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Abstract. This paper is concerned with solving large-scale eigenvalue problems by algebraic
substructuring. Algebraic substructuring refers to the process of applying matrix reordering and
partitioning algorithms to divide a large sparse matrix into smaller submatrices from which a subset
of spectral components are extracted and combined to form approximate solutions to the original
problem. Through an algebraic analysis, we identify critical conditions under which a simple version
of algebraic substructuring works well. This particular version of substructuring is identical to the
component mode synthesis (CMS) method (see [R. R. Craig and M. C. C. Bampton, Coupling of
substructures for dynamic analysis, AIAA J., 6 (1968), pp. 1313–1319] and [W. C. Hurty, Vibrations
of structure systems by component-mode synthesis, J. Engrg. Mech., 86 (1960), pp. 51–69]) when
the matrix reordering is based on a geometric partitioning of the computational domain. We ob-
serve an interesting connection between the accuracy of an approximate eigenpair obtained through
substructuring and the distribution of the components of eigenvectors of a canonical matrix pencil
congruent to the original problem. A priori error bounds for the smallest eigenpair approximation are
developed. This development leads to a simple heuristic for choosing spectral components (modes)
from each substructure. The effectiveness of such a heuristic is demonstrated with numerical exam-
ples. We show that algebraic substructuring can be effectively used to solve a generalized eigenvalue
problem arising from the finite element analysis of an accelerator structure.
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1. Introduction. Substructuring is a commonly used technique for studying the
static or dynamic properties of large engineering structures [11, 12, 23, 17]. The basic
idea of substructuring is analogous to the concept of domain decomposition, which is
widely used in the numerical solution of partial differential equations [28, 25]. By di-
viding a large structure model or computational domain into a few smaller components
(substructures), one can often obtain an approximate solution to the original
problem from a linear combination of solutions to similar problems defined on the
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substructures. Because solving problems on each substructure requires far less com-
putational power than what would be required to solve the entire problem as a whole,
substructuring can lead to a significant reduction in the computational time required
to carry out a large-scale simulation and analysis.

The automated multilevel substructuring (AMLS) method [5, 6, 7, 18] is an ex-
tension of a substructuring method called component mode synthesis (CMS) [11, 17]
originally developed in the 1960s. Recent studies have shown that AMLS can be
used successfully in the vibration and acoustic analysis of large-scale finite element
models of automobile bodies [18, 21]. The frequency response analysis performed
in these studies requires computing several thousand eigenvalues and eigenvectors
associated with a large-scale symmetric generalized eigenvalue problem. The timing
results reported in [18, 21] indicate that AMLS is significantly faster than conventional
Lanczos-based approaches [22, 16].

It is important to note that the accuracy achieved by a substructuring method
such as AMLS is typically lower than that achieved by the standard Lanczos algorithm.
However, in many applications, the level of accuracy required for an approximate so-
lution to an algebraic problem is no more than what is provided by the finite element
scheme used to discretize the original continuous problem. Thus, the use of sub-
structuring is easily justified as long as the error associated with the substructuring
approximation does not exceed that produced by the finite element discretization.

Asymptotic analysis is performed in [8, 9] to assess the level of accuracy attainable
by the CMS method. The analysis is based on the standard finite element theory and
properties of the partial differential equation governing the evolution of the structure.
The recent work described in [7] provides a high-level mathematical description of the
AMLS in a continuous variational setting. However, neither of these studies provides
a satisfactory algebraic explanation on why substructuring works well in practice.

Our focus in this paper is on examining substructuring methods for solving large-
scale eigenvalue problems from a purely algebraic point of view. We use the term
algebraic substructuring to refer to the process of applying matrix reordering and par-
titioning algorithms (such as the nested dissection algorithm [15]) to divide a large
sparse matrix into smaller submatrices from which a subset of spectral components
are extracted and combined to form an approximate solution to the original eigen-
value problem. Through algebraic manipulation, we identify the critical conditions
under which a simple version of algebraic substructuring works well. This particular
version of substructuring is identical to the CMS method when the matrix reordering
is based on the geometric partitioning of the computational domain. We observe an
interesting connection between the accuracy of an approximate eigenpair obtained
through substructuring and the distribution of components of eigenvectors associated
with a canonical matrix pencil congruent to the original problem. An error estimate
for the approximation to the smallest eigenpair is developed. The estimate leads to
a simple heuristic for choosing spectral components (modes) from each substructure.
The effectiveness of such a heuristic is demonstrated with numerical examples. Our
analysis is related to but different from the recent work by Bekas and Saad [4], who
view algebraic substructuring as an approximation to the spectral Schur complement
method [1, 2, 10].

Our interest in algebraic substructuring is motivated in part by an application
arising from the simulation of the electromagnetic field associated with the next gen-
eration particle accelerator design [20]. We will show through a numerical example
that algebraic substructuring can be used effectively to compute the cavity resonance
frequencies and the electromagnetic field generated by a linear particle accelerator
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model.
Our presentation is organized as follows. In section 2, we give a brief overview of

the algorithmic ingredients of a simple algebraic substructuring method. The accuracy
of the approximate eigenpairs is analyzed in section 3. Our analysis of algebraic
substructuring is confirmed by numerical examples presented in section 4.

