
Vis Comput (2010) 26: 1421–1433
DOI 10.1007/s00371-010-0428-z

O R I G I NA L A RT I C L E

Segmenting point-sampled surfaces

Ichitaro Yamazaki · Vijay Natarajan · Zhaojun Bai ·
Bernd Hamann

Published online: 8 April 2010
© Springer-Verlag 2010

Abstract Extracting features from point-based representa-
tions of geometric surface models is becoming increasingly
important for purposes such as model classification, match-
ing, and exploration. In an earlier paper, we proposed a mul-
tiphase segmentation process to identify elongated features
in point-sampled surface models without the explicit con-
struction of a mesh or other surface representation. The pre-
liminary results demonstrated the strength and potential of
the segmentation process, but the resulting segmentations
were still of low quality, and the segmentation process could
be slow. In this paper, we describe several algorithmic im-
provements to overcome the shortcomings of the segmen-
tation process. To demonstrate the improved quality of the
segmentation and the superior time efficiency of the new
segmentation process, we present segmentation results ob-
tained for various point-sampled surface models. We also
discuss an application of our segmentation process to extract

I. Yamazaki (�) · Z. Bai
Department of Computer Science, University of California,
One Shields Avenue, Davis, CA 95616, USA
e-mail: yamazaki@cs.ucdavis.edu

Z. Bai
e-mail: bai@cs.ucdavis.edu

B. Hamann
Department of Computer Science, Institute for Data Analysis
and Visualization (IDAV), One Shields Avenue, Davis,
CA 95616, USA
e-mail: hamann@cs.ucdavis.edu

V. Natarajan
Department of Computer Science and Automation,
Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, 560012, India
e-mail: vijayn@csa.iisc.ernet.in

ridge-separated features in point-sampled surfaces of CAD
models.

Keywords Point sets · Sampling · Features · Geodesic
distance · Normalized cut · Topological methods ·
Spectral analysis · Multiphase segmentation · Hierarchical
segmentation

1 Introduction

Point primitives support both simple and flexible modeling
of complex shapes and have been widely used to represent
various surface models [1, 2]. In recent years, the number
and usage of high-resolution point-sampled surface models
have been rapidly increasing due to improvements in digi-
tal scanning technology. In order to classify, match, and ex-
plore such a large number of high-resolution point-sampled
surface models, an efficient method to extract features that
distinguish the surface models is becoming increasingly im-
portant. In fact, point-set segmentation to extract features
of such surfaces in the absence of connectivity information
has been studied extensively in the graphics community, and
its motivations are well-established [3–5]. In addition, the
study of point-set segmentation has been extended to higher
dimensions [6], which further motivates the development of
an efficient segmentation process. In this paper, we present
a process to identify two types of geometric features from
point-sampled surfaces, namely, elongated features such as
the legs of a horse and fingers of a hand, and ridge-separated
features such as the faces of a CAD model. These features
are natural choices for applications such as model classifi-
cation, matching, and exploration.

In an earlier paper [7], we introduced a multiphase seg-
mentation process to extract elongated features in point-
sampled surfaces without the explicit construction of a

mailto:yamazaki@cs.ucdavis.edu
mailto:bai@cs.ucdavis.edu
mailto:hamann@cs.ucdavis.edu
mailto:vijayn@csa.iisc.ernet.in

1422 I. Yamazaki et al.

mesh or other surface representation. The preliminary re-
sults demonstrated the potential of the segmentation process,
but the resulting segmentation was still of low quality, and
the segmentation process could be slow. In this paper, we
describe several algorithmic improvements to overcome the
shortcomings of the segmentation process. The segmenta-
tion results of various point-sampled surface models are pre-
sented to demonstrate that the new algorithm not only leads
to significantly improved quality of the segmentation, but
also reduces the time to compute the segmentation by a
factor of up to five. We also discuss an application of our
segmentation process to identify ridge-separated features in
point-sampled surfaces of CAD models.

The rest of this paper is organized as follows. In Sect. 2,
we first review the previously developed and published
methods, besides the one we proposed in [7], which are
closely related to ours. In Sect. 3, we review the shortcom-
ings of the earlier segmentation process [7] and summarize
the algorithmic improvements that are presented in this pa-
per. After discussing the details of the algorithmic improve-
ments in Sects. 4 and 5, we present in Sect. 6 a detailed
analysis of the storage and run-time requirements of the new
algorithm. In Sect. 7, we discuss an application of our seg-
mentation process to CAD models. In Sect. 8, we conclude
the paper.

2 Related work

Segmenting a surface model into its distinct parts is cru-
cial for several applications, such as modeling [8], meta-
morphosis [9, 10], compression [11], simplification [12],
retrieval [13, 14], collision detection [15], texture map-
ping [16], and skeleton extraction [17, 18]. Besides our
earlier work [7], numerous surface segmentation methods
have been developed based on techniques from computer
vision [19], load partitioning in finite element methods
(FEM) [20], point-set clustering in statistics [21], and ma-
chine learning [22]. In this section, we review some of the
segmentation methods that are closely related to ours, and
point out the differences.

Based on their objectives, segmentation methods can be
broadly classified into two categories: patch-type and part-
type methods [23]. Patch-type methods obtain segments that
are topological disks [12, 24–26], whereas part-type meth-
ods partition a surface into segments that correspond to fea-
tures [15, 18, 27–34]. Our methods compute part-type seg-
mentations.

Zhang et al. [33] proposed a feature-based approach for
computing a patch-type mesh segmentation for surface pa-
rameterization. Their approach identifies a feature by grow-
ing a region from a local maximum of the average geo-
desic distance function and searching for a feature boundary

which results in an abrupt increase in size of the surrounded
region. Another effective patch-type segmentation method,
called multi-chart image geometry method (MCIGM), was
proposed by Sander et al. [35]. It is based on a k-means al-
gorithm to minimize the global cost of segmentation, where
the cost of assigning a face to a segment is measured by the
angle between the normal of the face and average normal of
all the faces assigned to the segment. Yamauchi et al. [36]
showed that using mean-shift to cluster faces before apply-
ing MCIGM makes the method robust against the noise in
the input and results in a high-quality segmentation.

Katz and Tal [18] proposed a part-type mesh segmenta-
tion method that is based on a k-means algorithm. The cost
of assigning a face to a segment is measured by the geodesic
distance to the representative face of the segment. The lo-
cal distance between two connected faces is computed as a
weighted sum of their Euclidean and angular distances. Sev-
eral other successful part-type segmentation methods have
been developed based on a watershed technique [30, 37].
This technique locates the negative curvature minima that
correspond to segmentation boundaries by simulating the
accumulation of water into basins. Even though the segmen-
tation methods discussed so far share some similarity with
ours, they all assume that a surface is explicitly represented
by meshes. Hence, they cannot be applied directly to the
point-sampled surface models, in which the connectivity in-
formation is not available. On the other hand, our methods
operate directly on the input points. For example, the first
phase of our segmentation approach to identify features is
similar to the watershed technique, but we explicitly iden-
tify the saddle points of a discrete function defined over the
input points, and assign each point to a segment based on
the gradient flow induced by the discrete function.

