
27

Adaptive Projection Subspace Dimension
for the Thick-Restart Lanczos Method

ICHITARO YAMAZAKI and ZHAOJUN BAI
University of California, Davis
and
HORST SIMON, LIN-WANG WANG, and KESHENG WU
Lawrence Berkeley National Laboratory

The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale Her-
mitian eigenvalue problems. The performance of the method strongly depends on the dimension
of the projection subspace used at each restart. In this article, we propose an objective function to
quantify the effectiveness of the selection of subspace dimension, and then introduce an adaptive
scheme to dynamically select the dimension to optimize the performance. We have developed an
open-source software package a–TRLan to include this adaptive scheme in the TRLan method.
When applied to calculate the electronic structure of quantum dots, a–TRLan runs up to 2.3x
faster than a state-of-the-art preconditioned conjugate gradient eigensolver.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Eigenvalues and eigenvectors (direct and iterative methods)

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Adaptive subspace dimension, Lanczos, thick-restart,
electronic structure calculation

This work was supported in part by the Office of Science of the U.S. Department of Energy un-
der Contract No. DE-AC02-05CH11231. Z. Bai was also supported in part by NSF grants DMS-
0611548 and OCI-0749217 and DOE grant DE-FC02-06ER25794. This research used resources
from the National Energy Research Scientific Computing Center, which is supported by the Office
of Energy Research of the U.S. Department of Energy.
Authors’ addresses: I. Yamazaki and Z. Bai, Department of Computer Science, University of Cali-
fornia, One Shields Avenue, Davis, CA 95616; email: {yamazaki, bai}@cs.ucdavis.edu. H. Simon,
L.-W. Wang, and K. Wu, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley,
CA 94720; email: {hdsimon, lwwang, kwu}@lbl.gov.
c©2010 Association for Computing Machinery. ACM acknowledges that this contribution was

authored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Gov-
ernment retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial ad-
vantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
c© 2010 ACM 0098-3500/2010/09-ART27 $10.00 DOI: 10.1145/1824801.1824805.

http://doi.acm.org/10.1145/1824801.1824805.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 2 · I. Yamazaki et al.

ACM Reference Format:
Yamazaki I., Bai, Z., Simon, H., Wang, L.-W., and Wu, K. 2010. Adaptive projection subspace
dimension for the thick-restart Lanczos method. ACM Trans. Math. Softw. 37, 3, Article 27
(September 2010), 18 pages. DOI = 10.1145/1824801.1824805.
http://doi.acm.org/10.1145/1824801.1824805.

1. INTRODUCTION

The Lanczos method [Lanczos 1950] for solving large-scale Hermitian eigen-
value problems computes a new orthonormal basis vector of a projection sub-
space at each iteration. Computational and memory costs increase rapidly as
the iteration proceeds. To reduce the costs, the method is typically restarted
after the projection subspace of a fixed dimension is computed [Sorensen 1992;
Wu and Simon 2000a]. The performance of the restarted method strongly de-
pends on the dimension of the projection subspace. If it is selected to be too
small, the method suffers from slow convergence. On the other hand, if it is too
large, the computational and memory costs become expensive and the overall
performance suffers. In order to achieve an optimal performance, it is nec-
essary to select a proper subspace dimension that balances the costs and the
convergence rate. To demonstrate this delicate task, let us examine the perfor-
mance of the Thick-Restart Lanczos (TRLan) method [Wu and Simon 2000b].
Figure 1 shows the numbers of matrix-vector products (in thousands) and CPU
times (in seconds) of the TRLan method to compute the smallest 20 eigenvalues
of a 10000 × 10000 diagonal matrix A = diag(1, 22, 32, . . . , 100002) with respect
to different subspace dimensions. As we can see, a larger subspace dimension
improves the convergence rate (i.e., TRLan converges with a smaller number
of matrix-vector products). However, as the subspace dimension becomes too
large, the CPU time starts to increase dramatically.

In order to free users from having to select an appropriate subspace dimen-
sion, in this article, we propose an adaptive scheme to dynamically select the
subspace dimension in conjunction with the TRLan method. We first distin-
guish between a prescribed maximum dimension of the subspace and the di-
mension of the subspace actually used at each restart, and then introduce an
objective function to quantify the effectiveness of a subspace dimension in bal-
ancing the cost and the convergence rate. The subspace dimension is then dy-
namically determined to optimize the objective function. We refer to the TRLan
method with this adaptive scheme to select the subspace dimension as an
a–TRLan method.

In the original Fortran 90 implementation of the TRLan method, the dimen-
sion of the projection subspace is static and prescribed for solving real symmet-
ric eigenvalue problems [Wu and Simon 2000b]. We have rewritten the TRLan
method in C and extended it to include the adaptive scheme described in this
article and to solve complex Hermitian eigenvalue problems [Yamazaki et al.
2008]. As with the original implementation, the Message Passing Interface
(MPI) is used on distributed memory systems.