Throughout this paper, uppercase and lowercase Latin letters denote matrices and
vectors, respectively, while lowercase Greek letters denote scalars. An n× n identity
matrix will be denoted by In. The jth column of the identity matrix is denoted by ej .
The transpose of a matrix A is denoted by AT . We use ‖x‖ to denote the standard

2-norm of x and use ‖x‖M to denote the M -norm defined by ‖x‖M =
√
xTMx. We

will use ∠M (x, y) to denote the M inner product induced acute angle (M -angle for
short) between x and y. This angle can be computed from

cos ∠M (x, y) =
xTMy

‖x‖M‖y‖M
.

Similarly, we use ∠M (x,S) to denote the M -angle between a vector x and a subspace
S. This angle can be computed from

cos ∠M (x,S) =
‖QTMx‖2

‖x‖M
,(1)

where Q is an M -orthonormal basis of the subspace S; i.e., S = span{S} and
QTMQ = I.

A matrix pencil (K,M) is said to be symmetric definite if both K and M are
symmetric and M is positive definite. A matrix pencil (K,M) is said to be congruent
to another pencil (A,B) if there exists a nonsingular matrix P such that A = PTKP
and B = PTMP .

2. Algebraic substructuring. In this section, we briefly describe a single-level
algebraic substructuring algorithm. Our description does not use any information
regarding the geometry or the physical structure on which the original problem is
defined.

We are concerned with solving the generalized algebraic eigenvalue problem

Kx = λMx,(2)

where K is symmetric and M is symmetric positive definite. We assume both K and
M are sparse. They may or may not have the same sparsity pattern. Suppose the
rows and columns of K and M have been permuted so that these matrices can be
partitioned as

K =

⎛⎜⎝
n1 n2 n3

n1 K11 K13

n2 K22 K23

n3 KT
13 KT

23 K33

⎞⎟⎠ and M =

⎛⎜⎝
n1 n2 n3

n1 M11 M13

n2 M22 M23

n3 MT
13 MT

23 M33

⎞⎟⎠,(3)

where the labels n1, n2, and n3 are inserted into the top and left borders of the parti-
tioned matrices to indicate the dimension of each submatrix block. The permutation
can be accomplished by applying a matrix ordering and partitioning algorithm, such
as the nested dissection algorithm [15], to the matrix |K| + |M |.
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The pencils (K11,M11) and (K22,M22) now define two algebraic substructures
that are connected by the third block rows and columns of K and M , which we will
refer to collectively as the interface block. We assume that n3 is much smaller than
n1 and n2.

A single-level algebraic substructuring algorithm proceeds by performing a block
factorization

K = LDLT ,(4)

where

L =

⎛⎝ In1

In2

KT
13K

−1
11 KT

23K
−1
22 In3

⎞⎠ and D =

⎛⎝ K11

K22

K̂33

⎞⎠ .

The last diagonal block of D, often known as the Schur complement, is defined by

K̂33 = K33 −KT
13K

−1
11 K13 −KT

23K
−1
22 K23.

The inverse of the lower triangular factor L defines a congruence transformation that,
when applied to the matrix pencil (K,M), yields a new matrix pencil (K̂, M̂):

K̂ = L−1KL−T = D and M̂ = L−1ML−T =

⎛⎜⎝ M11 M̂13

M22 M̂23

M̂T
13 M̂T

23 M̂33

⎞⎟⎠ .(5)

The off-diagonal blocks of M̂ satisfy

M̂i3 = Mi3 −MiiK
−1
ii Ki3 for i = 1, 2.

The last diagonal block of M̂ satisfies

M̂33 = M33 −
2∑

i=1

(KT
i3K

−1
ii Mi3 + MT

i3K
−1
ii Ki3 −KT

i3K
−1
ii MiiK

−1
ii Ki3).

The pencil (K̂, M̂) is often called the Craig–Bampton form [11] in structural engineer-

ing. Note that the eigenvalues of (K̂, M̂) are identical to those of (K,M), and the
corresponding eigenvectors x̂ are related to the eigenvectors of the original problem
(2) through x̂ = LTx.

The substructuring algorithm constructs a subspace in the form of

S =

⎛⎜⎝
k1 k2 n3

n1 S1

n2 S2

n3 In3

⎞⎟⎠,(6)

where S1 and S2 consist of k1 and k2 selected eigenvectors of (K11,M11) and (K22,M22),
respectively. These eigenvectors will be referred to as substructure modes in the dis-
cussion that follows. Note that k1 and k2 are typically much smaller than n1 and n2,
respectively.
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The approximation to the desired eigenvalues and eigenvectors of the pencil
(K̂, M̂) is obtained by projecting the pencil (K̂, M̂) onto the subspace spanned by S;
i.e., we seek θ and q ∈ R

k1+k2+n3 such that

(ST K̂S)q = θ(ST M̂S)q.(7)

It follows from the standard Rayleigh–Ritz theory [24, p. 213] that θ serves as an
approximation to an eigenvalue of (K,M), and the vector formed by z = L−TSq is
the approximation to the corresponding eigenvector.

A summary of the single-level algebraic substructuring algorithm described in this
section is provided below.

Algorithm. Single-level algebraic substructuring.

Input: A matrix pencil (K,M), where K = KT and M = MT > 0;
Output: θj ∈ R and zj ∈ R

n, (j = 1, 2, . . . , k) such that Kzj ≈ θjMzj .