Dey et al. [38] proposed a region-growing part-type ap-
proach to segment point-sampled surfaces. Their method
first identifies the local maxima of a discrete function de-
fined over explicitly-computed 3D meshes. These local
maxima represent distinct features, and input points are
assigned to a feature based on the flows induced over the
meshes. The first phase of our segmentation process is simi-
lar to this region-growing approach, but we operate directly
on the input points. An advantage to working in the lower
dimension (of the surface, in comparison to that of the 3D
meshes) is that our segmentation process is efficient. As a re-
sult, our method is between two and eleven times as fast as
theirs, while generating segmentations that are highly simi-
lar to those of Dey et al. in terms of quality

Spectral analysis of an affinity matrix has been used to
segment images [19] and meshes [29, 39]. We extend these
ideas to collect points that together describe a feature on a
surface model.

Segmenting point-sampled surfaces 1423

3 Contributions

We first outline the multiphase segmentation process we
proposed in [7] to extract elongated features in a point-
sampled surface:

1. Supernode extraction. Based on the topology of the in-
put points, we first identify sets of points that belong
to a common feature. This step is done by construct-
ing a discrete function and an associated gradient flow
field over the input points. Points that flow into a com-
mon local maximum of the discrete function belong to
a common feature and are represented by a supernode.
For efficiency, the discrete function is computed from
uniformly-sampled surface points. This phase sets the
stage for performing hierarchical segmentation in an effi-
cient manner by coarsening the input points into supern-
odes. In this initial phase, we work with an intrinsic di-
mension (i.e., a two-dimensional surface) of the point set,
which is typically lower than the dimension of the em-
bedding space (i.e., three in the case of scanned surfaces
in three-dimensional space). An advantage to working in
the lower dimension is that our segmentation process is
efficient.

2. Hierarchical segmentation. We bisect the set of the su-
pernodes while ensuring that supernodes belonging to a
common feature remain together. A near-optimal bisec-
tion is computed using a spectral analysis of a weighted
graph that represents the relation between supernodes.
This second phase can be applied directly to the input
points, but computing a near-optimal bisection is signif-
icantly faster when it is applied to the smaller set of su-
pernodes. Repeated application of this bisection results
in a hierarchical segmentation of the supernodes.

3. Surface segmentation. We construct a segmentation of
the input points from the segmentation of the supernodes.
Previous phases ensure that features lie in individual seg-
ments.

We now summarize the properties and shortcomings of
the segmentation process using the criterion proposed by At-
tene et al. [40]. Some of the relevant properties are:

– Type of segmentation. A segmentation of a point-sampled
surface model is computed to extract elongated features
without the explicit construction of a mesh or other sur-
face representation.

– Hierarchy. A hierarchical segmentation of supernodes
supports multiple views of the input surface at various
levels of detail.

– Sensitivity to pose. Segmentation results are independent
of the poses of surface models since the segmentation
process is based on geodesic distances and uniform sam-
pling of points.

Shortcomings of the method described above include:

– Extracting correct segments. The method failed to iden-
tify significant features that were captured by a single su-
pernode in some models.

– Segment boundaries. Leakage of segments beyond the
feature boundaries was observed.

– Control parameters. The quality of segmentation de-
pended strongly on the number of sample points. To ob-
tain a good segmentation, this parameter needed to be
tuned for each model. A large number of sample points
were required for some models.

– Asymptotic complexity. The multiphase segmentation
process works directly on the point primitives that rep-
resent a surface. This can lead to an efficient use of
storage and computing resources. Specifically, the mem-
ory complexity is O(n), and the run-time complexity is
O(un log(n)), where u and n are the numbers of sample
and input points, respectively. Unfortunately, for some
models, a large number of sample points, u, may be
needed, leading to a slow segmentation process.

In this paper, we describe several algorithmic improve-
ments to address the shortcomings of the previous segmen-
tation process. We list below our contributions that lead to
significant improvements:

– Extracting correct segments. We describe a new weighted
graph of supernodes that captures the connectivity within
each supernode. This leads to a significant improvement
in the quality of segmentation, where all elongated fea-
tures can be extracted. An extension of the method to ex-
tract ridge-separated features is also discussed.

– Segment boundaries. We show that the growth of supern-
odes beyond their feature boundaries can be avoided by
creating supernodes at saddle points and using local re-
finement techniques. Since the leakage of segments be-
yond feature boundaries was greatly reduced, a point-wise
refinement technique [41, 42] can be applied in a post-
processing phase to obtain desirable geometric properties
for the segment boundaries.

– Control parameters. Even though additional control para-
meters must be used, the user may have to adjust only two
parameters to improve the quality of the segmentation for
each model. The remaining control parameters are prede-
termined to ensure high segmentation quality.

– Asymptotic complexity. The new algorithm is consider-
ably less affected by the presence of noise in the input and
requires a significantly smaller number of sample points.
As a result, even though the asymptotic complexity of the
new algorithm is the same as that of the previous algo-
rithm, the time to compute the segmentation is greatly re-
duced.

In the following sections, we discuss all phases of the
segmentation process in detail. In particular, we describe
the shortcomings of the previous segmentation process, and

1424 I. Yamazaki et al.

the proposed algorithmic improvements. We also provide
segmentation results of various point-sampled surfaces to
demonstrate that the new algorithm greatly improves the
quality of segmentation results, and reduces the time to com-
pute the segmentation by a factor of up to five.

4 Supernode extraction

In the first phase of the segmentation process, we use ideas
from Morse Theory to identify features in the underlying
surface of an input point set. Morse Theory was originally
developed to study the relationship between the shape of a
space and critical points of smooth functions defined over
the space [43, 44]. Recently, it has been used to construct
multi-resolution structures for the visualization of scalar
data [45–47] and to remove noise from 2-manifolds [48].
In contrast to these approaches based on Morse Theory for
smooth functions, we construct and analyze characteristics
of a discrete function defined over the input point set.

4.1 Feature-identifying function

We construct the discrete function over the input points
based on the concept of centrality, which was first intro-
duced in the context of social networks to identify cen-
tral people for transporting information within a network
[49, 50]. The notion of centrality was used more recently by
Hilaga et al. [51] in the context of shape matching to capture
the skeletal and topological structures of 3D shapes, where
the centrality of a point is defined as the average geodesic
distance from the point to all points over the surface model.