Numerical results of a–TRLan for solvng synthetic and realistic problems
from different applications demonstrate that a–TRLan not only automates the
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 3

Fig. 1. Performance of TRLan with different subspace dimension.

selection of the subspace dimension, but also improves the performance of
TRLan with optimal static subspace dimension. We have integrated a–TRLan
into the Parallel Energy Scan (PESCAN) code [Wang et al. 2008]. PESCAN
has been successfully used to calculate the electronic structures of semiconduc-
tor quantum dots [Canning et al. 2000; Wang and Zunger 1994] and for other
applications [Li and Wang 2004; Schrier and Wang 2006]. The state-of-the-art
eigensolver in the PESCAN is based on the Preconditioned Conjugate Gradi-
ent (PCG) method [Payne et al. 1992]. Numerical results show that a–TRLan
is significantly faster than the PCG-based eigensolver with speedups of up to
2.3 for computing as few as 30 eigenpairs of interest.

2. THICK-RESTART LANCZOS METHOD

The Lanczos method [Lanczos 1950] is an effective method for computing a few
exterior eigenvalues λ and their corresponding eigenvectors v of a Hermitian
matrix A

Av = λv. (1)

Given a starting vector q, the Lanczos method first computes orthonormal basis
vectors q1, q2, . . . , qi+1 of a Krylov subspace

Ki+1(q, A) ≡ span{q, Aq, A2q, . . . , Aiq}.
These basis vectors satisfy the relation

A Qi = QiTi + βiqi+1eH
i , (2)

where Qi = [q1, q2, . . . , qi], βi = qH
i+1 Aqi, ei is the ith column of the identity ma-

trix of order i, Ti = QH
i A Qi is a Rayleigh-Ritz projection of A onto Ki(A , q), and

the superscript H indicates the conjugate transpose. An approximate eigen-
pair (θ, x = Qiy) of A is computed from an eigenpair (θ, y) of Ti. These approx-
imate eigenvalue θ and eigenvector x are referred to as Ritz value and Ritz

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 4 · I. Yamazaki et al.

Fig. 2. Ritz values to be kept at restart.

vector, respectively. The accuracy of the Ritz pair (θ, x) is measured by the
residual norm

‖r‖2 = ‖Ax − θx‖2 = ‖(A Qi − QiTi)y‖2 = βi‖qi+1eH
i y‖2 = βi|y(i)|, (3)

where y(i) is the ith element of y. The Ritz pair (θ, x) is converged if the residual
norm defined in (3) is less than a prescribed threshold. It is well known that
Ritz values typically converge to exterior eigenvalues of A with a subspace
dimension i that is much smaller than the dimension n of A [Parlett 1998;
Saad 1993].

A key feature that distinguishes the Lanczos method from other subspace
projection methods is that Ti of (2) is symmetric tridiagonal:

Ti =

⎛
⎜⎜⎜⎜⎜⎝

α1 β1
β1 α2 β2

.
βi−2 αi−1 βi−1

βi−1 αi

⎞
⎟⎟⎟⎟⎟⎠ .

Consequently, it leads to the following simple three-term recurrence:

βiqi+1 = Aqi − αiqi − βi−1qi−1. (4)

The new basis vector qi+1 can be computed by orthonormalizing the vector Aqi
against only two preceding basis vectors, qi−1 and qi. Unfortunately, in finite
precision arithmetic, when the new basis vector qi+1 is computed by (4), the
orthogonality among the basis vectors is lost even after a small number of iter-
ations. To maintain orthogonality, the new basis vector qi+1 is reorthogonalized
against all the previous vectors q1, q2, . . . , qi. This reorthogonalization process
is typically carried out using a Gram-Schmidt procedure [Parlett 1998; Saad
1993]. As the basis size i + 1 grows, this process becomes computationally ex-
pensive. Furthermore, all the basis vectors Qi need to be stored in memory.

To reduce the costs of computing a large subspace, the iteration is restarted
after a fixed number of the basis vectors are computed. Since the Ritz values
first converge to the exterior eigenvalues of A, TRLan selects two indices � and
u to indicate those Ritz values to be kept at both ends of the spectrum (see
Figure 2). The corresponding kept Ritz vectors are denoted by

Q̂k = [̂q1, q̂2, . . . , q̂k] = QmYk, (5)

where m is the dimension of the subspace,

Yk = [y1, y2, . . . , y�, yu, yu+1, . . . , ym], (6)
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 5

and yi is the eigenvector of Tm corresponding to θi. TRLan sets these Ritz
vectors Q̂k as the first k basis vectors at the restart and qm+1 as the (k + 1)th
basis vector (i.e., q̂k+1 = qm+1).1 To compute the (k+2)th basis vector q̂k+2, TRLan
computes Aq̂k+1 and orthonormalizes it against the previous k + 1 basis vectors
as follows.

β̂k+1q̂k+2 = Aq̂k+1 − Q̂k(Q̂H
k Aq̂k+1) − q̂k+1(̂qH

k+1 Aq̂k+1). (7)

Note that A Q̂k satisfies the relation

A Q̂k = Q̂k Dk + βmq̂k+1sH,

where Dk is the k×k diagonal matrix whose diagonal elements are the kept Ritz
values, and s = Y H

k em. Hence, the coefficients Q̂H
k Aq̂k+1 in (7) can be computed

efficiently:

Q̂H
k Aq̂k+1 = (A Q̂k)Hq̂k+1 = (Q̂k Dk + βmq̂k+1sH)Hq̂k+1

= DkY H
k (QH

mqm+1) + βms(̂qH
k+1q̂k+1) = βms .