1. Order K and M to be in the form of (3);
2. Perform block factorization K = LDLT ;
3. Compute a subset of eigenpairs of the substructures (K11,M11)

and (K22,M22). The eigenvectors of each substructure form the
columns of S1 and S2, respectively;

4. Project the matrix pencil (K,M) into subspace spanned by
columns of Z = L−TS, where S is defined by (6);

5. Compute k desired eigenpairs (θj , qj) from (ZTKZ,ZTMZ), and
set zj = Zqj (j = 1, 2, . . . , k); apply the inverse of the permutation
used in step 1 to zj to restore the original order of the solution.

A few remarks are in order.
• Note that the most expensive computational task associated with this algo-

rithm is the block factorization K = LDLT and the congruence transforma-
tion of M required for projecting M into the subspace spanned by Z = L−TS.
These computational tasks must be carried out with care in order to reduce
memory requirements and floating point operations. However, it is beyond
the scope of this paper to discuss these important implementation issues.

• Since k1 � n1 and k2 � n2, step 3 of the algorithm can be carried out by
using a shift-invert Lanczos algorithm to obtain a small number of desired
eigenpairs from each substructure. The cost of this computation is generally
small compared to the rest of the computation, especially when this algorithm
is extended to a multilevel scheme.

• Similarly, because n3 is typically much smaller than n1 and n2, the dimension
of the projected problem (7) is significantly smaller than that of the original
problem. Thus, the cost of solving (7) is also small compared to step 2 of the
algorithm.

• Decisions must be made on how to select eigenvectors from each substructure.
The selection should be made in such a way that the subspace spanned by the
columns of Z retains a sufficient amount of spectral information from (K,M).
The process of choosing appropriate eigenvectors from each substructure will
be referred to as mode selection. We will postpone the discussion on this key
aspect of the algebraic substructuring algorithm until the next section.

The algebraic substructuring algorithm we presented above becomes identical to
the CMS method [11, 17] when the permutation of the pencil in (3) is derived from a
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geometric partitioning of the computational domain. The algorithm can be extended
in two ways. First, the matrix reordering and partitioning scheme used to create
the block structure of (3) can be applied recursively to (K11,M11) and (K22,M22),
respectively, to produce a multilevel division of (K,M) into smaller submatrices. The
reduced computational cost associated with finding selected eigenpairs from these
even smaller submatrices further improves the efficiency of the algorithm. Second, one
may replace In3

in (6) with a subset of eigenvectors of the interface pencil (K̂33, M̂33).
This modification will further reduce the computational cost associated with solving
the projected eigenvalue problem (7). A combination of these two extensions yields
the AMLS algorithm presented in [18, 7]. However, we will limit the scope of our
presentation to a single-level substructuring algorithm.

3. Accuracy and error estimation. Algebraic substructuring allows one to
break a large-scale eigenvalue problem into a set of smaller subproblems that are
easier to solve. The algorithm would be less attractive to use if one had to compute
all eigenvalues and eigenvectors of each subproblem. Fortunately, such a calculation
is not necessary, as we will show in this section. In practice, only a small subset of
the eigenvectors of (K11,M11) and (K22,M22) is needed to assemble the projection
subspace spanned by the columns of the matrix S in (6). To simplify the analysis,

we will work with the matrix pencil (K̂, M̂), where K̂ and M̂ are defined as in (5).

As we noted earlier, (K̂, M̂) and (K,M) have the same set of eigenvalues. If x̂ is an

eigenvector of (K̂, M̂), then x = L−T x̂ is an eigenvector of (K,M), where L is the
transformation defined in (4).

Let (μ
(i)
j , v

(i)
j ) be the jth eigenpair of the ith subproblem, i.e.,

Kiiv
(i)
j = μ

(i)
j Miiv

(i)
j ,

where v
(i)
j is Mii-orthonormal, i.e.,

(v
(i)
j )TMiiv

(i)
k =

{
1, j = k,
0, otherwise.

To simplify our discussion, we assume that μ
(i)
j has been ordered such that

μ
(i)
1 ≤ μ

(i)
2 ≤ · · · ≤ μ(i)

ni
.(8)

Let us define Vi = (v
(i)
1 v

(i)
2 , . . . , v

(i)
ni ), V = diag(V1, V2, In3) and Λi = diag(μ

(i)
1 , μ

(i)
2 , . . . ,

μ
(i)
ni ). An eigenvector of (K̂, M̂), say x̂, can be expressed as a linear combination of

columns of V . That is,

x̂ = V y =

⎛⎝ V1

V2

In3

⎞⎠⎛⎝ y1

y2

y3

⎞⎠ ,(9)

where y = (yT1 , y
T
2 , y

T
3 )T is an eigenvector of the generalized eigenvalue problem⎛⎝ Λ1

Λ2

K̂33

⎞⎠⎛⎝ y1

y2

y3

⎞⎠ = λ

⎛⎝ In1 G13

In2 G23

GT
13 GT

13 M̂33

⎞⎠⎛⎝ y1

y2

y3

⎞⎠ ,(10)
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where G13 = V T
1 M̂13 and G23 = V T

2 M̂23. Note the matrix pencil defined by (10)

can be obtained by applying V T from the left to K̂x̂ = λM̂x̂ and expressing x̂ by
x̂ = V y. This pencil is clearly congruent to the pencils (K̂, M̂) and (K,M). Thus
they share the same set of eigenvalues. We will refer to (10) as a canonical form of
the generalized eigenvalue problem (2).

If x̂ can be well approximated by a linear combination of the columns of S, as
suggested by the description of the algorithm in section 2, then the vectors y1 and y2

must contain only a few large entries. All other components of y1 and y2 are likely
to be small and negligible. In this section, we seek to formalize this key concept by
developing a priori error bounds for the approximations to the smallest eigenvalue of
(K̂, M̂) and the corresponding eigenvector. As we will see below, these bounds can
be expressed in terms of the small components of y1 and y2.