Assuming that a sufficiently dense point-sampled surface
is provided, the geodesic distance between two points on
the surface can be approximated by their shortest path in
a graph that connects all k-nearest points [6]. For exam-
ple, we assume that our point set is dense enough for the
k-nearest neighbor graph to identify two fingers of a hand
model (Fig. 1), which are close to each other. This also im-
plies that points that are associated with the same feature
belong to a connected component of the graph. The discon-
nected components that belong to different features are iden-
tified in our hierarchical segmentation phase (Sect. 5). Based
on this assumption, the centrality f̄ (p) of a point p can be
approximated as

f̄ (p) ≈ 1

|P |
∑

q∈P

g(p,q),

where |P | is the number of points in the input set P (i.e.,
|P | = n), g(p,q) measures the shortest path between two
points p and q in the k-nearest neighbor graph G, and if
p and q are k-nearest neighbors of each other in G, then
g(p,q) is equal to their Euclidean distance d(p,q).

Fig. 1 Discrete function measuring approximate centrality values of
points. Bluer colors correspond to larger function values. Red dots are
the local maxima of the function and black dots are the local minima.
Elongated features such as fingers, arms, and legs are represented by
the local maxima that are located at the extremal points on the surface.
Insignificant local maxima that do not represent any features are re-
moved by a local refinement process (Sect. 4.3). For each model, we
have a coarse and fine point sets, which we denote with the subscripts c

and f , respectively. Our segmentation approach obtains similar results
for both sets

To avoid the expensive computation of all-pair shortest
path distances, we compute an approximate centrality value
f (p) as the average shortest path distance from the point p

to uniformly distributed sample points U over the graph G,
i.e.,

f (p) = 1

|U |
∑

q∈U

g(p,q), (1)

where |U | is the number of the sample points. Clearly, as
|U | approaches |P |, f (p) approaches f̄ (p).

In order to sample the points U uniformly over the graph
G, we repeatedly sample a point p in the input set P that is
furthest away from the points that are already in U . Specifi-
cally, for each point p in P , we first compute h(p), which is
the shortest path distance between the point p and its nearest
point q already in U , i.e.,

h(p) = min
q∈U

g(p,q).

Then, we repeatedly sample a point p with the largest
value h(p) in the input set P .

To summarize, given the k-nearest neighbor graph G of
the input point set P , we construct the discrete function f

over P as follows:1

1. Initialize h(p) = ∞ and f (p) = 0 for all points p ∈ P .
2. Create a set U to store uniformly-sampled points from P ,

and initialize U = {}.2

1In our numerical experiments, k-nearest neighbors are computed us-
ing a kd-tree [52].
2The implementation maintains only the number of sample points.

Segmenting point-sampled surfaces 1425

3. Repeat steps 4–6 until |U | becomes greater than
√

n.
4. Pick a point p ∈ P with the largest value h(p), breaking

ties arbitrarily.
5. For all points q ∈ P ,

a) compute the shortest path distance g(p,q) in G,
b) update f (q) ← f (q) + g(p,q), and
c) update h(q) ← min{h(q), g(p, q)}.

6. Update U ← U ∪ {p}.
7. Compute the average geodesic distance f (p) ← f (p)/

|U | for all p ∈ P .

After the completion of the above steps, f (p) contains a
value that approximates the centrality f̄ (p). Figure 1 shows
the distribution of f for different surface models. We ob-
serve that the tip of an elongated feature is represented by a
local maximum of f . Since our method computes a uniform
sample of the input and approximate geodesic distance, our
final segmentation results are sensitive neither to the unifor-
mity of the input point distribution nor to the pose of the
surface model, which will be demonstrated later in Fig. 7.

We note that not all local maximum represent features in
the underlying surface; in the presence of noise in the input,
some local maximum may not represent a feature at all. The
previous segmentation process [7] was sensitive to the noise,
and the quality of segmentation depended strongly on the
number of sample points. In some models, a large number of
sample points are needed, resulting in a slow segmentation
process. The algorithmic improvements described in the rest
of this paper make the segmentation process considerably
less affected by the presence of noise in the input, reducing
the number of required sampled points. As a result, the time
to compute the segmentation is reduced by a factor of up to
five (Sect. 6). We found that

√
n sample points are sufficient

to identify distinct features in all the surface models used in
this paper.

4.2 Supernode extraction

We define discrete gradient ∇̂f (p) at a point p to be the
steepest ascent of the function f from p to its k-nearest
neighbor. Specifically, let û(p, q) be the unit vector point-
ing from p to its neighbor q ,

û(p, q) = q − p

‖q − p‖ ,

and z(p, q) be the discrete gradient magnitude given by

z(p, q) = f (q) − f (p)

d(p,q)
,

where the function f is given by (1), and d(p,q) measures
the Euclidean distance between the points p and q . Then,
the discrete gradient ∇̂f (p) is given by

∇̂f (p) = z(p, q) · û(p, q),

Fig. 2 Discrete gradient fields in surface models: the points flowing
into a common local maximum collectively form a supernode. The sur-
face meshes are added solely for the purpose of clearer illustration in
the above and subsequent figures. The surface region formed by points
in a supernode was generated by a simple mesh viewer. The surface re-
gion formed by the points in a supernode was generated using a simple
mesh viewer for clearer illustration, and is shown in the same color.
Since the gradient fields flow to a local maximum all the way from
a local minimum, supernodes grow across the boundaries of distinct
features. This is one of the disadvantages of our earlier work [7]

where

q = arg max
q∈N(p)

z(p, q),

and N(p) is the set of the k-nearest neighbors of p. Each
input point is then assigned to a local maximum of f by
following the gradient flow field induced by ∇̂f . Points
assigned to a common local maximum collectively form a
supernode. However, two shortcomings of the earlier seg-
mentation process [7] must be resolved to ensure that the
points in a supernode are associated with a common fea-
ture.

First, the discrete gradient field induced by ∇̂f (p) flows
to a local maximum of f all the way from a local minimum
of f . As a result, supernodes grow across the boundaries of
their corresponding features (see Fig. 2). Note that these fea-
ture boundaries are identified by saddle points, where mul-
tiple supernodes merge at the largest centrality value. In or-
der to prevent the growth of supernodes beyond their feature
boundaries, we create a new supernode at a saddle point. All
points lying within supernodes that merge at the same saddle
point and whose approximate centrality values are smaller
than that of the saddle point, are assigned to the new supern-
ode. The process of creating new supernodes is recursively
applied to the newly-created supernodes. Figure 3 shows the
expanded set of supernodes.

