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Abstract. Algebraic sub-structuring refers to the process of applying matrix re-
ordering and partitioning algorithms to divide a large sparse matrix into smaller
submatrices from which a subset of spectral components are extracted and com-
bined to form approximate solutions to the original problem. In this paper, we
show that algebraic sub-structuring can be effectively used to solve generalized
eigenvalue problems arising from the finite element analysis of an accelerator
structure.

1 Introduction

Sub-structuring is a commonly used technique for studying the static and dynamic prop-
erties of large engineering structures [3,6,11]. The basic idea of sub-structuring is anal-
ogous to the concept of domain-decomposition widely used in the numerical solution
of partial differential equations [13]. By dividing a large structure model or computa-
tional domain into a few smaller components (sub-structures), one can often obtain an
approximate solution to the original problem from a linear combination of solutions to
similar problems defined on the sub-structures. Because solving problems on each sub-
structure requires far less computational power than what would be required to solve
the entire problem as a whole, sub-structuring can lead to a significant reduction in the
computational time required to carry out a large-scale simulation and analysis.

The automated multi-level sub-structuring (AMLS) method introduced in [1,7] is an
extension of a simple sub-structuring method called component mode synthesis (CMS)
[3,6] originally developed in the 1960s to solve large-scale eigenvalue problems. The
method has been used successfully in the vibration and acoustic analysis of large-scale
finite element models of automobile bodies [7,9]. The timing results reported in [7,9]
indicate that AMLS is significantly faster than conventional Lanczos-based approaches

J. Dongarra, K. Madsen, and J. Waśniewski (Eds.): PARA 2004, LNCS 3732, pp. 364–373, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Algebraic Sub-structuring for Electromagnetic Applications 365

[10,5]. However, it is important to note that the accuracy achieved by a sub-structuring
method such as AMLS is typically lower than that achieved by the standard Lanczos
algorithm. The method is most valuable when a large number of eigenpairs with relatively
low accuracy are of interest.

In [15], we examined sub-structuring methods for solving large-scale eigenvalue
problems from a purely algebraic point of view. We used the term algebraic sub-
structuring to refer to the process of applying matrix reordering and partitioning al-
gorithms (such as the nested dissection algorithm [4]) to divide a large sparse matrix
into smaller submatrices from which a subset of spectral components are extracted and
combined to form an approximate solution to the original eigenvalue problem. Through
an algebraic manipulation, we identified the critical conditions under which algebraic
sub-structuring works well. In particular, we observed an interesting connection be-
tween the accuracy of an approximate eigenpair obtained through sub-structuring and
the distribution of components of eigenvectors associated with a canonical matrix pencil
congruent to the original problem. We developed an error estimate for the approximation
to the smallest eigenpair, which we will summarize in this paper. The estimate leads to
a simple heuristic for choosing spectral components from each sub-structure.

Our interest in algebraic sub-structuring is motivated in part by an application arising
from the simulation of the electromagnetic field associated with next generation particle
accelerator design [8]. We show in this paper that algebraic sub-structuring can be used
effectively to compute the cavity resonance frequencies and the electromagnetic field
generated by a linear particle accelerator model.

Throughout this paper, capital and lower case Latin letters denote matrices and vec-
tors respectively, while lower case Greek letters denote scalars. An n×n identity matrix
will be denoted by In. The j-th column of the identity matrix is denoted by ej . The
transpose of a matrix A is denoted by AT . We use ‖x‖ to denote the standard 2-norm
of x, and use ‖x‖M to denote the M -norm defined by ‖x‖M =

√
xT Mx. We will use

∠M (x, y) to denote the M -inner product induced acute angle (M -angle for short) be-
tween x and y. This angle can be computed from cos∠M (x, y) = xT My/‖x‖M‖y‖M .
A matrix pencil (K, M) is said to be congruent to another pencil (A, B) if there exits a
nonsingular matrix P , such that A = PT KP and B = PT MP .

2 Algebraic Sub-structuring

In this section, we briefly describe a single-level algebraic sub-structuring algorithm.
This is also known as the component synthesis method (CMS) in the engineering literature
[6]. Our description does not make use of any information regarding the geometry or
the physical structure on which the original problem is defined.

We are concerned with solving the following generalized algebraic eigenvalue prob-
lem

Kx = λMx, (2.1)

where K is symmetric and M is symmetric positive definite. We assume K and M are
both sparse. They may or may not have the same sparsity pattern. Suppose the rows and
columns of K and M have been permuted so that these matrices can be partitioned as
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K =

⎛
⎝

n1 n2 n3

n1 K11 K13

n2 K22 K23

n3 KT
13 KT

23 K33

⎞
⎠ and M =

⎛
⎝

n1 n2 n3

n1 M11 M13

n2 M22 M23

n3 MT
13 MT

23 M33

⎞
⎠, (2.2)

where the labels n1, n2 and n3 denote the dimensions of each sub-matrix block. The per-
mutation can be accomplished by applying a matrix ordering and partitioning algorithm
such as the nested dissection algorithm [4] to the matrix K + M .