Suppose Λi − λIni is nonsingular, for i = 1, 2. It follows from the first two block
rows of the canonical eigenproblem (10) that

yi = λ(Λi − λI)−1Gi3y3.(11)

Consequently, we can express the jth element of yi by

eTj yi =
λ

μ
(i)
j − λ

g
(i)
j =

1

μ
(i)
j /λ− 1

g
(i)
j ,(12)

where g
(i)
j = eTj Gi3y3. It is easy to see from (12) that, when |μ(i)

j /λ| ≈ 1, |eTj yi|
will be relatively large, provided |g(i)

j | is bounded from below. On the other hand, if

μ
(i)
j is far away from λ, and if |g(i)

j | is bounded from above, |eTj yi| will be relatively
small. Thus, if λ is surrounded by a few eigenvalues of (Kii,Mii), and if Si contains
only the eigenvectors associated with these eigenvalues, one would expect to obtain
an accurate approximation to λ by solving the projected problem (7).

To make the above statements more precise, we introduce some additional nota-
tion. Let us define

ρk(ω) =

∣∣∣∣ λk

ω − λk

∣∣∣∣,(13)

where λk is the kth eigenvalue of (K,M). If |g(i)
j | ∈ [γ1, γ2] for some modest-size

constants γ1 < γ2, then ρk(μ
(i)
j ) provides a reliable measure for |eTj yi|.

It is easy to verify that

ρk(μ
(i)
j+1) ≤ ρk(μ

(i)
j ) for μ

(i)
j > λk

and

ρk(μ
(i)
j ) ≤ ρk(μ

(i)
j+1) for μ

(i)
j+1 < λk.

These inequalities suggest that ρk(μ
(i)
j ), and therefore |eTj yi|, is relatively large when

μ
(i)
j is sufficiently close to λk.

Let us now focus on the special case in which k = 1, i.e., the case associated with
the smallest eigenvalue. Because (Kii,Mii) represents the restriction of the pencil

(K̂, M̂) to a subspace, all of its eigenvalues satisfy

λ1 ≤ μ
(i)
j ≤ λn.
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Consequently, the inequality

ρ1(μ
(i)
1 ) ≥ ρ1(μ

(i)
2 ) ≥ · · · ≥ ρ1(μ

(i)
n1

)(14)

holds. Suppose ki < ni is the smallest integer such that ρ1(μ
(i)
ki+1) ≤ τ for some

τ � 1; then we can assert, under the assumption

|g(i)
j | ≤ γ, for some small constant γ,

that |eTj yi| is relatively small for all j > ki. This assertion follows directly from
(14) and the observation made in (12). Hence, if our goal is to seek an accurate

approximation to λ1 by projecting (K̂, M̂) into a subspace S spanned by the columns
of

S =

⎛⎜⎝
k1 k2 n3

n1 S1

n2 S2

n3 In3

⎞⎟⎠,(15)

it is natural to set Si to include only the leading ki columns of Vi.
Given this choice of subspace, it remains to be shown how much accuracy one

can expect from the approximate eigenvalue and eigenvector obtained by applying
the Rayleigh–Ritz procedure to S. To simplify our discussion, let us assume that λ1

is simple. Suppose θ1 is the smallest eigenvalue of the projected problem

(ST K̂S)q = θ(ST M̂S)q,

and q1 is the corresponding eigenvector. We will now quantify the accuracy of the
Ritz pair (θ1, u1), where u1 = Sq1, by providing a priori error bounds for both θ1−λ1

and ∠
M̂

(x̂1, u1) in terms of small elements of y1 and y2. Note that ∠
M̂

(x̂1, u1) is the

M̂ -angle (between x̂ and u1) defined in section 1.
To develop these error bounds, we use the following theorem, which is a general-

ization of a similar theorem associated with a standard symmetric eigenvalue problem
[26, 27].

Theorem 3.1. Let K,M ∈ R
n×n be symmetric matrices and M be positive

definite. Suppose the eigenpairs of (K,M), (λi, xi) have been ordered so that

λ1 < λ2 ≤ · · · ≤ λn.

If (θi, ui), i = 1, 2, . . . , k, are Ritz pairs associated with a k-dimensional subspace S
ordered so that

θ1 ≤ θ2 ≤ · · · ≤ θk,

then

θ1 − λ1 ≤ (λn − λ1) sin2 ∠M (x1,S),(16)

sin ∠M (u1, x1) ≤
√

λn − λ1

λ2 − λ1
sin ∠M (x1,S),(17)

where ∠M (u1, x1) denotes the M -angle between the vectors x1 and u1, and ∠M (x1,S)
denotes the M -angle between x1 and the subspace S.
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The proof of Theorem 3.1 is included in [30]. The theorem suggests that the

accuracy of the desired Ritz pair is determined largely by the M̂ -angle between the
exact eigenvector x̂1 and the subspace S from which the Ritz pair is extracted. We
now focus on seeking a bound for sin∠

M̂
(x̂1,S). The following theorem, which is a

generalization of a similar theorem in [29, p. 250], provides a useful characterization
for sin∠

M̂
(x̂1,S).

Theorem 3.2. Let x be a vector with ‖x‖M = 1 and let S be a subspace. Then

sin ∠M (x,S) = min
w∈S

‖x− w‖M .