Second, in the k-nearest neighbor graph G, two points
that lie within different features may be connected by
feature-crossing edges even though their centrality values
are far larger than those of the points near the correspond-
ing feature boundaries. Note that these feature-crossing
edges may exist in G even when the input points are dense
enough to identify distinct features in the first phase of

1426 I. Yamazaki et al.

our segmentation process. These feature-crossing edges re-
sult in the creation of a saddle point and a new supernode
instead of the continued propagation of two supernodes.
Figure 4 shows an example in which the feature-crossing
edges cause an early termination of supernodes that oth-
erwise would have identified the ring finger and middle
finger. We observed that even if a point p is connected
to points in different features by feature-crossing edges,
the number of such edges is a small fraction of the to-
tal number of edges connecting the point p, i.e., most of
the edges connect to the points within the same feature.
Otherwise, the point p lies on its corresponding feature
boundaries and should be identified as a saddle. Therefore,
in order to identify the feature-crossing edges and to effi-
ciently extract correct surface features, we process points p

in the input set P in descending order of f (p) as fol-
lows:

1. If p is a local maximum, assign p to a new supernode.
2. Otherwise, assign p to a supernode using the following

steps:
a) Let M(p) contain all neighbors N(p) of p that have

been processed. In other words, if q ∈ M(p), then
f (q) ≥ f (p).

Fig. 3 New supernodes are created at saddle points. Growth of su-
pernodes beyond the feature boundaries, as seen in Fig. 2, are avoided

b) If the number of points in M(p) from a supernode si
is only a small fraction3 of the total number of points
in N(p), then delete all points assigned to si from
M(p).

c) If the remaining points in M(p) belong to a single
supernode, then assign p to the supernode.

d) If the remaining points in M(p) belong to multi-
ple supernodes s1, . . . , sk , then declare p a saddle
point and assign p to a new supernode s. Any point
processed in the future and assigned to one of the su-
pernodes s1, . . . , sk will be assigned to s instead.

The above procedure successfully identifies a majority of
the feature-crossing edges and dramatically improves the
quality of the supernodes from the previous segmentation
process. Figure 5 shows the resulting supernodes.

4.3 Local refinement

Some of the supernodes computed above do not represent
significant features in the underlying surface. To remove
these insignificant supernodes, in this section, we describe
a local refinement phase which was absent in the previous
multiphase segmentation process. This additional phase not
only improves the quality of the segmentation, but also re-
duces the segmentation time by reducing the number of su-
pernodes.

We first characterize each supernode s using three quan-
tities:

1. The feature height fh(s), equal to the maximum differ-
ence in the approximate centrality values f between all
pairs of the points in s, i.e.,

fh(s) = max
p,q∈s

|f (p) − f (q)|. (2)

3We use a threshold fraction of 0.3.

Fig. 4 Effect of feature-crossing edges. In the left figure, the edges in
red are identified as the feature-crossing edges in the k-nearest neigh-
bor graph of the coarse model of the hand. The quality of supernodes is

improved by removing these edges as seen in the middle and right fig-
ures, which respectively show the supernodes before and after feature-
crossing edges are removed

Segmenting point-sampled surfaces 1427

Fig. 5 Supernodes after local
refinement. Insignificant
supernodes are merged into
connected supernodes

2. The feature area fa(s), defined as

fa(s) =
∑

p∈s

πr(p)2,

where the radius r(p) is computed as

r(p) =
∑

q∈N(p)

‖p − q‖p

|N(p)| ,

and

‖p − q‖2 =
√

(f (p) − f (q))2 + d(p,q)2. (3)

3. The feature width fw(s), defined as

fw(s) = fa(s)

fh(s)
. (4)

We observed that insignificant supernodes have either small
feature areas or small feature heights; hence we merge them
with their neighboring supernodes in two steps:

1. Small supernodes are merged-up. If the feature area
fa(s) is less than a user-specified threshold4 and the su-
pernode s is created at a saddle point, then merge s back
with supernodes that terminate at the saddle.

2. Skinny supernodes are merged-down. If the feature
height fh(s) is less than a user-specified threshold5 and
the supernode s meets with another supernode at a saddle
point, then merge s with the supernode created at the sad-
dle point. Also, merge-down any small supernodes that
have not been merged-up.

We note that a supernode created at a saddle point can have
disconnected regions. If a supernode contains disconnected
regions even after the above local refinement steps, each
of the disconnected regions is tested against the above re-
finement criteria, and then it is either merged with a neigh-
boring supernode or becomes a supernode. Furthermore, af-
ter the feature-crossing edges are processed as described in

4Our threshold is 1% of the total feature area.
5Our threshold is 1% of the maximum feature height.

Sect. 4.2, a small or skinny supernode may not be connected
to any other supernode through a saddle point. In such a
case, we merge these insignificant supernodes into a supern-
ode that is connected point-wise in the k-nearest neighbor
graph. Figure 5 shows the supernodes after the local refine-
ment steps.

5 Hierarchical segmentation

In this section, we first construct a weighted graph
Gs(V,E,W) based on the supernodes identified in Sect. 4.2;
namely, each vertex in the vertex set V is a collection
of input points that belong to a common feature and the
weight W(v1, v2) is large if two vertices v1 and v2 in V lie
within similar features. We then present an algorithm to bi-
sect the set of vertices V into two disjoint subsets V1 and V2

by computing a graph cut that minimizes the normalized cut
value:

NCut(V1,V2) = asso(V1,V2)

asso(V1,V)
+ asso(V1,V2)

asso(V2,V)
, (5)

where the association between the subsets V1 and V2 is given
by

asso(V1,V2) =
∑

v1∈Vi, v2∈V2

W(v1, v2). (6)

Minimizing the value NCut results in a bisection in which
vertices within a subset are similar, while those in different
subsets are dissimilar. Thus, we avoid the bias toward small
segments that are often favored when the cut is minimized
without normalization. We recursively apply the bisection
until NCut is greater than a specified threshold. This bisec-
tion can be applied directly to the input points, but comput-
ing a near-optimal bisection is significantly faster when it is
applied to the smaller set of the supernodes.