In general, at the ith iteration after the restart, the new basis vector q̂k+i+1
satisfies the relation

A Q̂k+i = Q̂k+iT̂k+i + β̂k+îqk+i+1eH
k+i,

where T̂k+i = Q̂H
k+iA Q̂k+i is of the form

T̂k+i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Dk βms
βmsH α̂k+1 β̂k+1

β̂k+1 α̂k+2 β̂k+2
.

β̂k+i−2 α̂k+i−1 β̂k+i−1

β̂k+i−1 α̂k+i

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the three-term recurrence is not valid only for computing the (k+2)th
basis vector and is resumed afterward. Figure 3 shows the pseudocode of the
TRLan algorithm, where mj+1 = m for all j at step 3.e. A detailed description of
the TRLan method can be found in Wu and Simon [2000a].

Besides the TRLan method, there are several other restarting schemes. One
can restart the iteration with a new starting vector, such as a linear combina-
tion of the current approximate eigenvectors. Unfortunately, this simple ap-
proach loses a significant amount of information at restart and results in slow
convergence. The implicitly restart Lanczos method [Calvetti et al. 1994] keeps
a fixed number of vectors at restart which approximately span a subspace con-
taining the desired Ritz vectors by filtering out the unwanted ones. The TRLan
method allows more explicit control over the selections of Ritz vectors.

1The ith basis vector q̂i computed after the restart is distinguished from the ith basis vector qi
computed before the restart by the hat over it.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 6 · I. Yamazaki et al.

Fig. 3. Pseudocode of the TRLan algorithm.

3. ADAPTIVE SCHEME TO DETERMINE PROJECTION SUBSPACE
DIMENSION

At step 3.e of the TRLan pseudocode in Figure 3, a triplet (� j+1, uj+1, mj+1) is
selected to specify the Ritz vectors to be kept and the dimension of the projec-
tion subspace to be used at the next restart. In the original implementation of
TRLan [Wu and Simon 2000b], the Ritz vectors are selected to maximize the
convergence rate, while the subspace dimension mj+1 is fixed to be the user-
selected maximum dimension mmax (see Wu and Simon [2000b, Section 6.1] for
the discussion on how to select mmax). As we have discussed in Section 1, it is a
nontrivial task to select an optimal value of mj+1 since it depends on a number
of factors, such as the available memory and the distribution of the eigenval-
ues. In this section, we introduce an adaptive scheme to determine mj+1. We
will first examine the expected convergence rate and the associated computa-
tional cost over the next restart-loop, and then introduce an objective function
to measure the effectiveness of the triplet (� j+1, uj+1, mj+1) in terms of balancing
the cost and the convergence rate.
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 7

3.1 Convergence Factor

Let us examine the convergence rate of the (� + 1)th smallest Ritz value over
the (j + 1)-th restart-loop, where the Ritz values θ1, . . . , θ� and θu, . . . , θmj are
assumed to have converged. We use ‖rj‖2 to denote the residual norm (3) of the
Ritz pair (θ�+1, x�+1) at the jth restart, and use ω j to denote the reciprocal of the
reduction factor of ‖rj‖2 over the (j + 1)th restart-loop as follows.

‖rj+1‖2 =
1
ω j

‖rj‖2 .

According to the analysis of Morgan [1996], after the m − k Lanczos iterations,
ω j is approximately given by

ω j � Cm−k(1 + 2γ),

where Cm−k is the Chebyshev polynomial of degree m − k, and γ is the spectral
gap ratio defined as

γ =
λ�+2 − λ�+1

λn−(mj−u+1) − λ�+2
. (8)

Note that � and (mj − u + 1) are the numbers of the smallest and largest con-
verged Ritz pairs, respectively, and 0 ≤ � < u ≤ mj + 1. If � = 0 or u = mj + 1,
then the smallest or largest Ritz values have not yet converged, respectively.
We also note that m > k = � + (mj − u + 1), where m is a candidate dimension
of the next projection subspace, while mj is the subspace dimension used at the
jth restart.

For large-scale eigenvalue problems of practical interest, it is typical that
γ � 1. Hence, we use the following estimate of ω j when 0 < γ � 1.

ω j � cosh(2(m − k)
√

γ) � 2(m − k)
√

γ . (9)

For the approximations of Chebyshev polynomials, for example, see Demmel
[1997, Lemma 6.7].

In practice, the exact eigenvalues of A are not available. Hence, we replace
the eigenvalues λi in the definition of the gap ratio (8) with the corresponding
computed Ritz values and use the following effective gap ratio γe to compute ω j.

γe =
θ�+2 − θ�+1

θu−1 − θ�+2
. (10)

To measure the convergence rate of the (u − 1)th Ritz value using ω j, the effec-
tive gap ratio (10) needs to be changed to

γe =
θu−1 − θu−2

θu−2 − θ�+1
.

For the rest of this article, we focus on the convergence rate of the (� + 1)th Ritz
value for computing a few smallest eigenvalues.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 8 · I. Yamazaki et al.