Theorem 3.2 suggests that we can provide a bound for sin∠
M̂

(x̂1,S) by measuring
the distance between x̂1 and a particular choice of a vector w ∈ S that is “close” to
x̂1 in the M̂ -norm.

Our choice of such a vector w ∈ S is made as follows. We define ŷi (i = 1, 2) by

eTj ŷi =

{
eTj yi for j ≤ ki,
0 for ki < j ≤ ni,

(18)

where yi satisfies⎛⎝ Λ1

Λ2

K̂33

⎞⎠⎛⎝ y1

y2

y3

⎞⎠ = λ1

⎛⎝ In1
G13

In2 G23

GT
13 GT

23 M̂33

⎞⎠⎛⎝ y1

y2

y3

⎞⎠ .(19)

It is easy to verify that

w =

⎛⎝ V1

V2

I

⎞⎠⎛⎝ ŷ1

ŷ2

y3

⎞⎠ ∈ S = span{S}.

For this particular choice of w, we can easily show that

x̂1 − w =

⎛⎝ V1

V2

I

⎞⎠⎛⎝ h1

h2

0

⎞⎠ ,

where hi = yi − ŷi for i = 1, 2. Consequently, we have

‖x̂1 − w‖2
M̂

= (hT
1 hT

2 0)

⎛⎝ I G13

I G23

GT
13 GT

23 M̂33

⎞⎠⎛⎝ h1

h2

0

⎞⎠ = hT
1 h1 + hT

2 h2.

Hence, we can now conclude that

sin ∠
M̂

(x̂1,S) = min
w∈S

‖x̂1 − w‖
M̂

≤
√
hT

1 h1 + hT
2 h2.(20)

Note that the vector w is essentially obtained from (9) by truncating components
associated with the trailing ni−ki elements of yi. These elements are typically small,
and they form the nonzero entries of hi.

Combining (16) and (17) with (20), we obtain the following result.

Theorem 3.3. Let K̂ and M̂ be matrices defined in (5). Let (λi, x̂i) (i =

1, 2, . . . , n) be eigenpairs of the pencil (K̂, M̂), ordered so that λ1 < λ2 ≤ · · · ≤ λn.
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Let (θi, ui) (i = 1, 2, . . . , k) be the Ritz pairs associated with a k-dimensional subspace
S spanned by the columns of S defined in (15), ordered so that θ1 ≤ θ2 ≤ · · · ≤ θk.
Then

θ1 − λ1 ≤ (λn − λ1)(h
T
1 h1 + hT

2 h2),(21)

sin ∠
M̂

(u1, x̂1) ≤
√

λn − λ1

λ2 − λ1

√
hT

1 h1 + hT
2 h2,(22)

where hi = yi − ŷi, and yi, ŷi (i = 1, 2) are defined by (19) and (18), respectively.
Theorem 3.3 indicates that the accuracy of (θ1, u1) is proportional to the size

of hT
1 h1 + hT

2 h2, a quantity that provides a cumulative measure of the “truncated”
components in (9). Similar a priori error estimates can be made for other Ritz pairs
by utilizing a generalization of Theorems 4.5 and 4.6 in [26, pp. 135–136] which
are developed for standard eigenvalue problems. However, to keep our presentation
concise, we will not pursue this type of error estimate.

To end this section, we provide an estimate for hT
1 h1 + hT

2 h2 that is independent
of the number of nonzero elements in h1 and h2. Note that the nonzero elements of
hi are those elements of yi associated with

ρ1(μ
(i)
j ) < τ < 1.

If |g(i)
j | ≤ γ for some moderate-size constant γ, then it follows from (12) that each

individual element of hi is either zero or tiny. Moreover, since ρ1(μ
(i)
j ) decreases

rapidly as μ
(i)
j increases, we can establish a bound for hT

i hi in terms of τ under some
mild conditions.

To simplify our notation, we will drop the superscript of μ
(i)
j in the following.

Suppose the eigenvalues μj of (Kii,Mii) are distinct and that

min
j≥ki

(μj+1 − μj) ≥ δ

for some constant δ > 0. Then it is easy to show that

hT
i hi =

ni∑
j=ki+1

(eTj hi)(e
T
j hi) =

ni∑
j=ki+1

ρ2
1(μj)(e

T
j Gi3y3)

2

≤
[ ni∑
j=ki+1

ρ2
1(μj)

]
γ2 ≤ γ2

[
ρ2
1(μki+1) +

1

δ

∫ μni

μki+1

ρ2
1(ω)dω

]

= γ2

[
λ1

μki+1 − λ1
ρ1(μki+1) +

λ1

δ

(
λ1

μki+1 − λ1
− λ1

μni − λ1

)]
≤ γ2λ1

[
1

Δi
+

1

δ

]
τ,(23)

where Δi = μki+1 − λ1. By combining (23) with inequalities (21)–(22) and setting
Δ = min{Δ1,Δ2, δ}. we obtain

θ1 − λ1

λ1
≤ (λn − λ1)(ατ),(24)

sin ∠
M̂

(x̂1, u1) ≤

√
λ1

(
λn − λ1

λ2 − λ1

)√
ατ,(25)
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where α = 4γ2/Δ.
We should mention that the presence of multiple (or tightly clustered) eigenvalues

of (Kii,Mii) does not alter the qualitative measure of the bounds established in (24)
and (25). In that case, we can simply replace the definition of δ with the minimum
distances between two adjacent eigenvalue clusters and multiply the bounds by the
largest multiplicity of the eigenvalues of (Kii,Mii).