5.1 Weighted graph construction

In the previous segmentation process [7], the weighted graph
Gs was constructed such that the supernodes were the ver-
tices in the graph. However, with this weighted graph, some

1428 I. Yamazaki et al.

Fig. 6 Weighted graph representing the relation of supernodes. Two
vertices are created for each supernode si : a representative vertex ri and
a member vertex mi . There are edges between ri and mi , and between
mi and mj if and only if si is a supernode created at a saddle point and
sj is one of the supernodes that terminates at the saddle. In the figure,
s3 is created at a saddle where s1 and s2 merge

significant features could not be segmented out. This is be-
cause a feature in a point-sampled surface may be repre-
sented by a single supernode si (e.g., a finger in the model
of the hand in Fig. 5). In such a case, this feature cannot be
segmented out by minimizing NCut because if V1 = {si} and
V2 = V \ {si}, then asso(V1,V2) is equal to asso(V1,V) and
NCut(V1,V2) becomes its maximum value, i.e., NCut = 2.
To avoid this problem, we propose a new weighted graph Gs

that captures the connectivity within each supernode. In this
new graph Gs , the vertex set V contains two vertices cor-
responding to each supernode si : a representative vertex ri

and a member vertex mi . We then create two types of edges
in Gs : between ri and mi , and between mi and mj . There
are edges between all pairs ri and mi , but an edge between
two member vertices mi and mj is added to Gs if and only
if si is a supernode created at a saddle point and sj is one of
the supernodes that terminates at the saddle. Figure 6 shows
an example of the graph Gs .

The weight of the edge between ri and mi measures the
importance of the feature identified by si :

W(ri,mi) = e
− 1

βfw(si)
(1− conn(si ,si)

maxsj ∈V conn(sj ,sj)
)

, (7)

where β is a user-specified scalar, the feature width fw(si)

is given by (4), the connectivity between two supernodes si

and sj is defined as

conn(si , sj) =
∑

p∈si ,q∈sj ∩N(p)

‖p − q‖2, (8)

and the norm ‖ · ‖2 is given by (3). Subsequently, even if a
feature is represented by a single supernode, it can be ex-
tracted when its corresponding W(ri,mi) is large.

The weight of an edge between mi and mj measures the
similarity between the corresponding supernodes,

W(mi,mj) = e
− d1(mi ,mj)

α1
− d2(mi ,mj)

αij , (9)

where α1 and αij are scalars,

d1(mi,mj) = |fh(si) − fh(sj)|
maxs1,s2∈V |fh(s1) − fh(s2)| ,

d2(mi,mj) = 1 − conn(si , sj)

maxs1,s2∈V conn(s1, s2)
,

the feature height fh(s1) is given by (2), and the connec-
tivity conn(si , sj) is given by (8). The first component d1

measures the relative significance of the supernodes. When
si and sj have similar feature heights, i.e., fh(si) ≈ fh(sj),
then W(mi,mj) is large, which, in turn, facilitates the merg-
ing of the two supernodes. The second component d2 mea-
sures how closely the two supernodes are connected to each
other. The value for αij is chosen to be proportional to the
ratio of the feature widths of the corresponding supernodes,
namely

αij = α2
min{fw(si), fw(sj)}
max{fw(si), fw(sj)} ,

so that small yet significant supernodes in the neighborhood
of a wide supernode maintain their identity. The values of α1

and α2 are specified by a user. We note that, in the previous
segmentation process, the similarity between the supernodes
was measured simply by their approximated geodesic dis-
tance g(si, sj). With this simple similarity measure, a skinny
feature may be connected to a large supernode with a small
weight, and may be segmented out (e.g., the skinny features
around the palm of the hand model in Fig. 5). The new simi-
larity measure ensures that these supernodes have a small d2

and are connected with a large weight, hence ensuring that
they merge together.

5.2 Graph cut

Shi and Malik [19] showed that an approximate solution to
minimize NCut can be computed based on a spectral analy-
sis of the Laplacian matrix L = D−W , where W is a matrix
storing the edge weights in the graph Gs , and D is a diago-
nal matrix whose ith diagonal entry dii is given as

dii =
∑

j �=i

W(vi, vj).

Specifically, if y is the eigenvector corresponding to the
second smallest eigenvalue λ of the generalized eigenvalue
problem,

(D − W)y = λDy, (10)

then NCut is approximately minimized by clustering all
points pi with approximately the same values yi into a com-
mon subset:

vi ∈
{

V1 if yi < γ,

V2 otherwise.

Segmenting point-sampled surfaces 1429

Fig. 7 Segmentation results after computing normalized cut for supernodes. The point distribution in handn is skewed such that it is dense over
the wrist and the little finger. This non-uniform distribution does not, however, affect the results

We identify the split value γ that minimizes NCut from uni-
form samples of values that range between the smallest and
largest elements in the eigenvector y. The recursive bisec-
tion of each subset results in a hierarchical segmentation
of the vertex set V . The recursion terminates when NCut
is greater than a specified threshold.

Figure 7 shows segmentation results obtained using the
repeated application of the normalized cut. The segmen-
tation results are similar to those obtained by the method
of Dey et al. [38] shown in Fig. 8. For the models of the
hand and santa, we used the choice of the scalars β = 2.0,
α1 = 2.0, and α2 = 0.5. For the models of the horse and
bunny, we found that decreasing the value of α2 to 0.2 re-
sults in better segmentations. This can be explained by the
fact that the models of the horse and bunny have features
(i.e., the head and tail, respectively), which are not as elon-
gated as the other features.6 The thresholds used for the nor-
malized cut were 0.07, 0.05, 0.23, and 1.2 for the models
of the hand, horse, santa, and bunny, respectively. These two
parameters (i.e., α2 and the normalized cut threshold) are the
only parameters that had to be adjusted.

6 Analysis

Memory requirement plays a crucial role in determining the
efficiency of a segmentation method when the input point
set is large. Our method requires the memory for storing
Euclidean and geodesic distances between points for the
computation of the approximate centrality values f in (1).
However, only distances between certain pairs of points

6It is possible for the representative vertex ri and member vertex mi

of the same supernode si to be assigned to different segments. In this
case, a simple local refinement can be applied to ensure that ri belongs
to the same segment as mi . However, in all of our experiments, we did
not observe this event.

need to be stored. For example, computing geodesic dis-
tances requires the Euclidean distances between the neigh-
boring points only. Thus, the memory requirement to store
the Euclidean distances is �(kn), where k is the number
of nearest neighbors considered for each point, and n is the
number of input points. Geodesic distances between a point
and

√
n sample points are used to compute the approximate

centrality values. However, only those geodesic distances
from the current sample point to the rest of the points need
to be stored, which results in �(n) storage complexity.