3.2 Computational and Memory Costs

Beside the matrix-vector product (step 2.b in Figure 3), the dominant compu-
tational costs of the TRLan method are as follows.

(1) Reorthogonalization (step 2.e in Figure 3): When a new basis vector qi+1 is
reorthogonalized against all the previous basis vectors using the Gram-
Schmidt procedure, it requires approximately 4ni floating-point opera-
tions (flops). For simplicity, we consider the full reorthogonalization.2 The
aggregated cost of the reorthogonalization is approximately given by

m−1∑
i=k

4ni = 2n(m − k)(k + m − 1) flops,

where k = � + mj − u + 1.
(2) Ritz vector computation (step 3.h in Figure 3): The cost of computing the

Ritz vectors Q̂k = QmYk requires approximately

2nmk flops.

Therefore, aside from the flops of the matrix-vector products, the total number
of flops required for the next restart-loop is approximately

2n(m − k)(k + m − 1) + 2nmk.

On a modern computer, the number of flops may not be an accurate measure
of the expected running time of a program because the number of memory refer-
ences and the memory access pattern may dominate. For example, the average
time spent for a flop in the sparse matrix-vector product could be significantly
greater than that in the Ritz vector computation due to the irregular data ac-
cess of the sparse matrix-vector product. To incorporate this factor, we use the
following formula to model the expected running time of the next restart-loop:

α1(2n(m − k)(k + m − 1)) + α2(2nmk) + α3(m − k), (11)

where α1 and α2 are the average time spent per flop in the reorthogonaliza-
tion and Ritz vector computation, respectively, and α3 is the average time for
a sparse matrix-vector product. The parameters α1, α2, and α3 are computed
based on the measured times from the previous iterations.

3.3 Objective Function

Based on the reduction factor (9) and the computational cost (11), we define the
following objective function to model the effectiveness of the triplet (�, u, m):

f (�, u, m) =
(m − k)

√
γe

n(α1(m − k)(k + m − 1) + α2mk) + α3(m − k)
, (12)

2Both TRLan and a–TRLan implement a selected reorthogonalization scheme as described in Par-
lett [1998, Section 6.9]. In practice, we have observed that most of the new basis vectors need to be
fully reorthogonalized.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 9

where k = � + mj − u + 1. An optimal triplet (�opt, uopt, mopt) should balance the
computational cost and the convergence rate over the next restart-loop, and
hence it is given by (�opt, uopt, mopt) = arg max f (�, u, m).

3.4 Practical Issues

Let c� and cu be the numbers of the smallest and largest Ritz values satisfying a
prescribed convergence criterion, respectively. If only the converged Ritz pairs
are kept as discussed in Section 3.1, then the two indices � j+1 and uj+1 to specify
the kept Ritz pairs are given by

� j+1 = c� and uj+1 = mj − cu + 1, (13)

while the next subspace dimension is given by mj+1 = arg max f (� j+1, uj+1, m)
with m > k.

However, in practice, the convergence rate of the target Ritz pair (θc�+1, xc�+1)
can be improved by keeping the Ritz pairs around the target even though they
have not yet converged. This is because the kept Ritz vectors approximately
deflate the spectrum of the eigenvectors around the target and increase the
separation between them. Thus, instead of (13), we enforce the following con-
straints on the indices � and u:

c� + 1 ≤ � and u ≤ mj + 1 (14)

(initially, c� = 0). In addition, since interior Ritz values are slow to converge,
we enforce a minimum gap gj between the indices � and u to avoid keeping the
interior Ritz values that have not converged at all:

gj = ν · (mj − c�), (15)

where mj − c� is the maximum possible gap, and ν is a relaxation factor, 0 ≤
ν ≤ 1. In the case of ν = 1, only the smallest converged Ritz pairs are kept,
namely � = c� and u = mj + 1. As the value of ν decreases, more Ritz pairs are
allowed to be kept. The effect of ν will be discussed in Section 3.5.

Combining the constraints (14) and (15), we arrive at the following ranges of
the indices � and u.

c� + 1 ≤ � ≤ mj + 1 − gj ,
� + gj ≤ u ≤ mj + 1 .

(16)

The corresponding range for the subspace dimension m is

� + mj − u + 2 ≤ m ≤ mmax. (17)

From the triplets (�, u, m) satisfying (16) and (17), the optimal triplet (�opt, uopt,
mopt) is searched for based on a search algorithm shown in Figure 4, where
�� is a lower bound of � and uu is an upper bound of u (i.e., �� = c� + 1 and
uu = mj+1). In practice, we found that when computing nd smallest eigenvalues,
the convergence rate can be improved by enforcing �� = nd and uu = mj such that
at least nd smallest Ritz values and one largest Ritz value were kept at restarts.
Hence, these bounds are used in our implementation. We also found that when
the maximum subspace dimension mmax is too small, the maximum subspace
dimension is selected at every restart (i.e., mj+1 = mmax for all j). In such a case,

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 10 · I. Yamazaki et al.