Our assumption that |g(i)
j | is bounded by a moderate constant γ can be justified

by noting that

(yT1 yT2 yT3 )

⎛⎝ I G13

I G23

GT
13 GT

23 M̂33

⎞⎠⎛⎝ y1

y2

y3

⎞⎠ = 1(26)

and by the fact that M is positive definite. Since⎛⎝ I G13

I G23

GT
13 GT

23 M̂33

⎞⎠ =

⎛⎝ I

I

GT
13 I

⎞⎠⎛⎝ I

I G23

GT
23 M̂33−GT

13G13

⎞⎠⎛⎝ I G13

I

I

⎞⎠ ,

it follows from (26) that

‖y1 + G13y3‖ ≤ 1.

Hence, the jth component of y1 + G13y3 must satisfy

|eTj y1 + g
(1)
j | ≤ 1.(27)

It then follows from (27) and (12) that

|g(1)
j | ≤ 1 + |eTj y1| = 1 + ρ1(μ

(1)
j )|g(1)

j |.

Consequently,

|g(1)
j | ≤ 1

1 − ρ(μ
(1)
j )

when ρ(μ
(1)
j ) < 1.

Thus, if ρ1(μ
(1)
j ) � 1, then |g(1)

j | is clearly bounded by a small constant. A similar

argument can be used to show that |g(2)
j | is bounded by a small constant also.

We should also emphasize that (24) and (25) merely provide a qualitative estimate
of the error in the Ritz pair (θ1, u1) in terms of the threshold τ that may be used as a
heuristic in practice to determine which spectral components of a substructure should
be included in the subspace S defined in (15). This result was verified independently
in the recent work by Elssel and Voss [14]. They derived a bound on the relative
accuracy of the approximate eigenvalue in a more general setting by making using of
the minmax principle for a rational eigenvalue problem.

4. Numerical experiments. We present two numerical examples in this section
to illustrate the effectiveness of the single-level algebraic substructuring algorithm
presented in section 2. These examples also confirm the analysis carried out in section
3. All experiments are performed in MATLAB. The desired eigenpairs of all pencils
are computed by using the MATLAB eigs function. For illustration, we computed
more eigenvalues and eigenvectors of each subproblem than we actually need in the
following experiments. In practice, one would only need to compute a selected number
of eigenpairs of (Kii,Mii) incrementally.
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Fig. 1. The spectra of the pencils (K11,M11), (K22,M22), and (K,M) associated with the
structural dynamics example.

4.1. Example 1. Structural dynamics. The matrices used in this example,
BCSSTK09 and BCSSTM09, are part of the Harwell–Boeing sparse matrix collection
[13]. These matrices originated from a dynamic analysis of a clamped plate. The
dimensions of these matrices are n = 1083. We used METIS [19] to dissect the matrix
into two main substructures coupled by a small separator (interface block). The two
substructures of the reordered K are identical. The dimension of each substructure is
n1 = n2 = 513. The separator contains only 57 rows and columns. The mass matrix
M is diagonal in this example. Applying the same reordering to M does not change
its structure.

The spectra of the original matrix pencil (K,M) and the substructure pencils
(Kii,Mii) (i = 1, 2) are shown in Figure 1. There is a large gap between the 361st
and the 362nd eigenvalues of (K,M). Similar gaps are present in the spectra of
(Kii,Mii). In this example, the eigenvalues of interest are the ones on the left side
of the spectrum. Naturally, we would select the eigenvectors associated with the
smallest eigenvalues of (Kii,Mii) to construct the subspace (6) required in step 5 of
the single-level algebraic substructuring algorithm.

To determine how many eigenvectors of (Kii,Mii) we should include in the sub-
space represented by (6), we examine the ρ-factor defined in (13). It follows from the
discussion in section 3 that one may develop a selection scheme by setting a threshold
value τ for ρ1; i.e., one can choose substructure modes that satisfy

ρ1(μ
(i)
j ) > τ

for some small τ . However, since the computation of ρ1 requires the knowledge of
the exact λ1, which we do not have in advance, a more practical scheme is perhaps
to compute an approximate ρ-factor by replacing λ1 in (13) with an approximate
eigenvalue σ.

We use σ = min(μ
(1)
1 , μ

(2)
1 )/2 in all of our experiments and define

ρ̂1(ω) =

∣∣∣∣ σ

ω − σ

∣∣∣∣.(28)
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Fig. 2. The exact (marked by x’s) and the approximate (marked by dots) ρ-factors associated
with the first substructure of the structural dynamics problem. The exact ρ-factor is defined by (13),
and the approximate ρ-factor is defined by (28).

In Figure 2, we plot both ρ1(μ
(1)
j ) and ρ̂1(μ

(1)
j ). (The two substructures in this

problem are identical.) The figure clearly shows that there is essentially no qualita-

tive difference between ρ1(μ
(1)
j ) and ρ̂1(μ

(1)
j ). Both decrease rapidly as μ

(1)
j increases.

There is a clear gap between ρ1(μ
(1)
171) and ρ1(μ

(1)
172). A similar gap is observed be-

tween ρ̂1(μ
(1)
171) and ρ̂1(μ

(1)
172). These gaps reflect the gaps observed in the spectrum of

(K11,M11).