The computational complexities of the various steps of
our method are:

k-nearest neighbor computation: O(kn log(n))

Approximate centrality computation: O(n3/2 log(n))

Feature identification: O(kn)

Local supernode refinement: O(kmn)

Hierarchical segmentation: O(tl2)

Construction of surface segmentation: O(n)

Here, n is the number of input points, m is the number of
supernodes, l is the number of supernodes after refinement,
and t is the number of segments after hierarchical segmenta-
tion. Approximate centrality computation is clearly a com-
putational bottleneck. However, our new algorithm uses

√
n

sample points, as opposed to the c
√

n sample points used in
our earlier one [7]. Since c can be as large as 60, the compu-
tational bottleneck of the segmentation process is, in prac-
tice, significantly reduced in the new method. Speed-ups of
up to five were achieved for the models used in this paper.
Table 1 summarizes our timing results. Local supernode re-
finement processes the input points, and it is currently im-
plemented using simple arrays in MATLAB, which results
in slow running time. The remaining computations process
the set of supernodes, which is much smaller in size. As a
result, our method is between two and eleven times faster
than Dey et al.’s method [38] to compute segmentations of
similar quality, as seen in the last column of Table 1 and
Fig. 8.

1430 I. Yamazaki et al.

Table 1 Performance data for each step of the segmentation process:
kNN: k-nearest neighbor computation; Cen: approximate centrality
computation; Snod: supernode identification; LRef: local refinement
of supernodes; HSeg: similarity measure computation and hierarchical
segmentation; PSeg: construction of surface segmentation. Here, n is
the number of input points, m is the number of supernodes, l is the
number of supernodes after refinement, and t is the number of seg-
ments after hierarchical segmentation. For the segmentation of CAD
models, kNN includes the computation of approximate normals and

model transformation. k-nearest neighbors are computed using a kd-
tree [52]. The first three steps as well as the last step, all of which work
with point primitives, were implemented in C. All other steps were im-
plemented in MATLAB. The last column of the table shows the time
required by Dey et al.’s method [38] to compute segmentations of sim-
ilar quality using default parameters. We do not provide the timing
results of their method for the CAD models since it was not possible to
compute a correct segmentation. For our experiments, we used a laptop
PC with a 1.7 GHz Intel Pentium M processor and 1 GB RAM

Data set Data size Run-time (sec) Dey et al.

n m l t kNN Cen Snod LRef HSeg PSeg Total

handc 4,000 39 12 7 0.00 0.09 0.02 0.20 0.01 0.00 0.32 2.23

horsec 4,002 59 18 5 0.02 0.08 0.03 0.15 0.02 0.01 0.31 2.86

bunnyc 4,088 41 13 5 0.00 0.01 0.03 0.18 0.01 0.01 0.24 2.64

santac 5,002 55 15 9 0.01 0.12 0.03 0.20 0.03 0.00 0.39 2.64

handf 30,000 101 16 7 0.15 2.38 0.24 2.47 0.03 0.00 5.27 26.17

bunnyf 34,834 89 18 4 0.19 3.95 0.29 1.70 0.01 0.01 6.15 37.27

horsef 40,002 237 19 6 0.17 3.96 0.66 12.30 0.01 0.01 17.11 42.18

santaf 50,002 183 19 9 0.25 7.61 0.58 11.28 0.04 0.01 19.77 60.48

cube 9,602 21 6 6 0.20 0.39 0.04 0.20 0.02 0.01 0.68 –

prism 28,674 146 8 8 0.14 3.09 0.31 2.48 0.04 0.01 6.07 –

block 180,926 423 11 8 0.25 85.41 6.99 101.63 0.93 0.03 195.24 –

Fig. 8 Segmentation results
from Dey et al’s approach. The
quality of the segmentation is
similar to that in Fig. 7, which
was computed by our method.
Our method computed the
segmentation 2 to 11 times
faster

7 Point-sampled CAD models

Our multiphase segmentation process can be applied to iden-
tify faces in point-sampled surfaces of CAD models. We in-
corporated two modifications to the segmentation process
described in Sects. 4 and 5: we modified edge lengths in the
k-nearest neighbor graph G over the input points and those
in the graph Gs representing the relation between supern-
odes.

Edge lengths in the graph G are modified to simulate a
transformation of a CAD model that maps faces to elon-
gated features and ridges to feature boundaries. Specifically,
we shrink the lengths of edges connecting points that are
equidistant from a ridge, especially the ones close to a ridge,
and expand the lengths of remaining edges. This is done
based on Laplacian smoothing of approximate normals of
each input point. The new discrete function over the input

points is constructed based on the centrality of the points in
the transformed graph G. Supernodes that identify faces in
the CAD model are extracted by applying the methods de-
scribed in Sect. 4.

Following the ideas from Sect. 5.1, a weighted graph is
constructed, where the vertex set contains two vertices rep-
resenting each supernode. Similarity between supernodes is
measured by comparing the orientation of the faces they
represent. Supernodes that belong to a common face are
identified by applying the normalized cut recursively to the
weighted graph. Figure 9 shows our segmentation results.

8 Conclusions

In this paper, we have described several algorithmic im-
provements for the multiphase segmentation process pro-

Segmenting point-sampled surfaces 1431

Fig. 9 Segmentation of CAD models. Edge lengths in the k-nearest
neighbor graph and in the graph of supernodes are modified before
applying the multiphase segmentation process

posed in [7] to extract elongated features in a point-sampled
surface without the explicit construction of a mesh or other
surface representation. In comparison to the previous algo-
rithm, both time efficiency and segmentation quality have
been improved. The improvements in the quality of segmen-
tation were achieved mainly by introducing the concept of
saddle points of the discrete function defined over the input
point set and by constructing a weighted graph of supern-
odes that better captures their relations. The time efficiency
is improved primarily because the new algorithm is consid-
erably less affected by the presence of noise in the input,
which is typically the case for scanned surface models, re-
ducing the number of sample points required to construct the
discrete function. Since the leakage of segments beyond the
feature boundaries was greatly reduced, point-wise refine-
ment techniques [41, 42] can be applied to obtain desirable
geometric properties for segment boundaries.

Some additional features of our segmentation process in-
clude the following. Surfaces with or without boundaries can
be segmented correctly (e.g. the hand model has a boundary
at the wrist). The segmentation results are independent of
the poses of surface models because our methods are based
on geodesic distances and uniform sampling of points. Even
though there are several new control parameters, default val-
ues can be used for most of them to achieve good segmen-
tation results. For all the surface models used in this pa-
per, only two control parameters were adjusted, namely the
weights in the similarity measures and stopping threshold
for the normalized cut. We also discussed an application of
the segmentation process to identify ridge-separated features
in point-sampled surfaces of CAD models.

Since we operate only on point primitives, all phases
of the segmentation process can be applied to higher-
dimensional data. Moreover, the embedding space is not re-
stricted to being Euclidean. We merely require the points to
be embedded in a metric space. Our method can potentially
be used to segment point sets lying on a sub-manifold within
a high-dimensional space in which each point is represented
by a fixed-length feature vector [6]. Examples of such data
sets include protein shapes [53] and handwritten charac-
ters [6]. It is therefore possible to extend our method to con-
struct meaningful segmentations of such high-dimensional
data sets.