Fig. 4. Pseudocode to search for (�opt, uopt, mopt).

the convergence rate is often improved by maximizing the reduction factor (9)
than by trying to balance the cost with the convergence rate using (12). Hence,
in our implementation, when the maximum subspace dimension is selected at
a restart, the indices � and u are recomputed to maximize

g(�, u) = (mmax − k)
√

γe. (18)

In summary, the proposed a–TRLan method uses the computed triplet
(�opt, uopt, mopt) to replace the triplet (� j+1, uj+1, mj+1) at the step 3.e of the
pseudocode in Figure 3, while the initial subspace dimension is set to be
m1 = min(2nd, mmax). The cost of selecting the triplet is O(m3

max). In compari-
son to the total cost (11), it is insignificant since mmax is typically much smaller
than n. Note that since the Ritz pairs that have not converged are now kept,
the effective gap ratio (10) needs be replaced with

γe =
θ�+1 − θc�+1

θu−1 − θ�+1
. (19)

We note that TRLan selects the indices � j+1 and uj+1 to maximize the con-
vergence rate measured by (18), while the subspace dimension is fixed (i.e.,
mj+1 = mmax for all j). A similar restart scheme with a fixed subspace dimension
was used for the thick-restarted Davidson method [Stathopoulos et al. 1998].
A different adaptive scheme to determine the projection subspace dimension
for the Davidson method was studied in Crouzeix et al. [1994], where the iter-
ation is restarted as soon as the product of the computational cost of a single
iteration and the local convergence rate of the residual norm (i.e., ‖rj‖2/‖rj−1‖2)
grows significantly. Our adaptive scheme for a–TRLan, on the other hand, at-
tempts to optimize the performance over the next restart-loop.

3.5 Heuristic for the Relaxation Factor ν

We now discuss the effect of the relaxation factor ν of (15) on the performance
of a–TRLan. Figure 5 shows the CPU time of a–TRLan using mmax = 1000 and
different ν to compute nd = 100 smallest eigenvalues of diagonal matrices A1 =
diag(1, 2, 3, . . . , n) and A3 = diag(1, 23, 33, . . . , n3) with n = 10000. The CPU
times are normalized by that of ν = 0.1. The figure clearly indicates the impact
of ν on the performance of a–TRLan. It also shows that optimal performance
ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 11

Fig. 5. Effect of relaxation factor ν on performance of a–TRLan.

of a–TRLan is achieved with different ν for A1 and A3. In the original TRLan
implementation, it was fixed at ν = 0.4.

To eliminate the need of a user to search for an optimal ν, we propose a
scheme to dynamically adjust the relaxation factor ν based on the observed
convergence rate. Specifically, we select the relaxation factor ν j at the jth
restart by considering the factor ‖rj‖2/‖rj−1‖2 of the (j − 1)th target Ritz pair
(θc�+1, xc�+1), where ‖rj‖2 is the residual norm of the target at the jth restart.
Then, we define an observed gap ratio γo over the jth restart-loop as

γo =

⎛
⎝arccosh ‖rj−1‖2

‖rj‖2

2(mj − kj)

⎞
⎠

2

, (20)

where kj = � j +mj −uj +1. Recall that the gap ratio γ was previously used in (9)
to measure the expected convergence ratio.

A desired gap ratio γd which achieves good performance of a–TRLan is one
which ensures that the target Ritz pair converges within two restart-loops:

τ‖A‖2

‖rj‖2
=

1
cosh(4m̄

√
γd)

,

where τ is a required accuracy of the converged Ritz pairs (θ, x), that is,
‖Ax − θx‖2 ≤ τ‖A‖2, ‖A‖2 is approximated by the largest absolute value of
all the converged Ritz values, and m̄ is the average dimension of the projection
subspaces used at previous restarts. Thus, γd is computed as

γd =

⎛
⎝arccosh

(‖rj−1‖2

τ‖A‖2

)
4m̄

⎞
⎠

2

. (21)

When γo < γd, it indicates slow convergence. In this case, we attempt to im-
prove the solution convergence for the next restart-loop by selecting a smaller

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 12 · I. Yamazaki et al.

value of ν j and allowing more Ritz vectors to be kept. Otherwise, a larger value
of ν j is selected to reduce the computational cost. To automatically adjust the
relaxation factor ν j, we introduce the heuristic

ν j = ν� +
2
π

(1 − ν�) arctan
(

γo

γd

)
, (22)

where ν� is a lower bound on ν j, 0 ≤ ν� ≤ 1. A good default lower bound of ν� is
found to be 0.7.

We note that when the targetted residual norm did not decrease after the
mj − kj iterations, namely ‖rj−1‖2 ≥ ‖rj‖2, the observed gap ratio γo of (20) is
not defined. In this case, we use the default value ν j = 0.7. When a smaller
solution accuracy τ is required, the desired gap ratio γd becomes larger, and a
smaller relaxation factor ν j is selected. Hence, more Ritz vectors are allowed to
be kept for faster convergence.

4. NUMERICAL EXPERIMENTS

In this section, we present numerical results to compare the performance of
the TRLan and a–TRLan methods. These methods are implemented in C and
included in the open-source package a–TRLan [Yamazaki et al. 2008]. For all
of our experiments, we used a vector of all ones as the initial vector q of the
Lanczos iteration. A computed eigenpair (θ, x) is considered to be converged
when its relative residual norm is smaller than a prescribed threshold τ , that
is, ‖Ax − θx‖2 ≤ τ‖A‖2, where ‖A‖2 is approximated by the largest absolute
value of the computed eigenvalues.