The pencils (K11, M11) and (K22, M22) now define two algebraic sub-structures
that are connected by the third block rows and columns of K and M which we will refer
to as the interface block. We assume that n3 is much smaller than n1 and n2.

A single-level algebraic sub-structuring algorithm proceeds by performing a block
factorization

K = LDLT , (2.3)

where

L =

⎛
⎜⎝

In1

In2

KT
13K

−1
11 KT

23K
−1
22 In3

⎞
⎟⎠ and D =

⎛
⎜⎝

K11

K22

K̂33

⎞
⎟⎠ .

The last diagonal block of D, often known as the Schur complement, is defined by

K̂33 = K33 − KT
13K

−1
11 K13 − KT

23K
−1
22 K23.

The inverse of the lower triangular factor L defines a congruence transformation that,
when applied to the matrix pencil (K, M), yields a new matrix pencil (K̂, M̂):

K̂ = L−1KL−T = D and M̂ = L−1ML−T =

⎛
⎜⎝

M11 M̂13

M22 M̂23

M̂T
13 M̂T

23 M̂33

⎞
⎟⎠ . (2.4)

The pencil (K̂, M̂) is often known as the Craig-Bampton form [3] in structural engi-
neering. Note that the eigenvalues of (K̂, M̂) are identical to those of (K, M), and the
corresponding eigenvectors x̂ are related to the eigenvectors of the original problem
(2.1) through x̂ = LT x.

The sub-structuring algorithm constructs a subspace spanned by

S =

⎛
⎝

k1 k2 n3

n1 S1

n2 S2

n3 In3

⎞
⎠ (2.5)

where S1 and S2 consist of k1 and k2 selected eigenvectors of (K11, M11) and
(K22, M22) respectively. These eigenvectors will be referred to as sub-structure modes
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in the discussion that follows. Note that k1 and k2 are typically much smaller than n1

and n2, respectively.
The approximation to the desired eigenvalues and eigenvectors of the pencil (K̂, M̂)

are obtained by projecting the pencil (K̂, M̂) onto the subspace spanned by S, i.e., we
seek θ and q ∈ R

k1+k2+n3 such that

(ST K̂S)q = θ(ST M̂S)q. (2.6)

It follows from the standard Rayleigh-Ritz theory [12, page 213] that θ serves as an
approximation to an eigenvalue of (K, M), and the vector formed by z = L−T Sq is the
approximation to the corresponding eigenvector.

One key aspect of the algebraic sub-structuring algorithm is that ki can be chosen to
be much smaller than ni. Thus, Si can be computed by a shift-invert Lanczos procedure.
The cost of this computation is generally small compared to the rest of the computation,
especially when this algorithm is extended to a multi-level scheme. Similarly, because
n3 is typically much smaller than n1 and n2, the dimension of the projected problem
(2.6) is significantly smaller than that of the original problem. Thus, the cost of solving
(2.6) is also relatively small.

Decisions must be made on how to select eigenvectors from each sub-structure. The
selection should be made in such a way that the subspace spanned by the columns of S
retains a sufficient amount of spectral information from (K, M). The process of choosing
appropriate eigenvectors from each sub-structure is referred to as mode selection [15].

The algebraic sub-structuring algorithm presented here can be extended in two ways.
First, the matrix reordering and partitioning scheme used to create the block structure of
(2.2) can be applied recursively to (K11, M11) and (K22, M22) respectively to produce
a multi-level division of (K, M) into smaller sub-matrices. The reduced computational
cost associated with finding selected eigenpairs from these even smaller sub-matrices
further improves the efficiency of the algorithm. Second, one may replace In3 in (2.5)
with a subset of eigenvectors of the interface pencil (K̂33, M̂33). This modification will
further reduce the computational cost associated with solving the projected eigenvalue
problem (2.6). A combination of these two extensions yields the AMLS algorithm pre-
sented in [7]. However, we will limit the scope of our presentation to a single level
sub-structuring algorithm in this paper.

3 Accuracy and Error Estimation

One of the natural questions one may ask is how much accuracy we can expect from the
approximate eigenpairs obtained through algebraic sub-structuring. The answer to this
question would certainly depend on how S1 and S2 are constructed in (2.5). This issue is
carefully examined in [15]. In this section, we will summarize the error estimate results
established in [15].