Several choices of τ values (listed in Table 1) have been made. The analysis
performed in section 3 indicates that, the smaller the value of τ , the more accurate
the smallest Ritz pair should be. This prediction is confirmed in Figure 3, where we
plot the relative errors of the smallest 50 Ritz values extracted from three subspaces
constructed by using these different choices of τ values. Notice that with the choice
of τ = 10−4, which corresponds to selecting the leading 171 eigenvectors from each
substructure to form the matrix Si required in (15), θ1 exhibits roughly 10 digits of
accuracy.

Table 1

The effect of τ on the number of selected modes associated with the structural dynamics problem,
the relative accuracy of the smallest Ritz value, and the relative error bound defined by (21).

τ ki (θ1 − λ1)/λ1 Relative error bound

10−2 18 1.4 × 10−4 3.4 × 100

10−3 84 2.0 × 10−6 6.4 × 10−3

10−4 171 1.2 × 10−12 4.2 × 10−12

Even though our error estimate presented in section 3 is targeted only at (θ1, u1),
Figure 3 shows that the improvement in the accuracy of other Ritz values is also
proportional to the decrease of τ .

In this example, the least upper bound for the elements of g(i) used in (12) is

roughly γ = 0.28. Hence, ρ1(μ
(i)
j ) provides a reliable upper bound for the magnitude

of eTj yi (i = 1, 2), where (yT1 , y
T
2 , y

T
3 )T is the eigenvector associated with the smallest
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Fig. 3. The relative error of the smallest 50 Ritz values extracted from three subspaces con-
structed by using different choices of the ρ-factor thresholds (τ values) for the structural dynamics
problem.

0 100 200 300 400 500 600
10

−20

10
−15

10
−10

10
−5

10
0

j

|y
1(j)

|

Fig. 4. The magnitude of eTj y1, where (yT1 , yT2 , yT3 )T is the eigenvector corresponding to the

smallest eigenvalue of the canonical problem (10) associated with the structural dynamics example.

eigenvalue (λ1) of the canonical eigenvalue problem (10).

Judging from the small magnitude of ρ1(μ
(i)
j ) for j > 171, which is less than 10−6,

we predict the magnitude of eTj yi, i = 1, 2, to be tiny for j > 171. This is indeed

the case, as is demonstrated in Figure 4, where we plot |eTj y1| (The plot for y2 is

identical.) We observe that |eTj y1| < 2×10−10 for all j > k1 = 171. This observation,
when used in conjunction with Theorem 3.3, provides a clear explanation for the high
accuracy of θ1 displayed in Figure 3.

Table 1 further illustrates the connections between the mode selection threshold
τ , the number of modes selected from each substructure (ki), the relative accuracy
of θ1, and the error estimates established in Theorem 3.3. Note that the relative
error bound listed in the last column of Table 1, which is calculated directly from the
right-hand side of (21), tends to be somewhat pessimistic. However, it does provide
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Fig. 5. The relative error of the smallest 361 approximate eigenvalues associated with the
structural dynamics problem.

a qualitative estimate for the relative accuracy of θ1.
It is interesting to see from Figure 4 that, among the first 171 elements of both y1

and y2, many have magnitudes less than 10−10. This observation suggests that one
may potentially reduce the dimension of the subspace (6) by excluding eigenvectors
of (Kii,Mii) that are associated with these small entries from Si. We will pursue this
idea further in a follow-up paper on mode selection strategies.

We will end this example by pointing out that the large gap between the leading
361 eigenvalues of (K,M) and the rest of the spectrum is a highly favorable feature of
this problem. This gap, which also manifests itself in the ρ-factor plots displayed in
Figure 2, allows an algebraic substructuring algorithm to easily construct a subspace
that contains accurate approximations to the leading 361 eigenvalues of (K,M). Fig-
ure 5 shows that, by setting ki = 171, the leading 361 Ritz values extracted from the
subspace S spanned by columns of (15) all have at least 7 digits of accuracy.

4.2. Example 2. Short traveling wave accelerating structure. We show
in this example that algebraic substructuring can be used to compute approximate
cavity resonance frequencies and the electromagnetic field associated with a small
accelerator structure. The matrix pencil used in this example is obtained from a
finite element model of a five-cell traveling wave accelerating structure. The three-
dimensional geometry of the model is shown in Figure 6. The model contains three
cavity cells and two couplers. The dimension of the pencil (K,M) is n = 1898. The
stiffness matrix K has 336 zero rows and columns. These zero rows and columns
are produced by a particular hierarchical vector finite element discretization scheme.
Because the null space of K has a special structure, it can be effectively deflated in
the algebraic substructuring algorithm. The details of the deflation scheme can be
found in [30, 3].

In order to deflate the null space of (K,M) associated with these zero rows and
columns, which has no physical significance, we perform the following two-stage matrix
reordering:

• A single-level dissection is applied to |K| + |M | first using the METIS [19]
software. The dissection produces two substructures of sizes n1 = 995 and
n2 = 887, respectively. These substructures are connected by a small separa-



888 C. YANG, W. GAO, Z. BAI, X. LI, L. LEE, P. HUSBANDS, AND E. NG

Fig. 6. The finite element model corresponding to a five-cell traveling wave accelerating structure.
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Fig. 7. The nonzero pattern of the permuted stiffness matrix K (left) and the mass matrix M
(right) associated with the traveling wave accelerating structure.

tor (an interface block) which contains only 16 rows and columns. The K11

block of the permuted K contains 175 zero rows and columns, the K22 block
contains 157 zero rows and columns, and the K33 block contains 6 zero rows
and columns.