4.1 Synthetic Examples

Let us first present numerical results of some synthetic eigenvalue problems
to illustrate the essential properties of the a–TRLan method. These numerical
experiments were conducted on an HP Itanium2 workstation with a 1.5 GHz
CPU and 2GB of RAM. The codes were compiled using the icc compiler (ver-
sion 9.0) and the optimization flag -O3, and linked to the BLAS and LAPACK
libraries in the Intel Math Kernel Library (version 7.2.1).3 For the convergence
criterion, we used τ = 10−13 for all the synthetic problems.

Example 1. We computed nd = 100 smallest eigenvalues of diagonal ma-
trices A1(n) = diag(1, 2, . . . , n) and A3(n) = diag(13, 23, . . . , n3) with n = 10000.
Figure 6 shows that the subspace dimension mj+1 is dynamically selected at the
jth restart. As the iteration proceeds, the number nc of converged eigenpairs
increases, and the number kj of kept Ritz pairs and the subspace dimension
mj+1 also increase accordingly.

Figure 7 compares the elapsed CPU time required by TRLan and a–TRLan
using different prescribed mmax. The figure shows that the performance of a–
TRLan is essentially independent of mmax, while the performance of TRLan

3Readers are referred to the user guide [Yamazaki et al. 2008] for information on how BLAS
(http://www.netlib.org/blas/) and LAPACK (http://www.netlib.org/lapack/) are used in the a–TRLan
package.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 13

Fig. 6. Projection subspace dimension mj+1, the number k j of Ritz pairs kept by a–TRLan, and the
number nc of converged eigenpairs at the jth restart, mmax = 1000.

Fig. 7. Elapsed CPU time of TRLan and a–TRLan with different mmax.

strongly depends on the choice of mmax. As a result, a–TRLan significantly
improves the performance of TRLan, especially when a large mmax is used.

We note that for the test matrix A1, TRLan achieved its optimal perfor-
mance using the default subspace dimension mmax = 2nd = 200. However, this
default choice may not be always optimal. For the test matrix A3, optimal per-
formance of TRLan was achieved using mmax = 400. It is a nontrivial task to
find the optimal mmax. On the other hand, when a sufficiently large value of
mmax is used, a–TRLan automatically determines an appropriate mj+1 at every
restart. Furthermore, for A3, a–TRLan with mmax > 400 improved the optimal
performance of TRLan. Similar results were also observed for computing 20
eigenpairs of A2 (see Figure 1). By setting mmax = 200, a–TRLan computed the
desired eigenpairs in 42.21 seconds in comparison to 46.88 seconds of TRLan
using optimal static dimension mmax = 120.

Example 2. To demonstrate the effectiveness of a–TRLan for solving eigen-
value problems arising from different applications, we tested a–TRLan on
the matrices available from the University of Florida (UF) sparse matrix

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 14 · I. Yamazaki et al.

Table I. Description of the Matrices Used in the Numerical Experiments

Name Description n nnz

torsion1 CUTEr optimization problem 40,000 197,608
cfd1 Computational fluid dynamics problem 70,656 1,825,580
Andrews Computer graphics/vision problem 60,000 760,154
finan512 Multistage stochastic financial modeling 74,752 596,992

Fig. 8. Performance comparison of TRLan and a–TRLan to compute 10 and 100 eigenpairs of the
matrices from the UF sparse matrix collection. For nd = 10 and 100, the convergence times are
normalized by that of TRLan using mmax = 20 and 200, respectively (i.e., 27.9, 14.7, 1169.9, and
48.6 seconds for nd = 10, and 118.5, 89.0, 2683.1, and 525.9 seconds for nd = 100).

collection.4 These matrices were used to evaluate the performance of the
Jacobi-Davidson method in PRIMME [Stathopoulos and McCombs 2007]. Some
properties of the matrices are shown in Table I. In Figure 8, we show the CPU
times required by a–TRLan and TRLan to compute the smallest 10 and 100
eigenvalues of the matrices. These results show that the performance of a–
TRLan was essentially independent of mmax, and stayed around optimal per-
formance of TRLan as a larger mmax was used.

Example 3. In this example, we study the effect of the relaxation factor ν j
defined as (22). Figure 9 shows the value of ν j determined by the formula (22)
at every restart of a–TRLan to compute the smallest 100 eigenvalues of the
matrices A1 and A3. The maximum subspace dimension is mmax = 1000. The
figure shows that the value of ν j was adjusted at every restart. Furthermore,
for the test matrix A3, smaller values of ν j are used to improve the solution con-
vergence. We also observed that the intervals, in which the values of ν j change
abruptly, have some correlation to those in which the number of converged Ritz
pairs increases, indicating that the value of ν j is adjusted when a new Ritz pair
converges.