To simplify the discussion, we will work with the matrix pencil (K̂, M̂), where K̂

and M̂ are defined in (2.4). As we noted earlier, (K̂, M̂) and (K, M) have the same set
of eigenvalues. If x̂ is an eigenvector of (K̂, M̂), then x = L−T x̂ is an eigenvector of
(K, M), where L is the transformation defined in (2.3).



368 Chao Yang et al.

If (µ(i)
j , v

(i)
j ) is the j-th eigenpair of the i-th sub-problem, i.e.,

Kiiv
(i)
j = µ

(i)
j Miiv

(i)
j ,

where (v(i)
j )T Miiv

(i)
k = δj,k, and µ

(i)
j has been ordered such that

µ
(i)
1 ≤ µ

(i)
2 ≤ · · · ≤ µ(i)

ni
, (3.7)

then we can express x̂ as

x̂ =

⎛
⎜⎝

V1

V2

In3

⎞
⎟⎠

⎛
⎜⎝

y1

y2

y3

⎞
⎟⎠ , (3.8)

where Vi = (v(i)
1 v

(i)
2 ... v

(i)
ni ), and y = (yT

1 , yT
2 , yT

3 )T �= 0.
It is easy to verify that y satisfies the following canonical generalized eigenvalue

problem ⎛
⎜⎝

Σ1

Σ2

K̂33

⎞
⎟⎠

⎛
⎜⎝

y1

y2

y3

⎞
⎟⎠ = λ

⎛
⎜⎝

In1 G13

In2 G23

GT
13 GT

23 M̂33

⎞
⎟⎠

⎛
⎜⎝

y1

y2

y3

⎞
⎟⎠ , (3.9)

where Σi = diag(µ(i)
1 , µ

(i)
2 , . . . , µ

(i)
ni ), Gi3 = V T

i M̂i3 for i = 1, 2. This pencil is clearly
congruent to the pencils (K̂, M̂) and (K, M). Thus it shares the same set of eigenvalues
with that of (K, M).

If x̂ can be well approximated by a linear combination of the columns of S, as
suggested by the description of the the algorithm in Section 2, then the vector yi (i = 1, 2)
must contain only a few large entries. All other components of yi are likely to be small
and negligible.

In [15], we showed that

|yi| = diag

(
ρλ(µ(i)

1 ), ρλ(µ(i)
2 ), · · · , ρλ(µ(i)

ni
)
)

g(i), (3.10)

where g(i) = |eT
j Gi3y3|, and

ρλ(ω) = |λ/(ω − λ)|. (3.11)

When elements of g(i) can be bounded (from above and below) by a moderate
constant, the magnitude of |eT

j yi| is essentially determined by ρλ(µ(i)
j ) which is called

a ρ-factor in [15].
It is easy to see that ρλ(µ(i)

j ) is large when µ
(i)
j is close to λ, and it is small when

µ
(i)
j is away from λ. For the smallest eigenvalue (λ1) of (K, M), it is easy to show

that ρλ1(µ
(i)
j ) is monotonically decreasing with respect to j. Thus, if λ1 is the desired

eigenvalue, one would naturally choose the matrix Si in (2.5) to contain only the leading
ki columns of Vi, for some ki � ni.
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If we define hi by

eT
j hi =

{
0 for j ≤ ki,

eT
j yi for ki < j ≤ ni,

(3.12)

then following theorem, which we proved in [15], provides an a priori error estimate for
the Rayleigh-Ritz approximation to (λ1, x̂1) from the subspace spanned by columns of
S defined in (2.5).

Theorem 1. Let K̂ and M̂ be the matrices defined in (2.4). Let (λi, x̂i) (i = 1, 2, ...n)
be eigenpairs of the pencil (K̂, M̂), ordered so that λ1 < λ2 ≤ · · · ≤ λn. Let (θ1, u1)
be the Rayleigh-Ritz approximation to (λ1, x̂1) from the space spanned by the columns
of S defined in (2.5). Then

θ1 − λ1 ≤ (λn − λ1)(hT
1 h1 + hT

2 h2), (3.13)

sin ∠
�M

(u1, x̂1) ≤
√

λn − λ1

λ2 − λ1

√
hT

1 h1 + hT
2 h2, (3.14)

where hi (i = 1, 2) is defined by (3.12).

