavior of Krylov subspace based methods is also achieved.
Acknowledgements

BW and YS are supported in part by NSFC research key project 90307017.

YS would like to thank the National Laboratory of Nonlinear Science at

Fudan University. ZB is supported in part by NSF grant ACI-0220104.
References

[1] F. Tisseur, K. Mearbergen, The quadratic eigenvalue problem, SIAM Rev. 43 (2001) 235–286.

[2] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra

Appl. 309 (2000) 339–361.

[3] G. Golub, C. van Loan, Matrix Computations, third ed., The Jonhs Hopkins University Press,

1996.

[4] G. Sleijpen, G. Booten, D. Fokkema, H. van der Vorst, Jacobi Davidson type methods for

generalized eigenproblems and polynomial eigenproblems, BIT 36 (1996) 595–633.

[5] G. Sleijpen, H. van der Vorst, M. van Gijzen, Quadratic eigenproblems are no problem, SIAM

News 29 (1996) 8–9.

[6] O.A. Bauchau, A solution of the eigenproblem for undamped gyroscopic systems with the

Lanczos algorithm, Int. J. Numer. Methods Eng. 23 (1986) 1705–1713.

[7] M. Borri, P. Mantegazza, Efficient solution of quadratic eigenproblems arising in dynamic

analysis of structures, Comput. Methods Appl. Mech. Eng. 12 (1977) 19–31.



796 B. Wang et al. / Appl. Math. Comput. 172 (2006) 788–796
[8] H.C. Chen, R.L. Taylor, Solution of eigenproblems of damped structural systems by the

Lanczos algorithm, Comput. Struct. 30 (1988) 151–161.

[9] Z. Bai, Y. Su, SOAR: A second-order Arnoldi method for the solution of quadratic eigenvalue

problems, SIAM J. Matrix Anal. Appl. 26 (2005) 640–659.

[10] Y. Saad, The Lanczos biorthogonalization algortithm and other oblique projection methods

for solving large unsymmetric systems, SIMA J. Numer. Anal. 19 (1982) 485–506.

[11] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators, J. Res. Nat. Bur. Stand. 45 (1950) 225–280.

[12] J. Cullum, R. Willoughby, A practical procedure for computing eigenvalues of large sparse

nonsymmetric matrices, in: J. Cullum, R. Willoughby (Eds.), Large Scale Eigenvalue

Problems, North-Holland, Amsterdam, 1986.

[13] B.N. Parlett, Reduction to tridiagonal form and minimal realization, SIAM J. Matrix Anal.

Appl. 13 (1992) 567–593.

[14] B.N. Parlett, D.R. Taylor, Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric

matrices, Math. Comput. 44 (1985) 105–124.

[15] R.W. Freund, M.H. Gutknecht, N.M. Nachtigal, An implementation of the look-ahead

Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 14 (1993) 137–159.

[16] Z. Bai, Error analysis of the Lanczos algorithm for the nonsymmetric eigenvalue problem,

Math. Comput. 62 (1994) 209–226.


	The second-order biorthogonalization procedure and its application to quadratic eigenvalue problems
	Introduction
	The second-order biorthogonalization procedure
	Oblique projection method for QEP
	Numerical experiment
	Conclusion
	Acknowledgements
	References