Figure 10 shows the CPU time for computng the smallest 100 eigenvalues of
the matrix A1 using relaxation factor ν j defined by (22) and static factor ν. The
default static value used in TRLan [Wu and Simon 2000b] is ν = 0.4, although
the optimal static value is ν = 0.9. The heuristic (22) dynamically adjusts ν j and

4http://www.cise.ufl.edu/research/sparse/matrices/

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 15

Fig. 9. Relaxation factor ν j selected by the heuristic (22) at the jth restart.

Fig. 10. Elapsed CPU time for computing 100 eigenpairs of A1 with respect to the difference
relaxation factors.

automatically obtains near-optimal performance. We note that for the small
static factor of ν = 0.4, a–TRLan keeps large numbers of Ritz pairs at restarts,
which lead to unnecessarily large projection subspaces. Similar observations
were made for the test matrix A3 (see Figures 10 and 11).

4.2 Examples from Electronic Structure Calculation

To compute the eigenstates of a Hamiltonian operator, PESCAN uses a PCG-
based eigensolver, where the preconditioner is a diagonal matrix constructed
based on the kinetic energy portion of the operator [Wang and Zunger 1996].
The PCG-based eigensolver is considered as the state-of-the-art method for this
application. Our objective is to compare the CPU times required by PCG-based
eigensolver to those required by a–TRLan (preconditioner is not used in a–
TRLan). This part of numerical experiments were performed on 16 processors
of an IBM POWER 5 system at the National Energy Research Scientific Com-
puting (NERSC) Center. The codes were compiled using the xlc compiler and
the optimization flag -O3.

We considered two quantum dot systems; one consisting of 232 Cadmium
atoms and 235 Selenium atoms (Cd232Se235), and the other consisting of 534

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 16 · I. Yamazaki et al.

Fig. 11. Elapsed CPU time for computing 100 eigenpairs of A3 with respect to the difference
relaxation factors.

Table II. CPU Time (in seconds) to Compute Eigenpairs of Quantum Dots Using PCG and
a–TRLan

Cd232Se235 (n = 75, 645) Cd534Se527 (n = 141, 625)
VBM CBM VBM CBM

nd 10 30 10 30 10 30 10 30
PCG 39.24 177.21 82.85 210.10 62.63 376.02 193.66 686.25
a–TRLan 39.54 96.49 102.58 125.41 78.63 198.98 233.48 297.20
Speedup 0.99 1.87 0.81 1.68 0.80 1.89 0.83 2.31

Cadmium atoms and 527 Selenium atoms (Cd534Se527). PESCAN uses 75,645
and 141,625 planwave bases, which results in Hermitian matrices H of di-
mensions n = 75,645 and 141,625, respectively. The eigenvalues of H fall
into two distinct groups separated by a large band gap between them; the
group of smaller eigenvalues is known as the valence band, while the group
of larger eigenvalues is called the conduction band. The largest eigenvalues in
the valence band are referred to as the Valence Band Maximum (VBM), while
the smallest eigenvalues in the conduction band are known as the Conduc-
tion Band Minimum (CBM). To evaluate the electrical and optical properties
of quantum dot systems, we need to compute the eigenvalues near the band
gap [Li and Wang 2004; Schrier and Wang 2006]. We used the folded spec-
trum method to compute a few eigenpairs in VBM or CBM by computing the
smallest eigenvalues of the matrix A = (H − λref I)2 with a known reference
value λref. For the convergence criterion of PCG, we used τ = 10−5, while for
that of a–TRLan, τ is adjusted such that at least the same solution accuracy
was achieved by the PCG.

Table II shows the required CPU times and speedups gained by a–TRLan to
compute different numbers of eigenpairs in VBM and CBM.5 a–TRLan used the

5In Vömel et al. [2008], it is reported that some eigenvalues are missed using ARPACK [Lehoucq
et al. 1998]. To avoid missing eigenvalues, five additional eigenpairs are computed with a–TRLan
to match the eigenvalues computed with those from PCG in some tests. Furthermore, the required
accuracy of the solution computed by a–TRLan is reduced to match the solution accuracy computed
by PCG.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

Yamazaki: Subspace Dimension for the Thick-Restart Lanczos Method · 27: 17

heuristic (22) to determine the relaxation factor ν j, and the maximum subspace
dimension was set to be mmax = 1000. The numerical results show that to com-
pute a small number of eigenpairs (e.g., nd = 10), PCG was slightly faster than
a–TRLan due to the intrincit algorithmic difference of the PCG and Lanczos
methods. However, to compute a moderate number of eigenpairs (e.g., nd = 30),
a–TRLan performed significantly better than PCG. The performance compar-
ison of these two eigensolvers under limited memory is a subject for future
research. For example, PCG used in our experiments requires the memory to
store nd + 3 vectors of length n, while a–TRLan requires the memory to store
up to mmax vectors. Hence, under limited memory, PCG may be preferred, es-
pecially when an effective preconditioner is available.

5. CONCLUSION

The Thick-Restart Lanczos (TRLan) method computes a fixed number of basis
vectors before restarting the iteration. Users of TRLan has to carefully select
an appropriate basis size. In order to free the users from this difficult task of
selecting an appropriate basis size, we proposed an adaptive scheme (a–TRLan)
to dynamically determine the projection subspace dimension. The new scheme
balances the expected computational cost and solution convergence rate, at
every restart. We have developed an open-source software package that im-
plements a–TRLan in C to solve Hermitian eigenvalue problems.