Acknowledgements The point sets used in our experiments were
downloaded from on-line 3D scan repositories [54, 55]. We used qs-
lim [56] to generate coarse point sets. Yamazaki and Bai were sup-
ported in part by the National Science Foundation grants 0313390 and
0611548. Natarajan and Hamann were supported in part by the Na-
tional Science Foundation grant under contracts ACI 9624034 (CA-
REER Award) and a large Information Technology Research (ITR)
grant. Natarajan was also supported by a faculty startup grant from
the Indian Institute of Science. We thank the members of the Visu-
alization and Computer Graphics Research Group at the Institute for
Data Analysis and Visualization (IDAV) at the University of Califor-
nia, Davis for helpful discussions.

References

1. Pauly, M., Keiser, R., Kobbelt, L.P., Gross, M.: Shape modeling
with point-sampled geometry. In: SIGGRAPH ’03: ACM SIG-
GRAPH 2003 Papers, pp. 641–650. ACM Press, New York (2003)

2. Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3D: an
interactive system for point-based surface editing. In: SIGGRAPH
’02: Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 322–329. ACM Press,
New York (2002)

3. Pfister, H., Gross, M.: Point-based computer graphics. IEEE Com-
put. Graph. Appl. 24(4), 22–23 (2004)

4. Gross, M.H.: Getting to the point. . .? IEEE Comput. Graph. Appl.
26(5), 96–99 (2006)

5. Sainz, M., Pajarola, R., Lario, R.: Points reloaded: point-based
rendering revisited. In: Proceedings Symposium on Point-Based
Graphics, Eurographics Association, pp. 121–128, 2004

6. Tenebaum, J.B., de Silva, V., Langford, J.C.: A global geomet-
ric framework for nonlinear dimensionality reduction. Science
190(5500), 2319–2323 (2000)

7. Yamazaki, I., Natarajan, V., Bai, Z., Hamann, B.: Segmenting
point sets. In: SMI ’06: Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2006 (SMI’06),
pp. 4–13. IEEE Computer Society, Washington (2006)

8. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal,
A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. In: SIG-
GRAPH ’04: ACM SIGGRAPH 2004 Papers, pp. 652–663. ACM
Press, New York (2004)

9. Gregory, A., State, A., Lin, M., Manocha, D., Livingston, M.:
Interactive surface decomposition for polyhedral morphing. Vis.
Comput. 15(9), 453–470 (1999)

10. Zockler, M., Stalling, D., Hege, H.-C.: Fast and intuitive genera-
tion of geometric shape transitions. Vis. Comput. 16(5), 241–253
(2004)

11. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry.
In: SIGGRAPH ’00: Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, pp. 279–286.
ACM Press/Addison-Wesley, New York (2000)

12. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape ap-
proximation. In: SIGGRAPH ’04: ACM SIGGRAPH 2004 Pa-
pers, pp. 905–914. ACM Press, New York (2004)

13. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh seg-
mentation based on fitting primitives. Vis. Comput. 22(3), 181–
193 (2006)

14. Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface de-
composition with applications. Comput. Graph. 25(5), 733–743
(2002)

15. Li, X., Toon, T., Tan, T., Huang, Z.: Decomposing polygon meshes
for interactive applications. In: I3D ’01: Proceedings of the 2001
Symposium on Interactive 3D Graphics, pp. 35–42. ACM Press,
New York (2001)

1432 I. Yamazaki et al.

16. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares con-
formal maps for automatic texture atlas generation. ACM Trans.
Graph. 21(3), 362–371 (2002)

17. Biasotti, S., Marini, S., Mortara, M., Patané, G.: An overview
on properties and efficacy of topological skeletons in shape mod-
elling. In: SMI ’03: Proceedings of the Shape Modeling Interna-
tional 2003, p. 245. IEEE Computer Society, Washington (2003)

18. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy
clustering and cuts. In: SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, pp. 954–961. ACM Press, New York (2003)

19. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

20. Schloegel, K., Karypis, G., Kumar, V.: Graph partitioning for
high performance scientific simulations. In: Sourcebook of Par-
allel Computing, pp. 491–541. Morgan Kaufmann, San Francisco
(2003)

21. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review.
ACM Comput. Surv. 31(3), 264–323 (1999)

22. Vapnik, V.: The Nature of Statistical Learning Theory. Springer,
New York (1995)

23. Shamir, A.: A formulation of boundary mesh segmentation. In:
3DPVT ’04: Proceedings of the 3D Data Processing, Visualiza-
tion, and Transmission, 2nd International Symposium, pp. 82–89.
IEEE Computer Society, Washington (2004)

24. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clus-
tering on polygonal surfaces. In: I3D ’01: Proceedings of the 2001
symposium on Interactive 3D Graphics, pp. 49–58. ACM Press,
New York (2001)

25. Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture mapping
progressive meshes. In: SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer Graphics and Interactive Tech-
niques, pp. 409–416. ACM Press, New York (2001)

26. Zhou, K., Synder, J., Guo, B., Shum, H.-Y.: Iso-charts: stretch-
driven mesh parameterization using spectral analysis. In: SGP ’04:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processing, pp. 45–54. ACM Press, New York
(2004)

27. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using fea-
ture points and core extraction. Vis. Comput. 21(8–10), 649–658
(2005)

28. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Intelli-
gent mesh scissoring using 3D snakes. In: PG ’04: Proceedings of
the Computer Graphics and Applications, 12th Pacific Conference
on (PG’04), pp. 279–287. IEEE Computer Society, Washington
(2004)

29. Liu, R., Zhang, H.: Segmentation of 3D meshes through spec-
tral clustering. In: PG ’04: Proceedings of the Computer Graphics
and Applications, 12th Pacific Conference (PG’04), pp. 298–305.
IEEE Computer Society, Washington (2004)

30. Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes us-
ing watershed segmentation. IEEE Trans. Vis. Comput. Graph.
5(4), 308–321 (1999)

31. Patane, G., Spagnuolo, M., Falcidieno, B.: Para-Graph: graph-
based parameterization of triangle meshes with arbitrary genus.
Comput. Graph. Forum 23(4), 783–797 (2004)

32. Shalfman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral
surfaces using decomposition. Proc. Eurograph. 21(3), 219–228
(2002)

33. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface pa-
rameterization and texture mapping. ACM Trans. Graph. 24(1),
1–27 (2005)

34. Zhou, Y., Huang, Z.: Decomposing polygon meshes by means of
critical points. In: MMM ’04: Proceedings of the 10th Interna-
tional Multimedia Modelling Conference, p. 187. IEEE Computer
Society, Washington (2004)