Theorem 1 indicates that the accuracy of (θ1, u1) is proportional to the size of hT
1 h1+

hT
2 h2, a quantity that provides a cumulative measure of the “truncated" components in

(3.8).
If ρλ1(µ

(i)
j ) < τ < 1 holds for ki < j ≤ ni, and if eT

j g(i) ≤ γ for some moderate
sized constant γ, we can show [15] that hT

1 h1 +hT
2 h2 can be bounded by a quantity that

is independent of the number of non-zero elements in hi. Consequently, we can establish
the following bounds:

θ1 − λ1

λ1
≤ (λn − λ1)(2ατ), (3.15)

sin ∠
�M

(x̂1, u1) ≤

√
λ1

(
λn − λ1

λ2 − λ1

)√
2ατ, (3.16)

where α = γ2/δ.
We should mention that (3.15) and (3.16) merely provide a qualitative estimate of

the error in the Ritz pair (θ1, u1) in terms of the threshold τ that may be used as a
heuristic in practice to determine which spectral components of a sub-structure should
be included in the subspace S defined in (2.5). It is clear from these inequalities that a
smaller τ , which typically corresponds to a selection of more spectral components from
each sub-structure, leads to a more accurate Ritz pair (θ1, u1).

4 Numerical Experiment

We show by an example that algebraic sub-structuring can be used to compute approxi-
mate cavity resonance frequencies and the electromagnetic field associated with a small
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Fig. 1. The finite element model corresponding to a 6-cell damped detuned structure

accelerator structure. The matrix pencil used in this example is obtained from a finite el-
ement model of a six-cell Damped Detuned accelerating Structure (DDS) [8]. The three
dimensional geometry of the model is shown in Figure 1. The dimension of the pencil
(K, M) is n = 5584. The stiffness matrix K has 580 zero rows and columns. These zero
rows and columns are produced by a particular hierarchical vector finite element dis-
cretization scheme [14]. Because K is singular, we cannot perform the block elimination
in (2.3) directly. A deflation scheme is developed in [15] to overcome this difficulty. The
key idea of the deflation scheme is to replace K−1

ii (i = 1, 2) with a pseudo-inverse in the
congruence transformation calculation. We refer the reader to [15] for the algorithmic
details. To facilitate deflation, we perform a two-stage matrix reordering described in
[15]. Figure 2 shows the non-zero patterns of the permuted K and M .

Fig. 2. The non-zero pattern of the permuted stiffness matrix K (left) and the mass matrix M

(right) associated with the 6-cell DDS model

We plot the approximateρ-factors associated with smallest eigenvalue of the deflated
problem in Figure 3. The approximation is made by replacing λ1 (which we do not
know in advance) in (3.11) with σ ≡ min(µ(1)

1 , µ
(2)
1 )/2. We showed in [15] that such

an approximation does not alter the qualitative behavior of the ρ-factor. Three different
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Fig. 3. The approximate ρ-factors associated with each sub-structure of the 6-cell DDS model

Fig. 4. The relative error of the smallest 50 Ritz values extracted from three subspaces constructed
by using different choices of the ρ-factor thresholds (τ values) for the DDS model

choices of τ values were used as theρ-factor thresholds (τ = 0.1, 0.05, 0.01) for selecting
sub-structure modes, i.e., we only select sub-structure modes that satisfy ρσ(µ(i)

j ) ≥ τ .
The relative accuracy of the 50 smallest non-zero Ritz values extracted from the

subspaces constructed with these choices of τ values is displayed in Figure 4.
We observe that with τ = 0.1, θ1 has roughly three digits of accuracy, which is quite

sufficient for this particular discretized model. If we decrease τ down to 0.01, most of
the smallest 50 non-zero Ritz values have at least 4 to 5 digits of accuracy.

The least upper bound for elements of g(i) used in (3.10) is γ = 0.02. Thus the
ρ-factor gives an over-estimate of elements of |yi| in this case. In Figure 5, we plot
elements of |y1| and |y2|, where (yT

1 , yT
2 , yT

3 )T is the eigenvector associated with the
smallest non-zero eigenvalue of (3.9). For simplicity, we excluded the elements of |y1|
and |y2| corresponding to the null space of (K11, M11) and (K22, M22), which have been

deflated from our calculations. We observe that |eT
j yi| is much smaller than ρσ(µ(i)

j ),
and it decays much faster than the the ρ-factor also.
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Fig. 5. The magnitude of |y1| (left) and |y2| (right) elements, where (yT
1 , yT

2 , yT
3 )T is the eigen-

vector corresponding to the smallest eigenvalue of the canonical problem (3.9) associated with
the DDS model

5 Concluding Remarks

In this paper, we discussed the possibility of using algebraic sub-structuring to solve
large-scale eigenvalue problems arising from electromagnetic simulation. We examined
the accuracy of the method based on the analysis developed in [15]. A numerical example
is provided to demonstrate the effectiveness of the method.

We should point out that the block elimination and congruence transformation per-
formed in algebraic sub-structuring can be costly in terms of memory usage. However,
since no triangular solves on the full matrix, which are typically used in a standard
shift-invert Lanczos algorithm, are required, an efficient multi-level out-of-core imple-
mentation is possible. We will discuss the implementation issues and comparison with
other methods in a future study.
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