• The nonzero rows and columns of K11, K22, and K33 are permuted to the
leading blocks of these submatrices. The matrix M is permuted accordingly.

The nonzero patterns of the permuted K and M are displayed in Figure 7. The
distribution of the nonzero eigenvalues of (K,M) is shown in Figure 8. We are inter-
ested in the smallest nonzero eigenvalues, which appear to be relatively well separated
from the large end of the spectrum. In addition to the spectrum of (K,M), we also
plot the spectra of (Kii,Mii) (i = 1, 2) in Figure 8. Notice that the spectra of both
substructures show a distribution pattern similar to that of (K,M).

In Figure 9 we plot the ρ̂-factors associated with the smallest eigenvalue of the
deflated problem. We observe that the ρ̂-factors associated with this example decrease
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Fig. 8. The spectra of the pencils (K11,M11), (K22,M22), and (K,M) associated with the
traveling wave accelerating structure.
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Fig. 9. The approximate ρ-factors associated with each substructure of the traveling wave
accelerating structure.

at a somewhat slower rate. Three different choices of τ values were used as the
thresholds (τ = 0.1, 0.05, 0.01) for selecting substructure modes. The relative accuracy
of the 50 smallest nonzero Ritz values extracted from the subspaces constructed with
these choices of τ values is displayed in Figure 10.

We observe that with τ = 0.1, θ1 has roughly four digits of accuracy, which is
quite sufficient for this particular discretized model. If we decrease τ down to 0.01,
most of the smallest 50 nonzero Ritz values have at least four digits of accuracy.

The least upper bound for |g(i)
j | used in (12) is γ = 0.02. Thus the ρ-factor

gives an overestimate of |eTj yi| in this case. In Figure 11, we plot |eTj y1| and |eTj y2|,
where (yT1 , y

T
2 , y

T
3 )T is the eigenvector associated with the smallest nonzero eigenvalue

of (10). For simplicity, we excluded the values of |eTj y1| and |eTj y2| corresponding
to the null space of (K11,M11) and (K22,M22), which have been deflated from our
calculations (see section 4). We observe that |eTj yi| is much smaller compared to
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Fig. 10. The relative error of the smallest 50 Ritz values extracted from three subspaces con-
structed by using different choices of the ρ-factor thresholds (τ values) for the traveling wave accel-
erating problem.

0 100 200 300 400 500 600 700 800 900
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

j

|y
1
(j
)|

0 100 200 300 400 500 600 700 800
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

j

|y
2
(j
)|

Fig. 11. The magnitude of eTj y1 (left) and eTj y2 (right), where (yT1 , yT2 , yT3 )T is the eigenvector

corresponding to the smallest eigenvalue of the canonical problem (10) associated with the traveling
wave accelerating structure.

Table 2

The effect of τ on the number of selected modes associated with the traveling wave accelerating
structure, the relative accuracy of the smallest Ritz value, and the relative error bound defined by
(21).

τ k1 k2 (θ1 − λ1)/λ1 Relative error bound

0.1 18 19 1.4 × 10−4 1.7 × 10−3

0.05 51 56 1.2 × 10−5 2.6 × 10−4

0.01 325 361 2.4 × 10−8 2.5 × 10−6

ρ̂1(μ
(i)
j ), and it decays much faster than the ρ̂-factor also.

We conclude this example by listing in Table 2 the mode selection threshold τ ,
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the number of modes selected from each substructure (ki), the relative accuracy of
θ1, and the error estimate computed directly from the right-hand side of (21).

5. Concluding remarks. A purely algebraic analysis of a single-level substruc-
turing algorithm for large-scale eigenvalue calculation is developed in this paper. By
applying a sequence of special congruence transformations to (K,M), we transform
the original generalized eigenvalue (2) into a canonical problem (10) with a simpler
structure. We observed that the desired eigenvector y of the canonical problem (10)
often contains only a few large entries. The magnitude of these entries ultimately de-
termines which eigenvectors (modes) of each substructure should be included in the
subspace (6), from which approximations to the eigenpairs of (K,M) are extracted.
All other substructure modes can essentially be truncated from (9) without sacrificing
the required level of accuracy in our approximation. We provided an explicit a priori
error estimate for the smallest Ritz pair in terms of the small components of y that are
truncated from (9). We also suggested a practical way to estimate the magnitude of
each component of y by exploiting its relationship with the “ρ-factor” defined in (13).
This estimation leads to a practical way to select substructure modes by specifying
a threshold value τ for the ρ-factor. We showed that the accuracy of the smallest
Ritz pair is proportional to the size of τ under some mild conditions. A number of
numerical examples are provided to confirm our theoretical analysis. Moreover, we
demonstrated that an algebraic substructuring algorithm can be an effective tool for
computing cavity resonance frequencies and the electromagnetic field generated by a
linear accelerator structure.

Our analysis of a simple algebraic substructuring algorithm can be extended to a
multilevel setting. Our error estimate can be made for nonextreme Ritz pairs as well.
These topics will be pursued in our future research. Another interesting area that
would require further research is the development of a better strategy for selecting
substructuring modes.

Our presentation has focused on the theoretical aspects of the algebraic substruc-
turing algorithm. Implementation details and comparsion of a multilevel algebraic
substructuring algorithm with other methods for large-scale eigenvalue computation
will be reported elsewhere.

Acknowledgments. We would like to thank the anonymous referees for their
careful reading and helpful comments.
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