Numerical results have shown that a–TRLan automates the selection of the
subspace dimension and improves the performance of TRLan. We have focused
on the TRLan method in this article. Other subspace projection eigensolvers
such as the implicitly restarted Arnoldi method in ARPACK [Lehoucq et al.
1998] also require users to select an appropriate projection subspace dimen-
sion. The idea of the adaptive scheme discussed in this article should also be
able to be applied to these eigensolvers.

ACKNOWLEDGMENTS

We gratefully acknowledge fruitful discussions with Sefa Dag, Osni Marques,
Matthew Dixon, Christof Vömel, and Nenad Vukmirovic. We thank the anony-
mous referees for their helpful comments and suggestions to improve the pre-
sentation of this article.

REFERENCES

CALVETTI, D., REICHEL, L., AND SORENSEN, D. 1994. An implicitly restarted Lanczos method for
large symmetric eigenvalue problems. Electro. Trans. Numer. Anal. 2, 1–21.

CANNING, A., WANG, L. W., WILLIAMSON, A., AND ZUNGER, A. 2000. Parallel empirical
pseudopotential electronic structure calculations for million atom systems. J. Comput. Phys. 160,
1, 29–41.

CROUZEIX, M., PHILIPPE, B., AND SADKANE, M. 1994. The Davidson method. SIAM J. Sci.
Comput. 15, 62–76.

DEMMEL, J. W. 1997. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA.

LANCZOS, C. 1950. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. J. Res. Nat. Bur. Stand. 45, 255–281.

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

27: 18 · I. Yamazaki et al.

LEHOUCQ, R., SORENSEN, D., AND YANG, C. 1998. ARPACK Users Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA.
Software http://www.caam.rice.edu/software/ARPACK/.

LI, J. AND WANG, L. 2004. First principle study of core/shell structure quantum dots. Appl. Phys.
Lett. 84, 18, 2648–3650.

MORGAN, P. B. 1996. On restarting the Arnoldi method for large nonsymmetric eigenvalule
problems. Math. Comput. 65, 215, 1213–1230.

PARLETT, B. N. 1998. The Symmetric Eigenvalue Problem. Classics in Applied Mathematics.
SIAM, Philadelphia, PA.

PAYNE, M. C., TETER, M. P., ALLAN, D. C., ARIAS, T. A., AND JOANNOPOULOS, J. D. 1992.
Iterative minimization techniques for ab-initio total energy calculations: Molecular dynamics
and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097.

SAAD, Y. 1993. Numerical Methods for Large Eigenvalue Problems. Manchester University Press,
Manchester, UK.

SCHRIER, J. AND WANG, L. 2006. A systematic first principles study of nanocrystal quantum-dot
quantum wells. Phys. Rev. B 73, 245332–7.

SORENSEN, D. 1992. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J.
Mat. Anal. Appl. 13, 1, 357–385.

STATHOPOULOS, A. AND MCCOMBS, J. R. 2007. Nearly optimal preconditioned methods for
Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues. SIAM J.
Sci. Comput. 29, 5, 2162–2188.

STATHOPOULOS, A., SAAD, Y., AND WU, K. 1998. Dynamic thick restarting of the Davidson and
the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 227–245.

VÖMEL, C., TOMOV, S. Z., MARQUES, O. A., CANNING, A., WANG, L., AND DONGARRA, J. J. 2008.
State-of-the-Art eigensolvers for electronic structure calculation of large scale nano-systems.
J. Comput. Phys. 227, 15, 7113–7124.

WANG, L., CANNING, A., MARQUES, O., AND VOEMEL, C. 2008. The parallel energy scan
(PESCAN) code. http://icl.cs.utk.edu/doe-nano/software/pescan/escan.

WANG, L. AND ZUNGER, A. 1994. Solving Schrodinger’s equation around a desired energy:
Application to silicon quantum dots. J. Chem. Phys. 100, 2394–2397.

WANG, L. AND ZUNGER, A. 1996. Pseudopotential theory of nanometer silicon quantum dots ap-
plication to silicon quantum dots. In Semiconductor Nanocluster, P. Kamat and D. Meisel Eds.,
ACM, New York, NY, 161–207.

WU, K. AND SIMON, H. 2000a. Thick-Restart Lanczos method for large symmetric eigenvalue
problems. SIAM J. Mat. Anal. Appl. 22, 602–616.

WU, K. AND SIMON, H. 2000b. TRLan user guide. Tech. rep. LBNL-43178, Lawrence Berkeley
National Laboratory. Software http://crd.lbl.gov/˜kewu/trlan.html.

YAMAZAKI, I., WU, K., AND SIMON, H. 2008. a–TRLan user guide. Tech. rep. LBNL-1288E,
Lawrence Berkeley National Laboratory. Software https://codeforge.lbl.gov/projects/trlan/.

Received September 2008; revised October 2009; accepted February 2010

ACM Transactions on Mathematical Software, Vol. 37, No. 3, Article 27, Pub. date: September 2010.