35. Sander, P., Wood, Z., Gortler, S., Snyder, J., Hoppe, H.:
Multi-chart geometry images. In: SGP ’03: Proceedings of the

2003 Eurographics/ACM SIGGRAPH symposium on Geometry
Processing, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, pp. 146–155, 2003

36. Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel,
H.P.: Feature sensitive mesh segmentation with mean shift. In:
SMI ’05: Proceedings of the International Conference on Shape
Modeling and Applications 2005 (SMI’ 05), pp. 238–245. IEEE
Computer Society, Washington (2005)

37. Page, D.L., Koschan, A., Abidi, M.A.: Perception-based 3D trian-
gle mesh segmentation using fast marching watersheds. In: Proc.
IEEE Conf. Computer Vision and Pattern Recognition, vol. 2,
pp. 27–32, 2003

38. Dey, T.K., Giesen, J., Goswami, S.: Shape segmentation and
matching with flow discretization. In: Proc. Workshop on Algo-
rithms and Data Structure, pp. 25–36, 2003

39. Gotsman, C.: On graph partitioning, spectral analysis, and digital
mesh processing. In: SMI ’03: Proceedings of the International
Conference on Shape Modeling and Applications 2003 (SMI’ 03),
p. 165. IEEE Computer Society, Washington (2003)

40. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M.,
Tal, A.: Mesh segmentation—a comparative study. In: SMI ’06:
Proceedings of the IEEE International Conference on Shape Mod-
eling and Applications 2006 (SMI’06), pp. 14–25. IEEE Computer
Society, Washington (2006)

41. Fiduccia, C.M., Mattheyses, R.M.: A linear time heuristic for im-
proving network partitions. In: DAC ’82: Proceedings of the 19th
Conference on Design Automation, pp. 175–181. IEEE Press, Pis-
cataway (1982)

42. Kernighan, B., Lin, S.: An efficient heuristic procedure for parti-
tioning graphs. Bell Syst. Tech. J. 291–307 (1970)

43. Matsumoto, Y.: An Introduction to Morse Theory, Amer. Math.
Soc., 2002, translated from Japanese by K. Hudson and M. Saito

44. Milnor, J.: Morse Theory. Princeton University Press, Princeton
(1963)

45. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topo-
logical hierarchy for functions on triangulated surfaces. IEEE
Trans. Vis. Comput. Graph. 10(4), 385–396 (2004)

46. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.T.,
Hamann, B.: A topological approach to simplification of three-
dimensional scalar fields. IEEE Trans. Vis. Comput. Graph. 12(4),
474–484 (2006)

47. Natarajan, V., Pascucci, V.: Volumetric data analysis using Morse–
Smale complexes. In: SMI ’05: Proceedings of the International
Conference on Shape Modeling and Applications 2005 (SMI’ 05),
pp. 322–327. IEEE Computer Society, Washington (2005)

48. Edelsbrunner, H., Morozov, D., Pascucci, V.: Persistence-sensitive
simplification of functions on 2-manifolds. In: SCG ’06: Proceed-
ings of the Twenty-Second Annual Symposium on Computational
Geometry, pp. 127–134. ACM Press, New York (2006)

49. Freeman, L.C.: Centrality in social networks: conceptual classifi-
cation. Soc. Netw. 1(3), 215–239 (1979)

50. Wasserman, S., Faust, K.: Social Network Analysis: Methods and
Applications. Cambridge University Press, New York (1994)

51. Hilaga, M., Shinagawa, Y., Komura, T., Kunii, T.L.: Topology
matching for fully automatic similarity estimation of 3D shapes.
In: SIGGRAPH ’01: Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, pp. 203–212.
ACM Press, New York (2001)

52. Mount, D.M., ANN, S. Arya: A library for approximate near-
est neighbor searching, http://www.cs.umd.edu/~mount/ANN/
(2010)

53. Roger, P., Bohr, H.: A new family of global protein shape descrip-
tors. ACM Comput. Surv. 182(2), 167–181 (2003)

54. AIM@SHAPE, http://www.aimatshape.net/ (2010)
55. Level of detail for 3D graphics, http://www.lodbook.com/models/

(2010)
56. Garland, M.: QSlim simplification software, http://www.graphics.

cs.uiuc.edu/~garland/software/qslim.html (2010)

http://www.cs.umd.edu/~mount/ANN/
http://www.aimatshape.net/
http://www.lodbook.com/models/
http://www.graphics.cs.uiuc.edu/~garland/software/qslim.html
http://www.graphics.cs.uiuc.edu/~garland/software/qslim.html

Segmenting point-sampled surfaces 1433

Ichitaro Yamazaki received his
Ph.D. degree in Computer Science
from University of California, Davis,
in 2008. He also holds B.Sc. in
Mathematics of Computation from
University of California, Los An-
geles. He is currently working as a
postdoctoral researcher at the Com-
putational Research Division of
Lawrence Berkeley National Labo-
ratory. His research interests include
numerical linear algebra, scientific
computing, and high-performance
computing.

Vijay Natarajan is an Assistant
Professor in the Department of
Computer Science and Automation,
and an Associate Faculty in the
Supercomputer Education and Re-
search Centre at the Indian Institute
of Science, Bangalore. He received
the Ph.D. degree in Computer Sci-
ence from Duke University in 2004.
He holds the B.E. degree in Com-
puter Science and M.Sc. degree in
Mathematics from Birla Institute of
Technology and Science, Pilani, In-
dia. His research interests include
scientific visualization, computa-

tional geometry, and computational topology.

Zhaojun Bai received the B.Sc.,
M.Sc., and Ph.D. degrees in Com-
putational Mathematics from Fu-
dan University, Shanghai, China,
in 1982, 1985, and 1988, respec-
tively. He is a Full Professor with
the Department of Computer Sci-
ence and the Department of Math-
ematics, University of California,
Davis. His major interests include
numerical linear algebra, parallel
scientific computing, and software
development. He was involved in
the design and implementation of

the numerical linear algebra software package LAPACK and is a coau-
thor of the LAPACK user’s guide.

Bernd Hamann BERND HAMANN
serves as Associate Vice Chancel-
lor for Research at the University of
California, Davis, where he is also a
Professor of Computer Science. His
research and teaching interests are
visualization, geometric modeling,
and computer graphics. He received
his Ph.D. degree in Computer Sci-
ence from Arizona State University
in 1991.

	Segmenting point-sampled surfaces
	Abstract
	Introduction
	Related work
	Contributions
	Supernode extraction
	Feature-identifying function
	Supernode extraction
	Local refinement

	Hierarchical segmentation
	Weighted graph construction
	Graph cut

	Analysis
	Point-sampled CAD models
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

